Abstract
Many physical properties of functional materials are governed by their impurities rather than their bulk characteristics. Defects in crystals can activate electronic and ionic conductivity, create active centres for catalysis or store information through localized spin configurations. Accurate modelling of defect behaviour is therefore essential for predicting material performance and optimizing functionality across a vast application space. However, defect simulations are sensitive to choices made during setup, execution and analysis. In this Perspective, we highlight best practices for calculating and reporting point defect properties through computational methods, with a focus on the widely adopted supercell approach. Key considerations include accurate representation of the structural and electronic properties of the host material, appropriate choice of charge states, sufficient optimization of defect geometries and reproducible calculation of defect formation energies. Adhering to these practices will facilitate robust comparisons between studies and improve the integration of computational predictions with experimental results. We emphasize the importance of reporting computational parameters and correction schemes. Ultimately, an open approach to point defect simulations will strengthen the impact of computational studies and accelerate materials engineering.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Catlow, C., Corish, J., Jacobs, P. & Lidiard, A. The thermodynamics of characteristic defect parameters. J. Phys. C Solid State Phys. 14, L121 (1981).
Nicolson, A., Kavanagh, S. R., Savory, C. N., Watson, G. W. & Scanlon, D. O. Cu2SiSe3 as a promising solar absorber: harnessing cation dissimilarity to avoid killer antisites. J. Mater. Chem. A 11, 14833–14839 (2023).
Wang, X., Kavanagh, S. R., Scanlon, D. O. & Walsh, A. Upper efficiency limit of Sb2Se3 solar cells. Joule 8, 2105–2122 (2024).
Yuan, Z. et al. Discovery of the zintl-phosphide BaCd2P2 as a long carrier lifetime and stable solar absorber. Joule 8, 1412–1429 (2024).
Whalley, L. D. et al. Giant Huang–Rhys factor for electron capture by the iodine intersitial in perovskite solar cells. J. Am. Chem. Soc. 143, 9123–9128 (2021).
Kavanagh, S. R. et al. Intrinsic point defect tolerance in selenium for indoor and tandem photovoltaics. Energy Environ. Sci. 18, 4431–4446 (2025).
Squires, A. G., Ganeshkumar, L., Savory, C. N., Kavanagh, S. R. & Scanlon, D. O. Oxygen dimerization as a defect-driven process in bulk LiNiO2. ACS Energy Letters https://doi.org/10.1021/acsenergylett.4c01307 (2024).
Murdock, B. E. et al. Li-site defects induce formation of Li-rich impurity phases: implications for charge distribution and performance of LiNi0.5−xMxMn1.5O4 cathodes (M = Fe and Mg; x = 0.05–0.2). Adv. Mater. https://doi.org/10.1002/adma.202400343 (2024).
Gorai, P., Famprikis, T., Singh, B., Stevanović, V. & Canepa, P. Devil is in the defects: electronic conductivity in solid electrolytes. Chem. Mater. 33, 7484–7498 (2021).
Hoang, K. & Johannes, M. D. Defect chemistry in layered transition-metal oxides from screened hybrid density functional calculations. J. Mater. Chem. A 2, 5224–5235 (2014).
Eggestad, K., Selbach, S. M. & Williamson, B. A. D. Doping implications of Li solid state electrolyte Li7La3Zr2O12. J. Mater. Chem. A 12, 15666–15675 (2024).
Squires, A. G. et al. Low electronic conductivity of Li7La3Zr2O12 solid electrolytes from first principles. Phys. Rev. Mater. https://doi.org/10.1103/PhysRevMaterials.6.085401 (2022).
Hu, J. et al. Enabling ionic transport in Li3AlP2: the roles of defects and disorder. J. Mater. Chem. A 13, 6427–6439 (2025).
Weber, J. R. et al. Quantum computing with defects. Proc. Natl. Acad. Sci. USA 107, 8513–8518 (2010).
Turiansky, M. E. & Van de Walle, C. G. Dielectric loss due to charged-defect acoustic phonon emission. APL Quantum https://doi.org/10.1063/5.0205532 (2024).
Jackson, A. J. et al. Computational prediction and experimental realization of earth-abundant transparent conducting oxide Ga-doped ZnSb2O6. ACS Energy Lett. 7, 3807–3816 (2022).
Willis, J. et al. Limits to hole mobility and doping in copper iodide. Chem. Mater. 35, 8995–9006 (2023).
Li, K., Willis, J., Kavanagh, S. R. & Scanlon, D. O. Computational prediction of an antimony-based n-type transparent conducting oxide: F-doped Sb2O5. Chem. Mater. 36, 2907–2916 (2024).
Varley, J. B., Peelaers, H., Janotti, A. & Van De Walle, C. G. Hydrogenated cation vacancies in semiconducting oxides. J. Phys. Condens. Matter 23, 334212 (2011).
Sabino, F. P., Chatratin, I., Janotti, A. & Dalpian, G. M. Hole conductivity through a defect band in ZnGa2O6. Phys. Rev. Mater. https://doi.org/10.1103/PhysRevMaterials.6.064602 (2022).
Hachmioune, S., Ganose, A. M., Sullivan, M. B. & Scanlon, D. O. Exploring the thermoelectric potential of MgB4: electronic band structure, transport properties, and defect chemistry. Chem. Mater. 36, 6062–6073 (2024).
Xiong, Y. et al. High-throughput identification of spin-photon interfaces in silicon. Sci. Adv. https://doi.org/10.1126/sciadv.adh8617 (2023).
Yan, Q., Kar, S., Chowdhury, S. & Bansil, A. The case for a defect genome initiative. Adv. Mater. https://doi.org/10.1002/adma.202303098 (2024).
Shen, J.-X., Voss, L. F. & Varley, J. B. Simulating charged defects at database scale. J. Appl. Phys. https://doi.org/10.1063/5.0203124 (2024).
Kumagai, Y., Tsunoda, N., Takahashi, A. & Oba, F. Insights into oxygen vacancies from high-throughput first-principles calculations. Phys. Rev. Mater. 5, 123803 (2021).
Mosquera-Lois, I., Kavanagh, S. R., Ganose, A. M. & Walsh, A. Machine-learning structural reconstructions for accelerated point defect calculations. npj Comput. Mater. 10, 121 (2024).
Mannodi-Kanakkithodi, A. et al. Machine-learned impurity level prediction for semiconductors: the example of Cd-based chalcogenides. npj Comput. Mater. https://doi.org/10.1038/s41524-020-0296-7 (2020).
Kavanagh, S. R. Identifying split vacancy defects with machine-learned foundation models and electrostatics. J. Phys. Energy 7, 045002 (2025).
Coletti, G. et al. Impact of metal contamination in silicon solar cells. Adv. Funct. Mater. 21, 879–890 (2011).
Luo, T. et al. Creation of nitrogen-vacancy centers in chemical vapor deposition diamond for sensing applications. New J. Phys. 24, 033030 (2022).
Mosquera-Lois, I., Kavanagh, S. R., Klarbring, J., Tolborg, K. & Walsh, A. Imperfections are not 0 K: free energy of point defects in crystals. Chem. Soc. Rev. 52, 5812–5826 (2023).
Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).
Kim, S., Hood, S. N., Park, J.-S., Whalley, L. D. & Walsh, A. Quick-start guide for first-principles modelling of point defects in crystalline materials. J. Phys. Energy 2, 036001 (2020).
Kröger, F. A. & Vink, H. J. in Solid State Physics (eds Seitz, F. & Turnbull, D.) Vol. 3, 307–435 (Academic Press, 1956).
Zhang, S. & Northrup, J. Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys. Rev. Lett. 67, 2339–2342 (1991).
Mosquera-Lois, I., Kavanagh, S. R., Walsh, A. & Scanlon, D. O. Identifying the ground state structures of point defects in solids. npj Comput. Mater. https://doi.org/10.1038/s41524-023-00973-1 (2023).
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
Drabold, D. A. & Estreicher, S. (eds) Theory of Defects in Semiconductors 2007 edn (Springer, 2006).
Lidiard, A. B. The Mott–Littleton method: an introductory survey. J. Chem. Soc. Faraday Trans. 2 85, 341–349 (1989).
Zhu, L. et al. Formation of intrinsic point defects in AlN: a study of donor and acceptor characteristics using hybrid QM/MM techniques. J. Mater. Chem. A 12, 25449–25464 (2024).
Zhang, X. et al. Toward a consistent prediction of defect chemistry in CeO2. Chem. Mater. 35, 207–227 (2023).
De Souza, R. & Harrington, G. Revisiting point defects in ionic solids and semiconductors. Nat. Mater. 22, 794–797 (2023).
Mosquera-Lois, I. & Kavanagh, S. R. In search of hidden defects. Matter 4, 2602–2605 (2021).
Gao, W. & Tkatchenko, A. Electronic structure and van der Waals interactions in the stability and mobility of point defects in semiconductors. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.111.045501 (2013).
Zhang, X. & Wei, S.-H. Origin of efficiency enhancement by lattice expansion in hybrid-perovskite solar cells. Phys. Rev. Lett. 128, 136401 (2022).
Meesala, S. et al. Strain engineering of the silicon-vacancy center in diamond. Phys. Rev. B https://doi.org/10.1103/PhysRevB.97.205444 (2018).
Santra, P. et al. Strain-modulated defect engineering of two-dimensional materials. npj 2D Mater. Appl. https://doi.org/10.1038/s41699-024-00472-x (2024).
Gouveia, J. D. & Coutinho, J. Can we rely on hybrid-DFT energies of solid-state problems with local-DFT geometries? Electron. Struct. 1, 015008 (2019).
Mosquera-Lois, I., Kavanagh, S. R., Walsh, A. & Scanlon, D. O. ShakeNBreak: navigating the defect configurational landscape. J. Open Source Softw. 7, 4817 (2022).
Neilson, W. D., Rizk, J., Cooper, M. W. D. & Andersson, D. A. Oxygen potential, uranium diffusion, and defect chemistry in UO2±x: a density functional theory study. J. Phys. Chem. C 128, 21559–21571 (2024).
Zhao, X.-G., Dalpian, G. M., Wang, Z. & Zunger, A. Polymorphous nature of cubic halide perovskites. Phys. Rev. B https://doi.org/10.1103/PhysRevB.101.155137 (2020).
Ogawa, K., Kavanagh, S. R., Oba, F. & Walsh, A. Defect tolerance via external passivation in the photocatalyst SrTiO3:Al. J. Am. Chem. Soc. 147, 23180–23191 (2025).
Kayastha, P., Fransson, E., Erhart, P. & Whalley, L. Octahedral tilt-driven phase transitions in BaZrS3 chalcogenide perovskite. J. Phys. Chem. Lett. 16, 2064–2071 (2025).
Choi, M., Oba, F., Kumagai, Y. & Tanaka, I. Anti-ferrodistortive-like oxygen-octahedron rotation induced by the oxygen vacancy in cubic SrTiO3. Adv. Mater. 25, 86–90 (2013).
Mosquera-Lois, I., Klarbring, J. & Walsh, A. Point defect formation at finite temperatures with machine learning force fields. Chem. Sci. https://pubs.rsc.org/en/content/articlelanding/2025/sc/d4sc08582e (2025).
Zhong, X., Höfling, F. & John, T. Hydrogen diffusion in garnet: insights from atomistic simulations. Geochem. Geophys. Geosyst. 26, e2024GC011951 (2025).
Mosquera-Lois, I. & Walsh, A. Dynamic vacancy levels in CsPbCl3 obey equilibrium defect thermodynamics. PRX Energy https://doi.org/10.1103/dxmb-8s96 (2025).
Deák, P., Gali, A., Aradi, B. & Frauenheim, T. Accurate gap levels and their role in the reliability of other calculated defect properties. Phys. Stat. Sol. B 248, 790–798 (2011).
Lyons, J. L. & Van de Walle, C. G. Computationally predicted energies and properties of defects in GaN. npj Comput. Mater. https://doi.org/10.1038/s41524-017-0014-2 (2017).
Gorai, P. & Stevanović, V. Comment on ‘Understanding the intrinsic p-type behavior and phase stability of thermoelectric α-Mg3Sb2’. ACS Appl. Energy Mater. 3, 106–108 (2020).
Alkauskas, A., Dreyer, C. E., Lyons, J. L. & Van de Walle, C. G. Role of excited states in Shockley–Read–Hall recombination in wide-band-gap semiconductors. Phys. Rev. B 93, 201304 (2016).
Kavanagh, S. R. Accurately Modelling Point Defects in Semiconductors: The Case of CdTe. Doctoral thesis, Univ. College London (2024).
Yang, J.-H., Yin, W.-J., Park, J.-S., Ma, J. & Wei, S.-H. Review on first-principles study of defect properties of CdTe as a solar cell absorber. Semicond. Sci. Technol. 31, 083002 (2016).
Pan, J., Metzger, W. K. & Lany, S. Spin–orbit coupling effects on predicting defect properties with hybrid functionals: a case study in CdTe. Phys. Rev. B 98, 054108 (2018).
Chatratin, I., Dou, B., Wei, S.-H. & Janotti, A. Doping limits of phosphorus, arsenic, and antimony in CdTe. J. Phys. Chem. Lett. 14, 273–278 (2023).
Dabo, I. et al. Koopmans’ condition for density-functional theory. Phys. Rev. B https://doi.org/10.1103/PhysRevB.82.115121 (2010).
Demchenko, D. O. et al. Koopmans-tuned Heyd-Scuseria-Ernzerhof hybrid functional calculations of acceptors in GaN. Phys. Rev. B https://doi.org/10.1103/PhysRevB.110.035203 (2024).
Chen, W., Griffin, S. M., Rignanese, G.-M. & Hautier, G. Nonunique fraction of Fock exchange for defects in two-dimensional materials. Phys. Rev. B 106, L161107 (2022).
Skone, J. H., Govoni, M. & Galli, G. Self-consistent hybrid functional for condensed systems. Phys. Rev. B https://doi.org/10.1103/PhysRevB.89.195112 (2014).
Gerosa, M. et al. Defect calculations in semiconductors through a dielectric-dependent hybrid DFT functional: the case of oxygen vacancies in metal oxides. J. Chem. Phys. https://doi.org/10.1063/1.4931805 (2015).
Deák, P., Frauenheim, T. & Gali, A. Limits of the scaled shift correction to levels of interstitial defects in semiconductors. Phys. Rev. B https://doi.org/10.1103/PhysRevB.75.153204 (2007).
Lany, S. & Zunger, A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs. Phys. Rev. B 78, 235104 (2008).
Cococcioni, M. & de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 71, 035105 (2005).
Wang, Z., Brock, C., Matt, A. & Bevan, K. H. Implications of the DFT+U method on polaron properties in energy materials. Phys. Rev. B 96, 125150 (2017).
Uhrin, M., Zadoks, A., Binci, L., Marzari, N. & Timrov, I. Machine learning Hubbard parameters with equivariant neural networks. npj Comput. Mater. https://doi.org/10.1038/s41524-024-01501-5 (2025).
Timrov, I., Aquilante, F., Cococcioni, M. & Marzari, N. Accurate electronic properties and intercalation voltages of olivine-type Li-ion cathode materials from extended Hubbard functionals. PRX Energy https://doi.org/10.1103/PRXEnergy.1.033003 (2022).
Freysoldt, C., Neugebauer, J. & Van de Walle, C. G. Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys. Rev. Lett. 102, 016402 (2009).
Kumagai, Y. & Oba, F. Electrostatics-based finite-size corrections for first-principles point defect calculations. Phys. Rev. B 89, 195205 (2014).
Gake, T., Kumagai, Y., Freysoldt, C. & Oba, F. Finite-size corrections for defect-involving vertical transitions in supercell calculations. Phys. Rev. B 101, 020102 (2020).
Kavanagh, S. R. Vaspup2.0. Zenodo (2023).
Buckeridge, J., Scanlon, D. O., Walsh, A. & Catlow, C. R. A. Automated procedure to determine the thermodynamic stability of a material and the range of chemical potentials necessary for its formation relative to competing phases and compounds. Comput. Phys. Commun. 185, 330–338 (2014).
Stevanović, V., Lany, S., Zhang, X. & Zunger, A. Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental-phase reference energies. Phys. Rev. B 85, 115104 (2012).
Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Materials https://doi.org/10.1063/1.4812323 (2013).
Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM 65, 1501–1509 (2013).
Kavanagh, S. R. et al. doped: Python toolkit for robust and repeatable charged defect supercell calculations. J. Open Source Softw. 9, 6433 (2024).
Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. Recent developments in the inorganic crystal structure database: theoretical crystal structure data and related features. J. Appl. Crystallogr. 52, 918–925 (2019).
Cen, J., Zhu, B. & Scanlon, D. O. Exploring battery cathode materials in the Li–Ni–O phase diagrams using structure prediction. J. Phys. Energy 5, 035005 (2023).
Toriyama, M. Y., Lee, C.-W., Snyder, G. J. & Gorai, P. Defect chemistry and doping of lead phosphate oxo apatite Pb10(PO4)6O. ACS Energy Lett. 9, 428–431 (2024).
Morgan, B. J. & Watson, G. W. Intrinsic n-type defect formation in TiO2: a comparison of rutile and anatase from GGA+U calculations. J. Phys. Chem. C 114, 2321–2328 (2010).
Swallow, J. E. N. et al. Self-compensation in transparent conducting F-doped SnO2. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201701900 (2017).
Jackson, A. J., Tiana, D. & Walsh, A. A universal chemical potential for sulfur vapours. Chem. Sci. 7, 1082–1092 (2016).
Kayastha, P., Longo, G. & Whalley, L. D. A first-principles thermodynamic model for the Ba–Zr–S system in equilibrium with sulfur vapor. ACS Appl. Energy Mater. 7, 11326–11333 (2024).
Comparotto, C. et al. Thermodynamic insights into the Ba–S system for the formation of BaZrS3 perovskites and other Ba sulfides. J. Mater. Chem. A 13, 9983–9991 (2025).
Crawford, C. M., Ortiz, B. R., Gorai, P., Stevanovic, V. & Toberer, E. S. Experimental and computational phase boundary mapping of Co4Sn6Te6. J. Mater. Chem. A 6, 24175–24185 (2018).
Ohno, S. et al. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule 2, 141–154 (2018).
Borgsmiller, L., Zavanelli, D. & Snyder, G. J. Phase-boundary mapping to engineer defects in thermoelectric materials. PRX Energy https://doi.org/10.1103/PRXEnergy.1.022001 (2022).
Shimoda, M. et al. Controlling defects to achieve reproducibly high ionic conductivity in Na3SbS4 solid electrolytes. Chem. Mater. 34, 5634–5643 (2022).
Choi, Y.-S., Costa, S. I. R., Tapia-Ruiz, N. & Scanlon, D. O. Intrinsic defects and their role in the phase transition of Na-ion anode Na2Ti3O7. ACS Appl. Energy Mater. 6, 484–495 (2022).
Williamson, B. A. D., Eggestad, K. & Selbach, S. M. Pseudo-lithium vacancies in hydrogen rich Li3OCl. J. Mater. Chem. A https://doi.org/10.1039/d4ta08352k (2025).
Fioretti, A. N. et al. Understanding and control of bipolar self-doping in copper nitride. J. Appl. Phys. https://doi.org/10.1063/1.4948244 (2016).
Goyal, A., Gorai, P., Peng, H., Lany, S. & Stevanović, V. A computational framework for automation of point defect calculations. Comput. Mater. Sci. 130, 1–9 (2017).
Broberg, D. et al. PyCDT: a Python toolkit for modeling point defects in semiconductors and insulators. Comput. Phys. Commun. 226, 165–179 (2018).
Kononov, A., Lee, C.-W., Shapera, E. P. & Schleife, A. Identifying native point defect configurations in α-alumina. J. Phys. Condens. Matter 35, 334002 (2023).
Zimmermann, N. E. R., Horton, M. K., Jain, A. & Haranczyk, M. Assessing local structure motifs using order parameters for motif recognition, interstitial identification, and diffusion path characterization. Front. Mater. https://doi.org/10.3389/fmats.2017.00034 (2017).
Shen, J.-X. & Varley, J. pymatgen-analysis-defects: a Python package for analyzing point defects in crystalline materials. J. Open Source Softw. 9, 5941 (2024).
Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).
Gorai, P. Beginner’s guide to interpreting defect and defect level diagrams. PRX Energy 4, 032001 (2025).
Frodason, Y. K., Johansen, K. M., Bjørheim, T. S., Svensson, B. G. & Alkauskas, A. Zn vacancy as a polaronic hole trap in ZnO. Phys. Rev. B 95, 094105 (2017).
Lee, C.-W., Din, N. U., Brennecka, G. L. & Gorai, P. Defects and oxygen impurities in ferroelectric wurtzite Al1-xScxN alloys. Appl. Phys. Lett. https://doi.org/10.1063/5.0211892 (2024).
Wang, X., Kavanagh, S. R., Scanlon, D. O. & Walsh, A. Four-electron negative-U vacancy defects in antimony selenide. Phys. Rev. B https://doi.org/10.1103/PhysRevB.108.134102 (2023).
Morris, A. J., Needs, R. J., Salager, E., Grey, C. P. & Pickard, C. J. Lithiation of silicon via lithium zintl-defect complexes from first principles. Phys. Rev. B https://doi.org/10.1103/physrevb.87.174108 (2013).
Huang, M. et al. Dasp: defect and dopant ab-initio simulation package. J. Semicond. 43, 042101 (2022).
Arrigoni, M. & Madsen, G. K. H. Spinney: post-processing of first-principles calculations of point defects in semiconductors with Python. Comput. Phys. Commun. 264, 107946 (2021).
Yuan, Z. & Hautier, G. First-principles study of defects and doping limits in CaO. Appl. Phys. Lett. 124, 232101 (2024).
Sokol, A. A. et al. Point defects in ZnO. Faraday Discuss. 134, 267–282 (2007).
Kavanagh, S. R., Walsh, A. & Scanlon, D. O. Rapid recombination by cadmium vacancies in CdTe. ACS Energy Lett. 6, 1392–1398 (2021).
Zhang, X. et al. Toward a consistent prediction of defect chemistry in CeO2. Chem. Mater. 35, 207–227 (2022).
Meggiolaro, D. & De Angelis, F. First-principles modeling of defects in lead halide perovskites: best practices and open issues. ACS Energy Lett. 3, 2206–2222 (2018).
Swift, M. W., Peelaers, H., Mu, S., Morton, J. J. L. & Van de Walle, C. G. First-principles calculations of hyperfine interaction, binding energy, and quadrupole coupling for shallow donors in silicon. npj Comput. Mater. https://doi.org/10.1038/s41524-020-00448-7 (2020).
Kieczka, D. et al. Defects in WS2 monolayer calculated with a nonlocal functional: any difference from GGA? Electron. Struct. 5, 024001 (2023).
Whalley, L. D. Steric engineering of point defects in lead halide perovskites. J. Phys. Chem. C 127, 15738–15746 (2023).
Wang, Z., Wei, S. & Zhang, X. Comment on ‘wide-range-tunable ps-type conductivity of transparent CuI1−xBrx alloy’. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202112765 (2022).
Xu, J. et al. Defect tolerance of mixed b-site organic–inorganic halide perovskites. ACS Energy Lett. 6, 4220–4227 (2021).
Peng, H. et al. Convergence of density and hybrid functional defect calculations for compound semiconductors. Phys. Rev. B https://doi.org/10.1103/PhysRevB.88.115201 (2013).
Zhang, X., Turiansky, M. E., Shen, J.-X. & Van de Walle, C. G. Defect tolerance in halide perovskites: a first-principles perspective. J. Appl. Phys. https://doi.org/10.1063/5.0083686 (2022).
Shi, B. X. et al. General embedded cluster protocol for accurate modeling of oxygen vacancies in metal-oxides. J. Chem. Phys. https://doi.org/10.1063/5.0087031 (2022).
Johannes, M. D., Hoang, K., Allen, J. L. & Gaskell, K. Hole polaron formation and migration in olivine phosphate materials. Phys. Rev. B https://doi.org/10.1103/PhysRevB.85.115106 (2012).
Hoang, K. & Johannes, M. D. Defect physics in complex energy materials. J. Phys. Condens. Matter 30, 293001 (2018).
Woods-Robinson, R. et al. Designing transparent conductors using forbidden optical transitions. Matter 6, 3021–3039 (2023).
Oba, F. & Kumagai, Y. Design and exploration of semiconductors from first principles: a review of recent advances. Appl. Phys. Express 11, 060101 (2018).
Broberg, D. et al. High-throughput calculations of charged point defect properties with semi-local density functional theory — performance benchmarks for materials screening applications. npj Comput. Mater. https://doi.org/10.1038/s41524-023-01015-6 (2023).
Kumagai, Y. et al. Alkali mono-pnictides: a new class of photovoltaic materials by element mutation. PRX Energy 2, 043002 (2023).
Deák, P., Udvarhelyi, P., Thiering, G. & Gali, A. The kinetics of carbon pair formation in silicon prohibits reaching thermal equilibrium. Nat. Commun. 14, 361 (2023).
Razinkovas, L., Maciaszek, M., Reinhard, F., Doherty, M. W. & Alkauskas, A. Photoionization of negatively charged NV centers in diamond: theory and ab initio calculations. Phys. Rev. B 104, 235301 (2021).
Dhaliah, D., Xiong, Y., Sipahigil, A., Griffin, S. M. & Hautier, G. First-principles study of the t center in silicon. Phys. Rev. Mater. https://doi.org/10.1103/PhysRevMaterials.6.L053201 (2022).
Dou, W., Spooner, K. B., Kavanagh, S. R., Zhou, M. & Scanlon, D. O. Band degeneracy and anisotropy enhances thermoelectric performance from Sb2Si2Te6 to Sc2Si2Te6. J. Am. Chem. Soc. 146, 17679–17690 (2024).
Erhart, P., Sadigh, B., Schleife, A. & Åberg, D. First-principles study of codoping in lanthanum bromide. Phys. Rev. B https://doi.org/10.1103/PhysRevB.91.165206 (2015).
Larsen, A. H. et al. The atomic simulation environment — a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).
Kumagai, Y. Corrections on formation energies and eigenvalues of point defect calculations in two-dimensional materials. Phys. Rev. B 109, 054106 (2024).
Makov, G. & Payne, M. C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014–4022 (1995).
Leslie, M. & Gillan, N. J. The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method. J. Phys. C Solid State Phys. 18, 973–982 (1985).
Murphy, S. T. & Hine, N. D. M. Anisotropic charge screening and supercell size convergence of defect formation energies. Phys. Rev. B 87, 094111 (2013).
Chagas da Silva, M. et al. Self-consistent potential correction for charged periodic systems. Phys. Rev. Lett. 126, 076401 (2021).
Suo, Z.-J., Luo, J.-W., Li, S.-S. & Wang, L.-W. Image charge interaction correction in charged-defect calculations. Phys. Rev. B 102, 174110 (2020).
Xiao, J. et al. Realistic dimension-independent approach for charged-defect calculations in semiconductors. Phys. Rev. B 101, 165306 (2020).
Freysoldt, C. & Neugebauer, J. First-principles calculations for charged defects at surfaces, interfaces, and two-dimensional materials in the presence of electric fields. Phys. Rev. B 97, 205425 (2018).
Falletta, S., Wiktor, J. & Pasquarello, A. Finite-size corrections of defect energy levels involving ionic polarization. Phys. Rev. B 102, 041115 (2020).
Kumagai, Y. Finite-size corrections to defect energetics along one-dimensional configuration coordinate. Phys. Rev. B 107, L220101 (2023).
Freysoldt, C., Neugebauer, J., Tan, A. M. Z. & Hennig, R. G. Limitations of empirical supercell extrapolation for calculations of point defects in bulk, at surfaces, and in two-dimensional materials. Phys. Rev. B https://doi.org/10.1103/PhysRevB.105.014103 (2022).
Kokott, S. et al. Efficient all-electron hybrid density functionals for atomistic simulations beyond 10-000 atoms. J. Chem. Phys. https://doi.org/10.1063/5.0208103 (2024).
Hayes, W. & Stoneham, A. M. Defects and Defect Processes in Nonmetallic Solids (Wiley, 1985).
Kasamatsu, S., Tada, T. & Watanabe, S. Theoretical analysis of space charge layer formation at metal/ionic conductor interfaces. Solid State Ionics 183, 20–25 (2011).
Neilson, W. D. & Murphy, S. T. DefAP: a Python code for the analysis of point defects in crystalline solids. Comput. Mater. Sci. 210, 111434 (2022).
Hagemark, K. Frozen-in native defects in semiconductor compounds. J. Phys. Chem. Solids 37, 461–464 (1976).
Sasaki, K. & Maier, J. Low temperature defect chemistry of oxides. J. Eur. Ceram. Soc. 19, 741–745 (1999).
Buckeridge, J. Equilibrium point defect and charge carrier concentrations in a material determined through calculation of the self-consistent Fermi energy. Comput. Phys. Commun. 244, 329–342 (2019).
Squires, A. G., Scanlon, D. O. & Morgan, B. J. Native defects and their doping response in the lithium solid electrolyte Li7La3Zr2O12. Chem. Mater. 32, 1876–1886 (2019).
Kubicek, M. et al. Oxygen vacancies in fast lithium-ion conducting garnets. Chem. Mater. 29, 7189–7196 (2017).
Fallon, M. J. et al. Exploring the anion site disorder kinetics in lithium argyrodites. J. Am. Chem. Soc. 147, 10151–10159 (2025).
Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. https://doi.org/10.1038/ncomms8497 (2015).
Karmakar, A. et al. Influence of hidden halogen mobility on local structure of CsSn(Cl1-xBrx)3 mixed-halide perovskites by solid-state NMR. Chem. Sci. 12, 3253–3263 (2021).
Chatratin, I., Evangelista, I., McCandless, B., Shafarman, W. & Janotti, A. Defect stability in CdTe based on formation energies and migration barriers. J. Phys. Chem. C 129, 1398–1407 (2025).
Ma, J., Yang, J., Wei, S.-H. & Da Silva, J. L. F. Correlation between the electronic structures and diffusion paths of interstitial defects in semiconductors: the case of CdTe. Phys. Rev. B 90, 155208 (2014).
Krasikov, D. & Sankin, I. Defect interactions and the role of complexes in the CdTe solar cell absorber. J. Mater. Chem. A 5, 3503–3513 (2017).
Squires, A. G., Scanlon, D. O. & Morgan, B. J. Py-sc-fermi: self-consistent Fermi energies and defect concentrations from electronic structure calculations. J. Open Source Softw. 8, 4962 (2023).
Arnab, K. A. et al. Quantitative modeling of point defects in β-Ga2O3 combining hybrid functional energetics with semiconductor and processes thermodynamics. Phys. Chem. Chem. Phys. 27, 11129–11143 (2025).
Kavanagh, S. R., Scanlon, D. O., Walsh, A. & Freysoldt, C. Impact of metastable defect structures on carrier recombination in solar cells. Faraday Discuss. 239, 339–356 (2022).
Toriyama, M. Y. et al. How to analyse a density of states. Mater. Today Electron. 1, 100002 (2022).
Oliphant, E., Mantena, V., Brod, M., Jeffrey Snyder, G. & Sun, W. Why does silicon have an indirect band gap? Mater. Horiz. 12, 3073–3083 (2025).
Fecher, G. H., Kübler, J. & Felser, C. Chirality in the solid state: chiral crystal structures in chiral and achiral space groups. Materials 15, 5812 (2022).
Mao, J. et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019).
Wang, X., Kavanagh, S. R. & Walsh, A. Sulfur vacancies limit the open-circuit voltage of Sb2S3 solar cells. ACS Energy Lett. 10, 161–167 (2025).
Liga, S. M., Kavanagh, S. R., Walsh, A., Scanlon, D. O. & Konstantatos, G. Mixed-cation vacancy-ordered perovskites (Cs2Ti1–xSnxX6; X = I or Br): low-temperature miscibility, additivity, and tunable stability. J. Phys. Chem. C 127, 21399–21409 (2023).
Zhang, X., Kang, J. & Wei, S.-H. Defect modeling and control in structurally and compositionally complex materials. Nat. Comput. Sci. 3, 210–220 (2023).
Kaewmeechai, C., Strand, J. & Shluger, A. Electronic structure and properties of trapped holes in crystalline and amorphous Ga2O3. Phys. Rev. B https://doi.org/10.1103/PhysRevB.111.035203 (2025).
Chen, W., Dahliah, D., Rignanese, G.-M. & Hautier, G. Origin of the low conversion efficiency in Cu2ZnSnS4 kesterite solar cells: the actual role of cation disorder. Energy Environ. Sci. 14, 3567–3578 (2021).
Muy, S., Johnston, C. & Marzari, N. AiiDA-defects: an automated and fully reproducible workflow for the complete characterization of defect chemistry in functional materials. Electron. Struct. 5, 024009 (2023).
Ogawa, T., Taguchi, A. & Kuwabara, A. An extended computational approach for point-defect equilibria in semiconductor materials. npj Comput. Mater. 8, 79 (2022).
Gorai, P. Beginner’s guide to interpreting defect and defect level diagrams. PRX Energy https://doi.org/10.1103/jtyg-xry3 (2025).
Stevanović, V., Lany, S., Zhang, X. & Zunger, A. Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental-phase reference energies. Phys. Rev. B https://doi.org/10.1103/PhysRevB.85.115104 (2012).
Slavney, A. H., Hu, T., Lindenberg, A. M. & Karunadasa, H. I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138–2141 (2016).
Sebastiá-Luna, P. et al. Tuning the optical absorption of Sn-, Ge-, and Zn-substituted Cs2AgBiBr6 double perovskites: structural and electronic effects. Chem. Mater. 33, 8028–8035 (2021).
Lindquist, K. P. et al. Tuning the bandgap of Cs2AgBiBr6 through dilute tin alloying. Chem. Sci. 10, 10620–10628 (2019).
Batnaran, B. Computational Study of the Key Imperfections in Energy Materials. Master’s thesis, Univ. College London (2022).
Acknowledgements
This work was supported by the PRAETORIAN project, funded by UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding guarantee (EP/Y019504/1). The authors thank B. Batnaran for preliminary calculations on the functional dependence of defect structure searches.
Author information
Authors and Affiliations
Contributions
S.R.K. researched data for the article, D.O.S. contributed to the discussion of content, A.G.S. wrote the manuscript and all authors reviewed and edited the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Richard Catlow, Prashun Gorai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Squires, A.G., Kavanagh, S.R., Walsh, A. et al. Guidelines for robust and reproducible point defect simulations in crystals. Nat Rev Mater (2026). https://doi.org/10.1038/s41578-025-00879-y
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41578-025-00879-y


