Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deformable materials and structures in wearable haptic interfaces

Abstract

Haptic technology reproduces the human sense of touch, playing a critical role in enhancing immersions in virtual and augmented reality, medical training and human–machine interface. With the rapid development of these fields, haptic devices are transitioning from rigid, bulky systems to flexible, wearable formats that are lightweight, stretchable and skin conforming, greatly improving user comfort and tactile fidelity. The ultimate goal of next-generation haptic interface is to achieve precise, high-resolution tactile feedback that closely mimics natural skin sensations through direct mechanical interaction. However, current technologies remain limited in delivering diverse feedback modalities and fine spatial resolution, mainly owing to the underexplored potential of deformable materials and adaptive structural designs. This Review highlights recent progress in deformable materials and structural innovations for wearable haptic feedback. Systematic evaluation metrics are proposed based on key haptic perception mechanisms to assess performance across multiple indicators, including amplitude, frequency, spatial resolution and energy efficiency. Key achievements in material science, structural engineering and system integration are analysed, along with discussion of current challenges and future research directions of next-generation flexible and wearable haptic interfaces. With these proposed metrics, we aim to guide researchers in selecting appropriate materials and design strategies for future haptic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of haptic interaction in the real and virtual worlds.
Fig. 2: Schematic diagram showing haptic perception and evaluation metrics.
Fig. 3: Performance metrics of selected deformable materials.
Fig. 4: Performance metrics of selected deformable structures.
Fig. 5: Perspectives for haptic feedback devices.

Similar content being viewed by others

References

  1. Hansen, J. R. & Loftin, L. K. Quest for performance: the evolution of modern aircraft. Technol. Cult. 28, 734 (1987).

    Article  Google Scholar 

  2. Frisoli, A. & Leonardis, D. Wearable haptics for virtual reality and beyond. Nat. Rev. Electr. Eng. 1, 666–679 (2024).

    Article  Google Scholar 

  3. Bach-Y-Rita, P., Collins, C. C., Saunders, F. A., White, B. & Scadden, L. Vision substitution by tactile image projection. Nature 221, 963–964 (1969).

    Article  CAS  PubMed  Google Scholar 

  4. Huang, Y. et al. Recent advances in multi-mode haptic feedback technologies towards wearable interfaces. Mater. Today Phys. 22, 100602 (2022).

    Article  Google Scholar 

  5. Yu, X. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Gerald, A. & Russo, S. Soft sensing and haptics for medical procedures. Nat. Rev. Mater. 9, 86–88 (2024).

    Article  Google Scholar 

  7. Yin, J., Hinchet, R., Shea, H. & Majidi, C. Wearable soft technologies for haptic sensing and feedback. Adv. Funct. Mater. 31, 2007428 (2021).

    Article  CAS  Google Scholar 

  8. Kim, H. J., Koo, J. H., Lee, S., Hyeon, T. & Kim, D.-H. Materials design and integration strategies for soft bioelectronics in digital healthcare. Nat. Rev. Mater. https://doi.org/10.1038/s41578-025-00819-w (2025).

    Article  Google Scholar 

  9. Fleck, J. J. et al. Wearable multi-sensory haptic devices. Nat. Rev. Bioeng. 3, 288–302 (2025).

    Article  CAS  Google Scholar 

  10. Ankit et al. Soft actuator materials for electrically driven haptic interfaces. Adv. Intell. Syst. 4, 2100061 (2022).

    Article  Google Scholar 

  11. Shi, Y. & Shen, G. Haptic sensing and feedback techniques toward virtual reality. Research 7, 0333 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oh, S. et al. Easy-to-wear auxetic SMA knot-architecture for spatiotemporal and multimodal haptic feedbacks. Adv. Mater. 35, 2304442 (2023).

    Article  CAS  Google Scholar 

  13. Abad, S.-A., Herzig, N., Raitt, D., Koltzenburg, M. & Wurdemann, H. Bioinspired adaptable multiplanar mechano-vibrotactile haptic system. Nat. Commun. 15, 7631 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tan, M. W. M., Wang, H., Gao, D., Huang, P. & Lee, P. S. Towards high performance and durable soft tactile actuators. Chem. Soc. Rev. 53, 3485–3535 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Lederman, S. J. & Klatzky, R. L. Haptic perception: a tutorial. Atten. Percept. Psychophys. 71, 1439–1459 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Kappers, A. M. L. & Bergmann Tiest, W. M. Haptic perception. WIREs Cognit. Sci. 4, 357–374 (2013).

    Article  Google Scholar 

  17. Dahiya, R. S., Metta, G., Valle, M. & Sandini, G. Tactile sensing — from humans to humanoids. IEEE Trans. Robot. 26, 1–20 (2010).

    Article  Google Scholar 

  18. LaMotte, R. H. & Srinivasan, M. A. Tactile discrimination of shape: responses of rapidly adapting mechanoreceptive afferents to a step stroked across the monkey fingerpad. J. Neurosci. 7, 1672–1681 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grunwald, M. (ed.) Human Haptic Perception: Basics and Applications https://doi.org/10.1007/978-3-7643-7612-3 (Birkhäuser, 2008).

  20. Johnson, K. O., Yoshioka, T. & Vega-Bermudez, F. Tactile functions of mechanoreceptive afferents innervating the hand. J. Clin. Neurophysiol. 17, 539 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Kern, T. A. (ed.) Engineering Haptic Devices: A Beginner’s Guide for Engineers https://doi.org/10.1007/978-3-540-88248-0 (Springer, 2009).

  22. Jenmalm, P., Birznieks, I., Goodwin, A. W. & Johansson, R. S. Influence of object shape on responses of human tactile afferents under conditions characteristic of manipulation. Eur. J. Neurosci. 18, 164–176 (2003).

    Article  PubMed  Google Scholar 

  23. Mancini, F. et al. Whole-body mapping of spatial acuity for pain and touch. Ann. Neurol. 75, 917–924 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Craig, J. C. & Lyle, K. B. A comparison of tactile spatial sensitivity on the palm and fingerpad. Percept. Psychophys. 63, 337–347 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Gentaz, E., Baud-Bovy, G. & Luyat, M. The haptic perception of spatial orientations. Exp. Brain Res. 187, 331–348 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bensmaïa, S. J. & Hollins, M. The vibrations of texture. Somatosens. Mot. Res. 20, 33–43 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Delhaye, B., Hayward, V., Lefèvre, P. & Thonnard, J.-L. Texture-induced vibrations in the forearm during tactile exploration. Front. Behav. Neurosci. 6, 37 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Harrington, G. S. & Hunter Downs, J. III FMRI mapping of the somatosensory cortex with vibratory stimuli: is there a dependency on stimulus frequency? Brain Res. 897, 188–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Purves, D. et al. (eds) Neuroscience 3rd edn (Sinauer Associates, 2004).

  30. Pyun, K. R., Rogers, J. A. & Ko, S. H. Materials and devices for immersive virtual reality. Nat. Rev. Mater. 7, 841–843 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A. & Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. International Electrotechnical Commission. Audio/video, information and communication technology equipment - Part 1: Safety requirements. IEC 62368-1 (2023).

  33. International Organization for Standardization. Ergonomics of the thermal environment — Methods for the assessment of human responses to contact with surfaces. ISO 13732-1:2006 (2006).

  34. Liang, X. & Boppart, S. A. Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. IEEE Trans. Biomed. Eng. 57, 953–959 (2010).

    Article  PubMed  Google Scholar 

  35. Yeh, C.-H. et al. Application of piezoelectric actuator to simplified haptic feedback system. Sens. Actuators A Phys. 303, 111820 (2020).

    Article  CAS  Google Scholar 

  36. Sorgini, F. et al. Encapsulation of piezoelectric transducers for sensory augmentation and substitution with wearable haptic devices. Micromachines 8, 270 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Uchino, K. Advanced Piezoelectric Materials: Science and Technology (Woodhead Publishing, 2017).

  38. Liao, W.-Q. et al. A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate. Science 363, 1206–1210 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Stadlober, B., Zirkl, M. & Irimia-Vladu, M. Route towards sustainable smart sensors: ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics. Chem. Soc. Rev. 48, 1787–1825 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Maeder, M. D., Damjanovic, D. & Setter, N. Lead free piezoelectric materials. J. Electroceram. 13, 385–392 (2004).

    Article  CAS  Google Scholar 

  41. Jin, H. et al. Review on piezoelectric actuators based on high-performance piezoelectric materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 69, 3057–3069 (2022).

    Article  PubMed  Google Scholar 

  42. Zhou, X. et al. Review on piezoelectric actuators: materials, classifications, applications, and recent trends. Front. Mech. Eng. 19, 6 (2024).

    Article  CAS  Google Scholar 

  43. Baik, S., Han, I., Park, J.-M. & Park, J. Multi-fingertip vibrotactile array interface for 3D virtual interaction. In 2020 IEEE Haptics Symposium 898–903 https://doi.org/10.1109/HAPTICS45997.2020.ras.HAP20.5.08241ef4 (IEEE, 2020).

  44. Dagdeviren, C. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 14, 728–736 (2015).

  45. Jin, H. et al. Highly pixelated, untethered tactile interfaces for an ultra-flexible on-skin telehaptic system. npj Flex. Electron. 6, 82 (2022).

    Article  Google Scholar 

  46. Sekhar, M. C. et al. A review on piezoelectric materials and their applications. Cryst. Res. Technol. 58, 2200130 (2023).

    Article  CAS  Google Scholar 

  47. Chen, C.-T., Lin, S.-C., Trstenjak, U., Spreitzer, M. & Wu, W.-J. Comparison of metal-based PZT and PMN–PT energy harvesters fabricated by aerosol deposition method. Sensors 21, 4747 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mohith, S., Upadhya, A. R., Navin, K. P., Kulkarni, S. M. & Rao, M. Recent trends in piezoelectric actuators for precision motion and their applications: a review. Smart Mater. Struct. 30, 013002 (2020).

    Article  Google Scholar 

  49. Wu, J., Xiao, D. & Zhu, J. Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559–2595 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Chorsi, M. T. et al. Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 31, 1802084 (2019).

    Article  Google Scholar 

  51. Watanabe, J., Ishikawa, H., Arouette, X., Matsumoto, Y. & Miki, N. Artificial tactile feeling displayed by large displacement MEMS actuator arrays. In 2012 IEEE 25th Int. Conf. Micro Electro Mech. Syst. 1129–1132 (IEEE, 2012).

  52. Ninomiya, T. et al. MEMS-based hydraulic displacement amplification mechanism with completely encapsulated liquid. Sens. Actuators A Phys. 166, 277–282 (2011).

    Article  CAS  Google Scholar 

  53. Zhang, L. et al. Recent progress on structure manipulation of poly(vinylidene fluoride)-based ferroelectric polymers for enhanced piezoelectricity and applications. Adv. Funct. Mater. 33, 2301302 (2023).

    Article  CAS  Google Scholar 

  54. Van Duong, Q., Nguyen, V. P., Domingues Dos Santos, F. & Choi, S. T. Localized fretting-vibrotactile sensations for large-area displays. ACS Appl. Mater. Interfaces 11, 33292–33301 (2019).

    Article  PubMed  Google Scholar 

  55. Seo, D. G. & Cho, Y.-H. Resonating tactile stimulators based on piezoelectric polymer films. J. Mech. Sci. Technol. 32, 631–636 (2018).

    Article  Google Scholar 

  56. Shouji, Y. et al. Fast response, high-power tunable ultrathin soft actuator by functional piezoelectric material composite for haptic device application. Adv. Electron. Mater. 9, 2201040 (2023).

    Article  CAS  Google Scholar 

  57. Yoon, S. H. et al. HapSense: a soft haptic I/O device with uninterrupted dual functionalities of force sensing and vibrotactile actuation. In Proc. 32nd Annual ACM Symposium on User Interface Software and Technology (UIST '19) 949–961 (2019).

  58. Chen, X. et al. Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field. Science 375, 1418–1422 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, Q., Ghodrat, S., Huisman, G. & Jansen, K. M. B. Shape memory alloy actuators for haptic wearables: a review. Mater. Des. 233, 112264 (2023).

    Article  CAS  Google Scholar 

  60. Kim, M.-S. et al. Shape memory alloy (SMA) actuators: the role of material, form, and scaling effects. Adv. Mater. 35, 2208517 (2023).

    Article  CAS  Google Scholar 

  61. Kim, D. et al. Actuating compact wearable augmented reality devices by multifunctional artificial muscle. Nat. Commun. 13, 4155 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hwang, D., Lee, J. & Kim, K. On the design of a miniature haptic ring for cutaneous force feedback using shape memory alloy actuators. Smart Mater. Struct. 26, 105002 (2017).

    Article  Google Scholar 

  63. Matsunaga, T., Totsu, K., Esashi, M. & Haga, Y. Tactile display using shape memory alloy micro-coil actuator and magnetic latch mechanism. Displays 34, 89–94 (2013).

    Article  CAS  Google Scholar 

  64. Knoop, E. & Rossiter, J. The tickler: a compliant wearable tactile display for stroking and tickling. In Proc. 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems 1133–1138 (Association for Computing Machinery, 2015).

  65. Liu, Q., Ghodrat, S. & Jansen, K. M. B. Modelling and mechanical design of a flexible tube-guided SMA actuator. Mater. Des. 216, 110571 (2022).

    Article  Google Scholar 

  66. Lim, B., Lee, C. & Hwang, D. Development of embedded sensor system for 5-DOF finger-wearable tactile interface. IEEE/ASME Trans. Mechatron. 26, 1728–1736 (2021).

    Article  Google Scholar 

  67. Tong, Y., Shuitcev, A. & Zheng, Y. Recent development of TiNi-based shape memory alloys with high cycle stability and high transformation temperature. Adv. Eng. Mater. 22, 1900496 (2020).

    Article  CAS  Google Scholar 

  68. Mohd Jani, J., Leary, M., Subic, A. & Gibson, M. A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014).

    Article  CAS  Google Scholar 

  69. Rodinò, S., Rota, G., Chiodo, M., Corigliano, A. & Maletta, C. Artificial intelligence control methodologies for shape memory alloy actuators: a systematic review and performance analysis. Micromachines 16, 780 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dayyoub, T., Maksimkin, A. V., Filippova, O. V., Tcherdyntsev, V. V. & Telyshev, D. V. Shape memory polymers as smart materials: a review. Polymers 14, 3511 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xia, Y., He, Y., Zhang, F., Liu, Y. & Leng, J. A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv. Mater. 33, 2000713 (2021).

    Article  CAS  Google Scholar 

  72. Ren, Z. et al. Phase-changing bistable electroactive polymer exhibiting sharp rigid-to-rubbery transition. Macromolecules 49, 134–140 (2016).

    Article  CAS  Google Scholar 

  73. Hwang, I. et al. Height-renderable morphable tactile display enabled by programmable modulation of local stiffness in photothermally active polymer. Nat. Commun. 15, 2554 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Besse, N., Rosset, S., Zarate, J. J. & Shea, H. Flexible active skin: large reconfigurable arrays of individually addressed shape memory polymer actuators. Adv. Mater. Technol. 2, 1700102 (2017).

    Article  Google Scholar 

  75. Aksoy, B. & Shea, H. Reconfigurable and latchable shape-morphing dielectric elastomers based on local stiffness modulation. Adv. Funct. Mater. 30, 2001597 (2020).

    Article  CAS  Google Scholar 

  76. Peng, Q. et al. Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application. Nanoscale 8, 18042–18049 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Mirvakili, S. M. & Hunter, I. W. Multidirectional artificial muscles from nylon. Adv. Mater. 29, 1604734 (2017).

    Article  Google Scholar 

  78. Oh, S. et al. Cooling-accelerated nanowire-nitinol hybrid muscle for versatile prosthetic hand and biomimetic retractable claw. Adv. Funct. Mater. 32, 2111145 (2022).

    Article  CAS  Google Scholar 

  79. Kalairaj, M. S., Banerjee, H., Lim, C. M., Chen, P.-Y. & Ren, H. Hydrogel-matrix encapsulated nitinol actuation with self-cooling mechanism. RSC Adv. 9, 34244–34255 (2019).

    Article  Google Scholar 

  80. Lee, H.-T., Kim, M.-S., Lee, G.-Y., Kim, C.-S. & Ahn, S.-H. Shape memory alloy (SMA)-based microscale actuators with 60% deformation rate and 1.6 kHz actuation speed. Small 14, 1801023 (2018).

    Article  Google Scholar 

  81. Frenzel, J. et al. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 58, 3444–3458 (2010).

    Article  CAS  Google Scholar 

  82. Koerner, H., Price, G., Pearce, N. A., Alexander, M. & Vaia, R. A. Remotely actuated polymer nanocomposites — stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3, 115–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Leng, J. S., Huang, W. M., Lan, X., Liu, Y. J. & Du, S. Y. Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite. Appl. Phys. Lett. 92, 204101 (2008).

    Article  Google Scholar 

  84. Zhang, F. et al. Conductive shape memory microfiber membranes with core–shell structures and electroactive performance. ACS Appl. Mater. Interfaces 10, 35526–35532 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Lendlein, A. & Gould, O. E. C. Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nat. Rev. Mater. 4, 116–133 (2019).

    Article  Google Scholar 

  86. Ware, T. et al. Thiol-ene/acrylate substrates for softening intracortical electrodes. J. Biomed. Mater. Res. Part B Appl. Biomater. 102, 1–11 (2014).

    Article  Google Scholar 

  87. Liu, Y. et al. Water-induced shape-memory poly(D,L-lactide)/microcrystalline cellulose composites. Carbohydr. Polym. 104, 101–108 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Ince, J., Prasad, K., Subhani, K., Duffy, A. & Salim, N. Liquid crystalline elastomers as artificial muscles and flexible actuators for robotics/hybrid engineered machinery. Adv. Compos. Hybrid. Mater. 7, 186 (2024).

    Article  Google Scholar 

  89. Feng, W., He, Q. & Zhang, L. Embedded physical intelligence in liquid crystalline polymer actuators and robots. Adv. Mater. 37, 2312313 (2025).

    Article  CAS  PubMed  Google Scholar 

  90. Sun, J., Wang, C., Liu, Y., Liang, X. & Wang, Z. Liquid crystal elastomer composites for soft actuators. Int. J. Smart Nano Mater. 14, 440–459 (2023).

    Article  Google Scholar 

  91. Camargo, C. J. et al. Localised actuation in composites containing carbon nanotubes and liquid crystalline elastomers. Macromol. Rapid Commun. 32, 1953–1959 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Torras, N., Zinoviev, K. E., Esteve, J. & Sánchez-Ferrer, A. Liquid-crystalline elastomer micropillar array for haptic actuation. J. Mater. Chem. C 1, 5183–5190 (2013).

    Article  CAS  Google Scholar 

  93. Torras, N. et al. Tactile device based on opto-mechanical actuation of liquid crystal elastomers. Sens. Actuators A Phys. 208, 104–112 (2014).

    Article  CAS  Google Scholar 

  94. Camargo, C. J. et al. Batch fabrication of optical actuators using nanotube–elastomer composites towards refreshable Braille displays. J. Micromech. Microeng. 22, 075009 (2012).

    Article  Google Scholar 

  95. He, Q. et al. Electrospun liquid crystal elastomer microfiber actuator. Sci. Robot. 6, eabi9704 (2021).

    Article  PubMed  Google Scholar 

  96. White, T. J. & Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14, 1087–1098 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Lancia, F., Ryabchun, A., Nguindjel, A.-D., Kwangmettatam, S. & Katsonis, N. Mechanical adaptability of artificial muscles from nanoscale molecular action. Nat. Commun. 10, 4819 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ishizuka, H. & Miki, N. Development of a tactile display with 5 mm resolution using an array of magnetorheological fluid. Jpn. J. Appl. Phys. 56, 06GN19 (2017).

    Article  Google Scholar 

  99. Guo, Y. et al. MRS-Tex: a magnetically responsive soft tactile device for texture display. IEEE Trans. Ind. Electron. 69, 11531–11540 (2022).

    Article  Google Scholar 

  100. Biswas, S. & Visell, Y. Emerging material technologies for haptics. Adv. Mater. Technol. 4, 1900042 (2019).

    Article  Google Scholar 

  101. Shokrollahi, H. & Janghorban, K. Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 189, 1–12 (2007).

    Article  CAS  Google Scholar 

  102. Chen, X. et al. Direct-write printed magnetic-controlled soft robots for non-contact applications. AIP Adv. 13, 125129 (2023).

    Article  CAS  Google Scholar 

  103. Yamada, S. et al. Magnetic haptic device using miniature SmFeN powder magnets in PCB-on-MEMS system. Sens. Actuators A Phys. 364, 114792 (2023).

    Article  CAS  Google Scholar 

  104. Vural, M. et al. Soft electromagnetic vibrotactile actuators with integrated vibration amplitude sensing. ACS Appl. Mater. Interfaces 15, 30653–30662 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen, S. et al. Multimodal 5-DOF stretchable electromagnetic actuators toward haptic information delivery. Adv. Funct. Mater. 34, 2314515 (2024).

    Article  CAS  Google Scholar 

  106. Mao, G. et al. Soft electromagnetic actuators. Sci. Adv. 6, eabc0251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xavier, M. S. et al. Soft pneumatic actuators: a review of design, fabrication, modeling, sensing, control and applications. IEEE Access 10, 59442–59485 (2022).

    Article  Google Scholar 

  108. Mihai, L. A. & Goriely, A. How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity. Proc. R. Soc. A Math. Phys. Eng. Sci. 473, 20170607 (2017).

    Google Scholar 

  109. Martins, P. A. L. S., Natal Jorge, R. M. & Ferreira, A. J. M. A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues. Strain 42, 135–147 (2006).

    Article  Google Scholar 

  110. El Hami, A. & Radi, B. in Fluid–Structure Interactions and Uncertainties Ch. 1, 1–34 (Wiley, 2017).

  111. Maruthavanan, D., Seibel, A. & Schlattmann, J. Fluid–structure interaction modelling of a soft pneumatic actuator. Actuators 10, 163 (2021).

    Article  Google Scholar 

  112. Robinson, S. S. et al. Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense. Extreme Mech. Lett. 5, 47–53 (2015).

    Article  Google Scholar 

  113. Kanjanapas, S., Nunez, C. M., Williams, S. R., Okamura, A. M. & Luo, M. Design and analysis of pneumatic 2-DoF soft haptic devices for shear display. IEEE Robot. Autom. Lett. 4, 1365–1371 (2019).

    Article  Google Scholar 

  114. Jumet, B. et al. Fluidically programmed wearable haptic textiles. Device 1, 100059 (2023).

    Article  Google Scholar 

  115. Russomanno, A., Xu, Z., O’Modhrain, S. & Gillespie, B. A pneu shape display: physical buttons with programmable touch response. In 2017 IEEE World Haptics Conf. 641–646 (IEEE, 2017).

  116. Qi, J., Gao, F., Sun, G., Yeo, J. C. & Lim, C. T. HaptGlove — untethered pneumatic glove for multimode haptic feedback in reality–virtuality continuum. Adv. Sci. 10, 2301044 (2023).

    Article  Google Scholar 

  117. Thai, M. T. et al. Soft microtubule muscle-driven 3-axis skin-stretch haptic devices. IEEE Access 8, 157878–157891 (2020).

    Article  Google Scholar 

  118. Carpenter, C. W. et al. Electropneumotactile stimulation: multimodal haptic actuators enabled by a stretchable conductive polymer on inflatable pockets. Adv. Mater. Technol. 5, 1901119 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhakypov, Z. & Okamura, A. M. FingerPrint: a 3-D printed soft monolithic 4-degree-of-freedom fingertip haptic device with embedded actuation. In 2022 IEEE 5th Int. Conf. Soft Robot. 938–944 (IEEE, 2022).

  120. Joshi, S. & Paik, J. Pneumatic supply system parameter optimization for soft actuators. Soft Robot. 8, 152–163 (2021).

  121. Cacucciolo, V. et al. Stretchable pumps for soft machines. Nature 572, 516–519 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Smith, M., Cacucciolo, V. & Shea, H. Fiber pumps for wearable fluidic systems. Science 379, 1327–1332 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Qiu, Y., Lu, Z. & Pei, Q. Refreshable tactile display based on a bistable electroactive polymer and a stretchable serpentine joule heating electrode. ACS Appl. Mater. Interfaces 10, 24807–24815 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Russomanno, A., Gillespie, R. B., O’Modhrain, S. & Burns, M. The design of pressure-controlled valves for a refreshable tactile display. In 2015 IEEE World Haptics Conf. 177–182 (IEEE, 2015).

  125. Raitor, M., Walker, J. M., Okamura, A. M. & Culbertson, H. WRAP: wearable, restricted-aperture pneumatics for haptic guidance. In 2017 IEEE International Conference on Robotics and Automation (ICRA) 427–432 (IEEE, 2017).

  126. Wu, X., Kim, S.-H., Zhu, H., Ji, C.-H. & Allen, M. G. A refreshable braille cell based on pneumatic microbubble actuators. J. Microelectromech. Syst. 21, 908–916 (2012).

    Article  Google Scholar 

  127. Zárate, J. J., Tosolini, G., Petroni, S., De Vittorio, M. & Shea, H. Optimization of the force and power consumption of a microfabricated magnetic actuator. Sens. Actuators A Phys. 234, 57–64 (2015).

    Article  Google Scholar 

  128. Ozioko, O., Karipoth, P., Hersh, M. & Dahiya, R. Wearable assistive tactile communication interface based on integrated touch sensors and actuators. IEEE Trans. Neural Syst. Rehabilitat. Eng. 28, 1344–1352 (2020).

    Article  Google Scholar 

  129. Jung, Y. H., Kim, J.-H. & Rogers, J. A. Skin-integrated vibrohaptic interfaces for virtual and augmented reality. Adv. Funct. Mater. 31, 2008805 (2021).

    Article  CAS  Google Scholar 

  130. Ha, K.-H. et al. Full freedom-of-motion actuators as advanced haptic interfaces. Science 387, 1383–1390 (2025).

    Article  CAS  PubMed  Google Scholar 

  131. Huang, Y. et al. A skin-integrated multimodal haptic interface for immersive tactile feedback. Nat. Electron. 6, 1020–1031 (2023).

    Article  Google Scholar 

  132. Gallo, S., Son, C., Lee, H. J., Bleuler, H. & Cho, I.-J. A flexible multimodal tactile display for delivering shape and material information. Sens. Actuators A Phys. 236, 180–189 (2015).

    Article  CAS  Google Scholar 

  133. Jung, Y. H. et al. A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nat. Electron. 5, 374–385 (2022).

    Article  Google Scholar 

  134. Flavin, M. T. et al. Bioelastic state recovery for haptic sensory substitution. Nature 635, 345–352 (2024).

    Article  CAS  PubMed  Google Scholar 

  135. Li, D. et al. Miniaturization of mechanical actuators in skin-integrated electronics for haptic interfaces. Microsyst. Nanoeng. 7, 85 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Li, D. et al. Bioinspired ultrathin piecewise controllable soft robots. Adv. Mater. Technol. 6, 2001095 (2021).

    Article  CAS  Google Scholar 

  137. Li, D., Yao, K., Gao, Z., Liu, Y. & Yu, X. Recent progress of skin-integrated electronics for intelligent sensing.Light Adv. Manuf. 2, 39–58 (2021).

    Article  Google Scholar 

  138. Kim, J. et al. Braille display for portable device using flip-latch structured electromagnetic actuator. IEEE Trans. Haptics 13, 59–65 (2020).

    Article  PubMed  Google Scholar 

  139. Johnstone, R. W. & Parameswaran, M. in An Introduction to Surface-Micromachining (eds Johnstone, R. W. & Parameswaran, M.) 135–152 (Springer US, 2004).

  140. Ariano, P. et al. Polymeric materials as artificial muscles: an overview. J. Appl. Biomater. Funct. Mater. 13, 1–9 (2015).

    CAS  PubMed  Google Scholar 

  141. Tang, C. et al. A review on high-frequency dielectric elastomer actuators: materials, dynamics, and applications. Adv. Intell. Syst. 6, 2300047 (2024).

    Article  Google Scholar 

  142. Yang, L., Wang, H., Zhang, D., Yang, Y. & Leng, D. Large deformation, high energy density dielectric elastomer actuators: principles, factors, optimization, applications, and prospects. Chem. Eng. J. 489, 151402 (2024).

    Article  CAS  Google Scholar 

  143. Pelrine, R. E., Kornbluh, R. D. & Joseph, J. P. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuators A Phys. 64, 77–85 (1998).

    Article  CAS  Google Scholar 

  144. Pelrine, R., Kornbluh, R., Pei, Q. & Joseph, J. High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Keplinger, C., Li, T., Baumgartner, R., Suo, Z. & Bauer, S. Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter 8, 285–288 (2011).

    Article  Google Scholar 

  146. Lee, H. S. et al. Design analysis and fabrication of arrayed tactile display based on dielectric elastomer actuator. Sens. Actuators A Phys. 205, 191–198 (2014).

    Article  CAS  Google Scholar 

  147. Yuan, W. et al. Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes. Adv. Mater. 20, 621–625 (2008).

    Article  CAS  Google Scholar 

  148. Yuan, W., Brochu, P., Ha, S. M. & Pei, Q. Dielectric oil coated single-walled carbon nanotube electrodes for stable, large-strain actuation with dielectric elastomers. Sens. Actuators A Phys. 155, 278–284 (2009).

    Article  CAS  Google Scholar 

  149. Stoyanov, H. et al. Long lifetime, fault-tolerant freestanding actuators based on a silicone dielectric elastomer and self-clearing carbon nanotube compliant electrodes. RSC Adv. 3, 2272–2278 (2013).

    Article  CAS  Google Scholar 

  150. Ji, X. et al. Untethered feel-through haptics using 18-µm thick dielectric elastomer actuators. Adv. Funct. Mater. 31, 2006639 (2021).

    Article  CAS  Google Scholar 

  151. Ankit, Tiwari, N., Rajput, M., Chien, N. A. & Mathews, N. Highly transparent and integrable surface texture change device for localized tactile feedback. Small 14, 1702312 (2018).

    Article  Google Scholar 

  152. Mun, S. et al. Electro-active polymer based soft tactile interface for wearable devices. IEEE Trans. Haptics 11, 15–21 (2018).

    Article  PubMed  Google Scholar 

  153. Marette, A. et al. Flexible zinc–tin oxide thin film transistors operating at 1 kV for integrated switching of dielectric elastomer actuators arrays. Adv. Mater. 29, 1700880 (2017).

    Article  Google Scholar 

  154. Guo, Y. et al. Haptic artificial muscle skin for extended reality. Sci. Adv. 10, eadr1765 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Youn, J.-H. et al. Skin-attached haptic patch for versatile and augmented tactile interaction. Sci. Adv. 11, eadt4839 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ji, X. et al. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 4, eaaz6451 (2019).

    Article  PubMed  Google Scholar 

  157. Zhao, H. et al. A wearable soft haptic communicator based on dielectric elastomer actuators. Soft Robot. 7, 451–461 (2020).

    Article  PubMed  Google Scholar 

  158. Chen, Y. et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature 575, 324–329 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Carpi, F. & De Rossi, D. Dielectric elastomer cylindrical actuators: electromechanical modelling and experimental evaluation. Mater. Sci. Eng. C 24, 555–562 (2004).

    Article  Google Scholar 

  160. Dünki, S. J., Ko, Y. S., Nüesch, F. A. & Opris, D. M. Self-repairable, high permittivity dielectric elastomers with large actuation strains at low electric fields. Adv. Funct. Mater. 25, 2467–2475 (2015).

    Article  Google Scholar 

  161. Zhang, Y. et al. Electrical and mechanical self-healing in high-performance dielectric elastomer actuator materials. Adv. Funct. Mater. 29, 1808431 (2019).

    Article  Google Scholar 

  162. Yin, L.-J. et al. Soft, tough, and fast polyacrylate dielectric elastomer for non-magnetic motor. Nat. Commun. 12, 4517 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Youn, J.-H., Mun, H. & Kyung, K.-U. A wearable soft tactile actuator with high output force for fingertip interaction. IEEE Access 9, 30206–30215 (2021).

    Article  Google Scholar 

  164. Phung, H. et al. Interactive haptic display based on soft actuator and soft sensor. In 2017 IEEE/RSJ Int. Conf. Intell. Robot. Syst. 886–891 (IEEE, 2017).

  165. Chen, S., Chen, Y., Yang, J., Han, T. & Yao, S. Skin-integrated stretchable actuators toward skin-compatible haptic feedback and closed-loop human–machine interactions. npj Flex. Electron. 7, 1 (2023).

    Article  Google Scholar 

  166. Han, A. K., Ji, S., Wang, D. & Cutkosky, M. R. Haptic surface display based on miniature dielectric fluid transducers. IEEE Robot. Autom. Lett. 5, 4021–4027 (2020).

    Article  Google Scholar 

  167. Leroy, E. & Shea, H. Hydraulically amplified electrostatic taxels (HAXELs) for full body haptics. Adv. Mater. Technol. 8, 2300242 (2023).

    Article  CAS  Google Scholar 

  168. Grasso, G., Rosset, S. & Shea, H. Fully 3D-printed, stretchable, and conformable haptic interfaces. Adv. Funct. Mater. 33, 2213821 (2023).

    Article  CAS  Google Scholar 

  169. Shao, Y., Shagan Shomron, A., Javot, B., Keplinger, C. & Kuchenbecker, K. J. Wearable electrohydraulic actuation for salient full-fingertip haptic feedback. Adv. Mater. Technol. 10, 2401525 (2025).

    Article  Google Scholar 

  170. Rothemund, P., Kellaris, N., Mitchell, S. K., Acome, E. & Keplinger, C. HASEL artificial muscles for a new generation of lifelike robots — recent progress and future opportunities. Adv. Mater. 33, 2003375 (2021).

    Article  CAS  PubMed  Google Scholar 

  171. Taghavi, M., Helps, T. & Rossiter, J. Electro-ribbon actuators and electro-origami robots. Sci. Robot. 3, eaau9795 (2018).

    Article  PubMed  Google Scholar 

  172. Kellaris, N., Gopaluni Venkata, V., Smith, G. M., Mitchell, S. K. & Keplinger, C. Peano-HASEL actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci. Robot. 3, eaar3276 (2018).

    Article  PubMed  Google Scholar 

  173. Acome, E. et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Leroy, E., Hinchet, R. & Shea, H. Multimode hydraulically amplified electrostatic actuators for wearable haptics. Adv. Mater. 32, 2002564 (2020).

    Article  CAS  Google Scholar 

  175. Sîrbu, I.-D. et al. Electrostatic actuators with constant force at low power loss using matched dielectrics. Nat. Electron. 6, 888–899 (2023).

    Article  Google Scholar 

  176. Rothemund, P., Kirkman, S. & Keplinger, C. Dynamics of electrohydraulic soft actuators. Proc. Natl Acad. Sci. USA117, 16207–16213 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhao, X. & Wang, Q. Harnessing large deformation and instabilities of soft dielectrics: theory, experiment, and application. Appl. Phys. Rev. 1, 021304 (2014).

    Article  Google Scholar 

  178. Mirvakili, S. M. & Hunter, I. W. Artificial muscles: mechanisms, applications, and challenges. Adv. Mater. 30, 1704407 (2018).

    Article  Google Scholar 

  179. Ma, S. et al. High-performance ionic-polymer–metal composite: toward large-deformation fast-response artificial muscles. Adv. Funct. Mater. 30, 1908508 (2020).

    Article  CAS  Google Scholar 

  180. Lu, C. et al. High-performance graphdiyne-based electrochemical actuators. Nat. Commun. 9, 752 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Correia, D. M. et al. Ionic liquid cation size-dependent electromechanical response of ionic liquid/poly(vinylidene fluoride)-based soft actuators. J. Phys. Chem. C 123, 12744–12752 (2019).

    Article  CAS  Google Scholar 

  182. Zhang, H. et al. Low-voltage driven ionic polymer–metal composite actuators: structures, materials, and applications. Adv. Sci. 10, 2206135 (2023).

    Article  CAS  Google Scholar 

  183. Wang, H., Yang, L., Yang, Y., Zhang, D. & Tian, A. Highly flexible, large-deformation ionic polymer metal composites for artificial muscles: fabrication, properties, applications, and prospects. Chem. Eng. J. 469, 143976 (2023).

    Article  CAS  Google Scholar 

  184. Mahato, M. et al. CTF-based soft touch actuator for playing electronic piano. Nat. Commun. 11, 5358 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yang, L. et al. Fabrication of Cu/nafion-based ionic polymer metal composites by electroless plating method. Integr. Ferroelectr. 209, 48–57 (2020).

    Article  CAS  Google Scholar 

  186. Kim, S. Y. et al. Deformable ionic polymer artificial mechanotransducer with an interpenetrating nanofibrillar network. ACS Appl. Mater. Interfaces 11, 29350–29359 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Wang, G. et al. Review on the research progress and application of IPMC sensors. J. Bionic Eng. 21, 2687–2716 (2024).

    Article  Google Scholar 

  188. Feng, G.-H. & Hou, S.-Y. Investigation of tactile bump array actuated with ionic polymer–metal composite cantilever beams for refreshable braille display application. Sens. Actuators A Phys. 275, 137–147 (2018).

    Article  CAS  Google Scholar 

  189. Mazursky, A., Koo, J.-H., Mason, T., Woo, S.-Y. & Yang, T.-H. Design and experimental evaluation of an electrorheological haptic module with embedded sensing. Appl. Sci. 11, 7723 (2021).

    Article  CAS  Google Scholar 

  190. Kato, Y. et al. Sheet-type braille displays by integrating organic field-effect transistors and polymeric actuators. IEEE Trans. Electron. Devices 54, 202–209 (2007).

    Article  CAS  Google Scholar 

  191. Kong, L. & Chen, W. Carbon nanotube and graphene-based bioinspired electrochemical actuators. Adv. Mater. 26, 1025–1043 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Bang, J. et al. Bioinspired electronics for intelligent soft robots. Nat. Rev. Electr. Eng. 1, 597–613 (2024).

    Article  Google Scholar 

  193. Chen, Z. et al. Bioinspired and biohybrid soft robots: principles and emerging technologies. Matter 8, 102045 (2025).

    Article  Google Scholar 

  194. Kang, B. B., Choi, H., Lee, H. & Cho, K.-J. Exo-glove poly II: a polymer-based soft wearable robot for the hand with a tendon-driven actuation system. Soft Robot. 6, 214–227 (2019).

    Article  PubMed  Google Scholar 

  195. Lee, H. et al. 3D-printed programmable tensegrity for soft robotics. Sci. Robot. 5, eaay9024 (2020).

    Article  PubMed  Google Scholar 

  196. Mu, J. et al. Sheath-run artificial muscles. Science 365, 150–155 (2019).

    Article  CAS  PubMed  Google Scholar 

  197. Lima, M. D. et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 338, 928–932 (2012).

    Article  CAS  PubMed  Google Scholar 

  198. Ze, Q. et al. Soft robotic origami crawler. Sci. Adv. 8, eabm7834 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Zhang, Z. et al. Active mechanical haptics with high-fidelity perceptions for immersive virtual reality. Nat. Mach. Intell. 5, 643–655 (2023).

    Article  Google Scholar 

  200. Ko, J. et al. High-performance electrified hydrogel actuators based on wrinkled nanomembrane electrodes for untethered insect-scale soft aquabots. Sci. Robot. 7, eabo6463 (2022).

    Article  PubMed  Google Scholar 

  201. Patel, R. V., Atashzar, S. F. & Tavakoli, M. Haptic feedback and force-based teleoperation in surgical robotics. Proc. IEEE 110, 1012–1027 (2022).

    Article  Google Scholar 

  202. Brown, N. C., Ames, D. C. & Mueller, J. Multimaterial extrusion 3D printing printheads. Nat. Rev. Mater. https://doi.org/10.1038/s41578-025-00809-y (2025).

    Article  Google Scholar 

  203. Abbel, R., Galagan, Y. & Groen, P. Roll-to-roll fabrication of solution processed electronics. Adv. Eng. Mater. 20, 1701190 (2018).

    Article  Google Scholar 

  204. Su, M. & Song, Y. Printable smart materials and devices: strategies and applications. Chem. Rev. 122, 5144–5164 (2022).

    Article  CAS  PubMed  Google Scholar 

  205. Ho, H.-N. Material recognition based on thermal cues: mechanisms and applications. Temperature 5, 36–55 (2018).

    Article  Google Scholar 

  206. Oh, J. et al. A liquid metal based multimodal sensor and haptic feedback device for thermal and tactile sensation generation in virtual reality. Adv. Funct. Mater. 31, 2007772 (2021).

    Article  CAS  Google Scholar 

  207. Hsu, P.-C. et al. Personal thermal management by metallic nanowire-coated textile. Nano Lett. 15, 365–371 (2015).

    Article  CAS  PubMed  Google Scholar 

  208. Lee, J. et al. Stretchable skin-like cooling/heating device for reconstruction of artificial thermal sensation in virtual reality. Adv. Funct. Mater. 30, 1909171 (2020).

    Article  CAS  Google Scholar 

  209. Hong, S. et al. Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5, eaaw0536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kotagama, P., Phadnis, A., Manning, K. C. & Rykaczewski, K. Rational design of soft, thermally conductive composite liquid-cooled tubes for enhanced personal, robotics, wearable electron. cooling. Adv. Mater. Technol. 4, 1800690 (2019).

    Article  CAS  Google Scholar 

  211. Cai, S., Ke, P., Narumi, T. & Zhu, K. ThermAirGlove: a pneumatic glove for thermal perception and material identification in virtual reality. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) 248–257 (IEEE, 2020).

  212. Lee, J., Kim, D., Sul, H. & Ko, S. H. Thermo-haptic materials and devices for wearable virtual and augmented reality. Adv. Funct. Mater. 31, 2007376 (2021).

    Article  CAS  Google Scholar 

  213. Bensmaїa, S. J. & Hollins, M. Complex tactile waveform discrimination. J. Acoustic. Soc. Am. 108, 1236–1245 (2000).

    Article  Google Scholar 

  214. Birznieks, I. et al. Tactile sensory channels over-ruled by frequency decoding system that utilizes spike pattern regardless of receptor type. eLife 8, e46510 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Ju, W.-E., Moon, Y.-J., Park, C.-H. & Choi, S. T. A flexible tactile-feedback touch screen using transparent ferroelectric polymer film vibrators. Smart Mater. Struct. 23, 074004 (2014).

    Article  CAS  Google Scholar 

  216. Haynes, A., Simons, M. F., Helps, T., Nakamura, Y. & Rossiter, J. A Wearable skin-stretching tactile interface for human–robot and human–human communication. IEEE Robot. Autom. Lett. 4, 1641–1646 (2019).

    Article  Google Scholar 

  217. Kang, B. et al. A flexible skin-mounted haptic interface for multimodal cutaneous feedback. Nat. Electron. 8, 818–830 (2025).

    Article  Google Scholar 

  218. Sanchez-Tamayo, N. et al. Cutaneous electrohydraulic (CUTE) wearable devices for pleasant broad-bandwidth haptic cues. Adv. Sci. 11, 2402461 (2024).

    Article  CAS  Google Scholar 

  219. Delmas, P., Hao, J. & Rodat-Despoix, L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat. Rev. Neurosci. 12, 139–153 (2011).

    Article  CAS  PubMed  Google Scholar 

  220. Zimmerman, A., Bai, L. & Ginty, D. D. The gentle touch receptors of mammalian skin. Science 346, 950–954 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Pacchierotti, C. et al. Wearable haptic systems for the fingertip and the hand: taxonomy, review, and perspectives. IEEE Trans. Haptics 10, 580–600 (2017).

    Article  PubMed  Google Scholar 

  222. Rongala, U. B., Seyfarth, A., Hayward, V. & Jörntell, H. The import of skin tissue dynamics in tactile sensing. Cell Rep. Phys. Sci. 5, 101943 (2024).

    Article  CAS  Google Scholar 

  223. Scheibert, J., Leurent, S., Prevost, A. & Debrégeas, G. The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323, 1503–1506 (2009).

    Article  CAS  PubMed  Google Scholar 

  224. Jacquemoud, C., Bruyere-Garnier, K. & Coret, M. Methodology to determine failure characteristics of planar soft tissues using a dynamic tensile test. J. Biomech. 40, 468–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  225. Bader, D. L. & Bowker, P. Mechanical characteristics of skin and underlying tissues in vivo. Biomaterials 4, 305–308 (1983).

    Article  CAS  PubMed  Google Scholar 

  226. Joodaki, H. & Panzer, M. B. Skin mechanical properties and modeling: a review. Proc. Instn Mech. Eng. H 232, 323–343 (2018).

    Article  Google Scholar 

  227. Sakaguchi, S., Saito, K., Arakawa, N. & Konyo, M. The dynamic behavior of skin in response to vibrating touch stimuli affects tactile perception. Skin. Res. Technol. 29, e13295 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Boyer, G., Laquièze, L., Le Bot, A., Laquièze, S. & Zahouani, H. Dynamic indentation on human skin in vivo: ageing effects. Skin Res. Technol. 15, 55–67 (2009).

    Article  CAS  PubMed  Google Scholar 

  229. Hale, K. S. & Stanney, K. M. Deriving haptic design guidelines from human physiological, psychophysical, and neurological foundations. IEEE Computer Graph. Appl. 24, 33–39 (2004).

    Article  Google Scholar 

  230. Deflorio, D., Di Luca, M. & Wing, A. M. Skin and mechanoreceptor contribution to tactile input for perception: a review of simulation models. Front. Hum. Neurosci. 16, 862344 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Pasluosta, C., Kiele, P. & Stieglitz, T. Paradigms for restoration of somatosensory feedback via stimulation of the peripheral nervous system. Clin. Neurophysiol. 129, 851–862 (2018).

    Article  PubMed  Google Scholar 

  232. Johansson, R. S. & Vallbo, ÅB. Tactile sensory coding in the glabrous skin of the human hand. Trends Neurosci. 6, 27–32 (1983).

    Article  Google Scholar 

  233. Li, B. & Gerling, G. J. An individual’s skin stiffness predicts their tactile discrimination of compliance. J. Physiol. 601, 5777–5794 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region (Grant Nos RFS2324-1S03, R1017-24F, C7005-23Y, T43-518/24-N, 11215722 and 11211523), City University of Hong Kong (Grant Nos 9200138 and 9200143), National Natural Science Foundation of China (Grant No. 52503311), the Nano and Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (No. RS-2024-00411904), in part by the InnoHK Project on Project 2.2 — AI-based 3D ultrasound imaging algorithm at the Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE).

Author information

Authors and Affiliations

Authors

Contributions

Z.C. and Y.H. contributed equally to this work. X.Y. and Y.H. conceived the ideas. Z.C., Y.H., B.Z., D.S. and X.Y. wrote and revised the manuscript. All authors contributed to discussing and commenting on the manuscript.

Corresponding authors

Correspondence to Ya Huang, Dong Sun or Xinge Yu.

Ethics declarations

Competing interests

The authors declare no competing interest.

Peer review

Peer review information

Nature Reviews Materials thanks Seung Hwan Ko, Chengkuo Lee and Chwee Teck Lim for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Huang, Y., Zhang, B. et al. Deformable materials and structures in wearable haptic interfaces. Nat Rev Mater (2026). https://doi.org/10.1038/s41578-025-00877-0

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41578-025-00877-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing