Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Van der Waals materials for energy-efficient electronic devices

Abstract

Since the invention of the first transistor based on germanium, a wide range of 3D semiconductors, metals and insulators have been used as building blocks for integrated logic and memory devices. However, the energy consumption of electronic devices based on these 3D materials has continued to increase, particularly in emerging paradigms such as artificial intelligence, raising concerns about the long-term sustainability of technological advancement. To overcome this limitation, incorporating atomically thin van der Waals materials into electronic devices has been proposed, as their unique structural, electronic and polymorphic properties could enable new mechanisms to enhance device energy efficiency. Here, we discuss fundamental challenges faced by conventional 3D-material-based electronics and present how van der Waals materials can be used to address these limitations for energy-efficient device architectures. We conclude by summarizing the key challenges that remain and outlining strategic directions to bridge the gap between fundamental materials science and practical device applications for sustainable, energy-efficient devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Polymorphic phase-change devices and GB-mediated devices.
Fig. 2: FE semiconductor FETs and moiré superlattice-based devices.
Fig. 3: Barristors, ferroelectric tunnel junctions and sidewall v-FETs.
Fig. 4: Conductive-filament-driven devices and atomristors.
Fig. 5: Atomic-scale electrode engineering for reduced contact resistance.
Fig. 6: Dielectric materials for fast operation and low subthreshold swing.
Fig. 7: Representative metrics and energy efficiency of vdW material-based devices.

Similar content being viewed by others

References

  1. Auweter, A., Bode, A., Brehm, M., Huber, H. & Kranzlmüller, D. in Information and Communication on Technology for the Fight Against Global Warming (eds Kranzlmüller, D. & Toja, A. M.) 18–25 (Springer, 2011).

  2. Kelechi, A. H. et al. Artificial intelligence: an energy efficiency tool for enhanced high performance computing. Symmetry 12, 1029 (2020).

    Article  Google Scholar 

  3. Ye, L. et al. The challenges and emerging technologies for low-power artificial intelligence IoT systems. IEEE Trans. Circuits Syst. I Regul. Pap. 68, 4821–4834 (2021).

    Article  Google Scholar 

  4. Zhai, Y., Feng, Z., Zhou, Y. & Han, S.-T. Energy-efficient transistors: suppressing the subthreshold swing below the physical limit. Mater. Horiz. 8, 1601–1617 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Wong, H. S. P., Frank, D. J., Solomon, P. M., Wann, C. H. J. & Welser, J. J. Nanoscale CMOS. Proc. IEEE 87, 537–570 (1999).

    Article  Google Scholar 

  6. Tseng, A. A., Kuan, C., Chen, C. D. & Ma, K. J. Electron beam lithography in nanoscale fabrication: recent development. IEEE Trans. Electron. Packag. Manuf. 26, 141–149 (2003).

    Article  CAS  Google Scholar 

  7. Chen, Y. et al. Sub-10 nm fabrication: methods and applications. Int. J. Extreme Manuf. 3, 032002 (2021).

    Article  CAS  Google Scholar 

  8. Ieong, M., Doris, B., Kedzierski, J., Rim, K. & Yang, M. Silicon device scaling to the sub-10-nm regime. Science 306, 2057–2060 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Zhibin, R. et al. Examination of hole mobility in ultra-thin body SOI MOSFETs. In Dig. Int. Electron Devices Meet. 51–54 (IEEE, 2002).

  10. Cheng, I. C., Wagner, S. & Vallat-Sauvain, E. Contact resistance in nanocrystalline silicon thin-film transistors. IEEE Trans. Electron. Devices 55, 973–977 (2008).

    Article  CAS  Google Scholar 

  11. Pesavento, P. V., Puntambekar, K. P., Frisbie, C. D., McKeen, J. C. & Ruden, P. P. Film and contact resistance in pentacene thin-film transistors: dependence on film thickness, electrode geometry, and correlation with hole mobility. J. Appl. Phys. 99, 094504 (2006).

    Article  Google Scholar 

  12. Yan, R. H., Ourmazd, A. & Lee, K. F. Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron. Devices 39, 1704–1710 (1992).

    Article  CAS  Google Scholar 

  13. Henson, W. K. et al. Analysis of leakage currents and impact on off-state power consumption for CMOS technology in the 100-nm regime. IEEE Trans. Electron. Devices 47, 1393–1400 (2000).

    Article  CAS  Google Scholar 

  14. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, K., Feng, Y., Wang, F., Yang, Z. & Wang, J. Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C 5, 11992–12022 (2017).

    Article  CAS  Google Scholar 

  16. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article  CAS  Google Scholar 

  17. Kim, K. S. et al. The future of two-dimensional semiconductors beyond Moore’s law. Nat. Nanotechnol. 19, 895–906 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Wu, R. et al. van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater. 29, 1806611 (2019).

    Article  Google Scholar 

  21. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Guo, H.-W., Hu, Z., Liu, Z.-B. & Tian, J.-G. Stacking of 2D materials. Adv. Funct. Mater. 31, 2007810 (2021).

    Article  CAS  Google Scholar 

  23. Chen, H., Li, H., Ma, T., Han, S. & Zhao, Q. Biological function simulation in neuromorphic devices: from synapse and neuron to behavior. Sci. Technol. Adv. Mater. 24, 2183712 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ji, Y. et al. Ultralow energy adaptive neuromorphic computing using reconfigurable zinc phosphorus trisulfide memristors. Nat. Commun. 16, 6899 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, Y. et al. Memristors with analogue switching and high on/off ratios using a van der Waals metallic cathode. Nat. Electron. 8, 36–45 (2025).

    Article  CAS  Google Scholar 

  26. Yan, X. et al. Moiré synaptic transistor with room-temperature neuromorphic functionality. Nature 624, 551–556 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Calhoun, B. H. & Chandrakasan, A. Characterizing and modeling minimum energy operation for subthreshold circuits. In Proc. Int. Symp. Low Power Electron. Design 90–95 (ACM, 2004).

  28. Truesdell, D. S., Ahmed, S. Z., Ghosh, A. W. & Calhoun, B. H. Minimum-energy digital computing with steep subthreshold swing tunnel FETs. IEEE J. Explor. Solid-State Comput. Devices Circuits 6, 138–145 (2020).

    Article  Google Scholar 

  29. Calhoun, B. H., Wang, A. & Chandrakasan, A. Modeling and sizing for minimum energy operation in subthreshold circuits. IEEE J. Solid-State Circuits 40, 1778–1786 (2005).

    Article  Google Scholar 

  30. Hueting, R. J. E., Hemert, T. V., Kaleli, B., Wolters, R. A. M. & Schmitz, J. On device architectures, subthreshold swing, and power consumption of the piezoelectric field-effect transistor (π-FET). IEEE J. Electron. Devices Soc. 3, 149–157 (2015).

    Article  Google Scholar 

  31. Lee, T. & Schweitzer, E. O. Measuring and improving the switching capacity of metallic contacts. Presented at the 54th Annual Georgia Tech Protective Relaying Conference https://cdn.selinc.com/assets/Literature/Publications/Technical%20Papers/6098_MeasuringImproving_Web.pdf (2000).

  32. Oh, G., Jeon, J. H., Kim, Y. C., Ahn, Y. H. & Park, B. H. Gate-tunable photodetector and ambipolar transistor implemented using a graphene/MoSe2 barristor. NPG Asia Mater. 13, 10 (2021).

    Article  CAS  Google Scholar 

  33. Tian, M. et al. Boosting responsivity and speed in 2D material based vertical p-i-n photodiodes with excellent self-powered ability. Nat. Commun. 16, 5824 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu, F. et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, D.-H. et al. Realizing an omega-shaped gate MoS2 field-effect transistor based on a SiO2/MoS2 core–shell heterostructure. ACS Appl. Mater. Interfaces 12, 14308–14314 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. O’Brien, K. P. et al. Process integration and future outlook of 2D transistors. Nat. Commun. 14, 6400 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).

    Article  CAS  Google Scholar 

  38. Kang, J.-H. et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 22, 1470–1477 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Kim, K. S. et al. Growth-based monolithic 3D integration of single-crystal 2D semiconductors. Nature 636, 615–621 (2024).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, J. -y, Ju, X., Ang, K.-W. & Chi, D. Van der Waals layer transfer of 2D materials for monolithic 3D electronic system integration: review and outlook. ACS Nano 17, 1831–1844 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Lu, D. et al. Monolithic three-dimensional tier-by-tier integration via van der Waals lamination. Nature 630, 340–345 (2024).

    Article  CAS  PubMed  Google Scholar 

  42. Kim, H. et al. Van der Waals epitaxy and beyond for monolithic 3D integration. 2D Mater. 12, 022003 (2025).

    Article  CAS  Google Scholar 

  43. Liu, Y., Stradins, P. & Wei, S.-H. Van der Waals metal–semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2, e1600069 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037–3058 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Ma, L., Wang, Y. & Liu, Y. Van der Waals contact for two-dimensional transition metal dichalcogenides. Chem. Rev. 124, 2583–2616 (2024).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, Y. & Chhowalla, M. Making clean electrical contacts on 2D transition metal dichalcogenides. Nat. Rev. Phys. 4, 101–112 (2022).

    Article  CAS  Google Scholar 

  47. Sun, L. et al. Ultralow switching voltage slope based on two-dimensional materials for integrated memory and neuromorphic applications. Nano Energy 69, 104472 (2020).

    Article  CAS  Google Scholar 

  48. Yang, Q. et al. Steep-slope vertical-transport transistors built from sub-5 nm thin van der Waals heterostructures. Nat. Commun. 15, 1138 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guo, J. et al. SnSe/MoS2 van der Waals heterostructure junction field-effect transistors with nearly ideal subthreshold slope. Adv. Mater. 31, 1902962 (2019).

    Article  CAS  Google Scholar 

  50. Cassabois, G., Valvin, P. & Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photon. 10, 262–266 (2016).

    Article  CAS  Google Scholar 

  51. Vu, Q. A. et al. Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 7, 12725 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sasaki, T. et al. Ultrafast operation of 2D heterostructured nonvolatile memory devices provided by the strong short-time dielectric breakdown strength of h-BN. ACS Appl. Mater. Interfaces 14, 25659–25669 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  CAS  Google Scholar 

  54. Liu, L. et al. Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat. Nanotechnol. 16, 874–881 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Hu, W. & Yang, J. Two-dimensional van der Waals heterojunctions for functional materials and devices. J. Mater. Chem. C. 5, 12289–12297 (2017).

    Article  CAS  Google Scholar 

  56. Chang, K. et al. Enhanced spontaneous polarization in ultrathin SnTe films with layered antipolar structure. Adv. Mater. 31, 1804428 (2019).

    Article  Google Scholar 

  57. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Hwang, E. et al. Polar ohmic contact switching with a ferroelectric metal. ACS Appl. Mater. Interfaces 17, 22984–22991 (2025).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, X. et al. Van der Waals-interface-dominated all-2D electronics. Adv. Mater. 35, 2207966 (2023).

    Article  CAS  Google Scholar 

  61. van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).

    Article  PubMed  Google Scholar 

  62. Man, P., Srolovitz, D., Zhao, J. & Ly, T. H. Functional grain boundaries in two-dimensional transition-metal dichalcogenides. Acc. Chem. Res. 54, 4191–4202 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Hus, S. M. et al. Observation of single-defect memristor in an MoS2 atomic sheet. Nat. Nanotechnol. 16, 58–62 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  PubMed  Google Scholar 

  65. Kim, D. et al. Atomic-scale thermopower in charge density wave states. Nat. Commun. 13, 4516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eshete, Y. A. et al. A polymorphic memtransistor with tunable metallic and semiconducting channel. Adv. Mater. 35, 2209089 (2023).

    Article  CAS  Google Scholar 

  67. Hwang, E. et al. Ferroelectric-induced phase change device with polymorphic Mo1xWxTe2 for neuromorphic computing. Small https://doi.org/10.1002/smll.202505378 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kim, D. et al. Phase engineering of 2D materials. Chem. Rev. 123, 11230–11268 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Yang, H., Kim, S. W., Chhowalla, M. & Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13, 931–937 (2017).

    Article  CAS  Google Scholar 

  70. Voiry, D., Mohite, A. & Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019).

    Article  CAS  Google Scholar 

  72. Huang, Y.-T. et al. Two-dimensional In2Se3: a rising advanced material for ferroelectric data storage. InfoMat 4, e12341 (2022).

    Article  CAS  Google Scholar 

  73. Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Joo, Y., Hwang, E., Watanabe, K., Taniguchi, T. & Yang, H. Polymorphic ferroelectricity in artificially stacked MoS2 interfaces. ACS Appl. Electron. Mater. 6, 6868–6875 (2024).

    Article  CAS  Google Scholar 

  75. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Jindal, A. et al. Coupled ferroelectricity and superconductivity in bilayer Td-MoTe2. Nature 613, 48–52 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 10, 1775 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Eshete, Y. A. et al. Atomic and electronic manipulation of robust ferroelectric polymorphs. Adv. Mater. 34, 2202633 (2022).

    Article  CAS  Google Scholar 

  79. Kim, D. et al. Thermal biasing for lattice symmetry breaking and topological edge state imaging. Nat. Commun. 16, 1879 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mao, X.-R., Shao, Z.-K., Luan, H.-Y., Wang, S.-L. & Ma, R.-M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 16, 1099–1105 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Kang, K. et al. Switchable moiré potentials in ferroelectric WTe2/WSe2 superlattices. Nat. Nanotechnol. 18, 861–866 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Liu, C.-H., Chang, Y.-C., Norris, T. B. & Zhong, Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9, 273–278 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, A., Chen, R., Yun, Y., Xu, J. & Zhang, J. Review of ferroelectric materials and devices toward ultralow voltage operation. Adv. Funct. Mater. 35, 2412332 (2025).

    Article  CAS  Google Scholar 

  84. Wang, S. et al. Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat. Commun. 12, 53 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tao, Q. et al. Reconfigurable electronics by disassembling and reassembling van der Waals heterostructures. Nat. Commun. 12, 1825 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ram, A. et al. Reconfigurable multifunctional van der Waals ferroelectric devices and logic circuits. ACS Nano 17, 21865–21877 (2023).

    Article  PubMed  Google Scholar 

  87. Lee, S.-H., Jung, Y. & Agarwal, R. Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. Nat. Nanotechnol. 2, 626–630 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Lee, B. C., Ipek, E., Mutlu, O. & Burger, D. Architecting phase change memory as a scalable DRAM alternative. In Proc. 36th Annu. Int. Symp. Comput. Architect. 2–13 (ACM, 2009).

  89. Wang, W. J. et al. Fast phase transitions induced by picosecond electrical pulses on phase change memory cells. Appl. Phys. Lett. 93, 043121 (2008).

    Article  Google Scholar 

  90. Loke, D. et al. Breaking the speed limits of phase-change memory. Science 336, 1566–1569 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Qureshi, M. K., Franceschini, M. M., Lastras-Montaño, L. A. & Karidis, J. P. Morphable memory system: a robust architecture for exploiting multi-level phase change memories. In Proc. 37th Annu. Int. Symp. Comput. Architect. 153–162 (ACM, 2010).

  92. Kuzum, D., Jeyasingh, R. G. D., Lee, B. & Wong, H. S. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Simpson, R. E. et al. Interfacial phase-change memory. Nat. Nanotechnol. 6, 501–505 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Horii, H. et al. A novel cell technology using N-doped GeSbTe films for phase change RAM. In Symp. VLSI Technol. Digest Techn. Papers 177–178 (IEEE, 2003).

  95. Burr, G. W. et al. Recent progress in phase-change memory technology. IEEE J. Emerg. Sel. Top. Circuits Syst. 6, 146–162 (2016).

    Article  Google Scholar 

  96. Noé, P., Vallée, C., Hippert, F., Fillot, F. & Raty, J.-Y. Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues. Semicond. Sci. Technol. 33, 013002 (2018).

    Article  Google Scholar 

  97. Fong, S. W., Neumann, C. M. & Wong, H. S. P. Phase-change memory — towards a storage-class memory. IEEE Trans. Electron. Devices 64, 4374–4385 (2017).

    Article  CAS  Google Scholar 

  98. Guo, P., Sarangan, A. M. & Agha, I. A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators. Appl. Sci. 9, 530 (2019).

    Article  CAS  Google Scholar 

  99. Le Gallo, M. & Sebastian, A. An overview of phase-change memory device physics. J. Phys. D 53, 213002 (2020).

    Article  Google Scholar 

  100. Li, W., Qian, X. & Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. 6, 829–846 (2021).

    Article  CAS  Google Scholar 

  101. Bergeron, H., Lebedev, D. & Hersam, M. C. Polymorphism in post-dichalcogenide two-dimensional materials. Chem. Rev. 121, 2713–2775 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–486 (2015).

    Article  CAS  Google Scholar 

  104. Song, S. et al. Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188–193 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Li, Y., Duerloo, K.-A. N., Wauson, K. & Reed, E. J. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nat. Commun. 7, 10671 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang, F. et al. Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories. Nat. Mater. 18, 55–61 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Kowalczyk, H. et al. Gate and temperature driven phase transitions in few-layer MoTe2. ACS Nano 17, 6708–6718 (2023).

    Article  CAS  PubMed  Google Scholar 

  108. Zhang, C. et al. Charge mediated reversible metal–insulator transition in monolayer MoTe2 and WxMo1–xTe2 alloy. ACS Nano 10, 7370–7375 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Zhu, X., Li, D., Liang, X. & Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Park, H. & Kim, J. Programmable synapse-like MoS2 field-effect transistors phase-engineered by dynamic lithium ion modulation. Adv. Electron. Mater. 6, 1901410 (2020).

    Article  CAS  Google Scholar 

  111. Rupom, R. H. et al. Ion-induced phase changes in 2D MoTe2 films for neuromorphic synaptic device applications. ACS Nano 19, 2529–2539 (2025).

    Article  CAS  PubMed  Google Scholar 

  112. Lee, E., Kim, J., Bhoyate, S., Cho, K. & Choi, W. Realizing scalable two-dimensional MoS2 synaptic devices for neuromorphic computing. Chem. Mater. 32, 10447–10455 (2020).

    Article  CAS  Google Scholar 

  113. Hou, W. et al. Strain engineering of vertical molybdenum ditelluride phase-change memristors. Nat. Electron. 7, 8–16 (2024).

    Article  CAS  Google Scholar 

  114. Lacaita, A. L. & Redaelli, A. The race of phase change memories to nanoscale storage and applications. Microelectron. Eng. 109, 351–356 (2013).

    Article  CAS  Google Scholar 

  115. Sangwan, V. K. et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 10, 403–406 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, X. et al. Grain-boundary engineering of monolayer MoS2 for energy-efficient lateral synaptic devices. Adv. Mater. 33, 2102435 (2021).

    Article  CAS  Google Scholar 

  118. You, T., Zhao, M., Fan, Z. & Ju, C. Emerging memtransistors for neuromorphic system applications: a review. Sensors 23, 5413 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Huang, C.-H. et al. Artificial synapse based on a 2D-SnO2 memtransistor with dynamically tunable analog switching for neuromorphic computing. ACS Appl. Mater. Interfaces 13, 52822–52832 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Bae, J., Won, J. & Shim, W. The rise of memtransistors for neuromorphic hardware and in-memory computing. Nano Energy 126, 109646 (2024).

    Article  CAS  Google Scholar 

  121. Azizi, A. et al. Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat. Commun. 5, 4867 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Li, M. et al. Imperfection-enabled memristive switching in van der Waals materials. Nat. Electron. 6, 491–505 (2023).

    Article  CAS  Google Scholar 

  123. Chen, M. et al. Multibit data storage states formed in plasma-treated MoS2 transistors. ACS Nano 8, 4023–4032 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Karvonen, L. et al. Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nat. Commun. 8, 15714 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yao, W., Wu, B. & Liu, Y. Growth and grain boundaries in 2D materials. ACS Nano 14, 9320–9346 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Li, C. et al. Electric field-dependent evolution dynamics of conductive filaments in 2D material-based planar memristors. ACS Nano 18, 32196–32204 (2024).

    Article  CAS  PubMed  Google Scholar 

  128. Liu, S. E., Zeng, T. T., Wu, R., Sangwan, V. K. & Hersam, M. C. Low-voltage short-channel MoS2 memtransistors with high gate-tunability. J. Mater. Res. 39, 1463–1472 (2024).

    Article  CAS  Google Scholar 

  129. Huh, W. et al. Heterosynaptic MoS2 memtransistors emulating biological neuromodulation for energy-efficient neuromorphic electronics. Adv. Mater. 35, 2211525 (2023).

    Article  CAS  Google Scholar 

  130. Xia, Q. et al. Memristor−CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640–3645 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Mittal, S. A survey of ReRAM-based architectures for processing-in-memory and neural networks. Mach. Learn. Knowl. Extr. 1, 75–114 (2019).

    Article  Google Scholar 

  132. Yan, X., Qian, J. H., Sangwan, V. K. & Hersam, M. C. Progress and challenges for memtransistors in neuromorphic circuits and systems. Adv. Mater. 34, 2108025 (2022).

    Article  CAS  Google Scholar 

  133. Jones, R. E. et al. Ferroelectric non-volatile memories for low-voltage, low-power applications. Thin Solid Films 270, 584–588 (1995).

    Article  CAS  Google Scholar 

  134. Kim, M.-K., Kim, I.-J. & Lee, J.-S. CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory. Sci. Adv. 7, eabe1341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gao, P. et al. Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films. Nat. Commun. 8, 15549 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Schroeder, U., Park, M. H., Mikolajick, T. & Hwang, C. S. The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 7, 653–669 (2022).

    Article  Google Scholar 

  137. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Ma, T. P. & Han, J.-P. Why is nonvolatile ferroelectric memory field-effect transistor still elusive? IEEE Electron. Device Lett. 23, 386–388 (2002).

    Article  CAS  Google Scholar 

  139. Kim, J.-H., Kim, S.-H. & Yu, H.-Y. Enhanced electrical polarization in van der Waals α-In2Se3 ferroelectric semiconductor field-effect transistors by eliminating surface screening charge. Small 20, 2405459 (2024).

    Article  CAS  Google Scholar 

  140. Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2–VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yang, J. et al. Ultrasensitive ferroelectric semiconductor phototransistors for photon-level detection. Adv. Funct. Mater. 32, 2205468 (2022).

    Article  CAS  Google Scholar 

  142. Xu, K. et al. Optical control of ferroelectric switching and multifunctional devices based on van der Waals ferroelectric semiconductors. Nanoscale 12, 23488–23496 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Puglia, G. O., Zorzo, A. F., Rose, C. A. F. D., Perez, T. & Milojicic, D. Non-volatile memory file systems: a survey. IEEE Access. 7, 25836–25871 (2019).

    Article  Google Scholar 

  144. Laguerre, J. et al. Data retention insights from joint analysis on beol-integrated HZO-based scaled FeCAPs and 16kbit 1T-1C FeRAM arrays. In IEEE Int. Reliab. Phys. Symp. (IEEE, 2024).

  145. Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Shi, Q. et al. The role of lattice dynamics in ferroelectric switching. Nat. Commun. 13, 1110 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Niu, R. et al. Giant ferroelectric polarization in a bilayer graphene heterostructure. Nat. Commun. 13, 6241 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang, P. et al. Moiré synaptic transistor for homogeneous-architecture reservoir computing. Chin. Phys. Lett. 40, 117201 (2023).

    Article  CAS  Google Scholar 

  149. Zheng, Z. Electronic ratchet effect in a moiré system: signatures of excitonic ferroelectricity. Preprint at https://arxiv.org/abs/2306.03922 (2023).

  150. Zhang, L. et al. Electronic ferroelectricity in monolayer graphene moiré superlattices. Nat. Commun. 15, 10905 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Prakash, A., Jana, D. & Maikap, S. TaOx-based resistive switching memories: prospective and challenges. Nanoscale Res. Lett. 8, 418 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Li, X. et al. Sliding ferroelectric memories and synapses based on rhombohedral-stacked bilayer MoS2. Nat. Commun. 15, 10921 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Jiang, H. et al. A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 8, 882 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Morozov, S. V., Novoselov, K. S. & Geim, A. K. Electron transport in graphene. Phys. Uspekhi 51, 744 (2008).

    Article  CAS  Google Scholar 

  156. Xie, Y. et al. Measuring bulk and surface acoustic modes in diamond by angle-resolved Brillouin spectroscopy. Sci. China Phys. Mech. Astron. 64, 287311 (2021).

    Article  CAS  Google Scholar 

  157. Liu, H., Neal, A. T. & Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 6, 8563–8569 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Wei, T. et al. Two dimensional semiconducting materials for ultimately scaled transistors. iScience 25, 105160 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Miao, J. et al. Lateral electric field engineering in scaled transistors based on 2D materials via phase transition. ACS Nano 19, 18292–18300 (2025).

    Article  CAS  PubMed  Google Scholar 

  160. Fang, Q. H. & Liu, Y. W. Size-dependent interaction between an edge dislocation and a nanoscale inhomogeneity with interface effects. Acta Mater. 54, 4213–4220 (2006).

    Article  CAS  Google Scholar 

  161. Duan, C.-G., Sabirianov, R. F., Mei, W.-N., Jaswal, S. S. & Tsymbal, E. Y. Interface effect on ferroelectricity at the nanoscale. Nano Lett. 6, 483–487 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Yoon, J. S., Kim, K., Rim, T. & Baek, C. K. Performance and variations induced by single interface trap of nanowire FETs at 7-nm node. IEEE Trans. Electron. Devices 64, 339–345 (2017).

    Article  CAS  Google Scholar 

  163. Meier, D. L. & Schroder, D. K. Contact resistance: its measurement and relative importance to power loss in a solar cell. IEEE Trans. Electron. Devices 31, 647–653 (1984).

    Article  Google Scholar 

  164. Lee, S. K., Zetterling, C. M., Östling, M., Palmquist, J. P. & Jansson, U. Low resistivity ohmic contacts on 4H-silicon carbide for high power and high temperature device applications. Microelectron. Eng. 60, 261–268 (2002).

    Article  CAS  Google Scholar 

  165. Lenfant, S. et al. Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi-level pinning at the molecule−metal interface. J. Phys. Chem. B 110, 13947–13958 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Himpsel, F. J., Hollinger, G. & Pollak, R. A. Determination of the Fermi-level pinning position at Si(111) surfaces. Phys. Rev. B 28, 7014–7018 (1983).

    Article  CAS  Google Scholar 

  167. Chadi, D. J. et al. Fermi-level-pinning defects in highly n-doped silicon. Phys. Rev. Lett. 79, 4834–4837 (1997).

    Article  CAS  Google Scholar 

  168. Veeraraghavan, S. & Fossum, J. G. Short-channel effects in SOI MOSFETs. IEEE Trans. Electron. Devices 36, 522–528 (1989).

    Article  Google Scholar 

  169. Chaudhry, A. & Kumar, M. J. Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review. IEEE Trans. Device Mater. Reliab. 4, 99–109 (2004).

    Article  Google Scholar 

  170. Gill, A., Madhu, C. & Kaur, P. Investigation of short channel effects in bulk MOSFET and SOI FinFET at 20nm node technology. In Annu. IEEE India Conf. (IEEE, 2015).

  171. Yang, H. et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140–1143 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Heo, S. et al. Ternary full adder using multi-threshold voltage graphene barristors. IEEE Electron. Device Lett. 39, 1948–1951 (2018).

    Article  CAS  Google Scholar 

  173. Oh, G. et al. Graphene/pentacene barristor with ion-gel gate dielectric: flexible ambipolar transistor with high mobility and On/Off ratio. ACS Nano 9, 7515–7522 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Hwang, H. J. et al. A graphene barristor using nitrogen profile controlled ZnO Schottky contacts. Nanoscale 9, 2442–2448 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Choi, S. et al. Energy-efficient three-terminal SiOx memristor crossbar array enabled by vertical Si/graphene heterojunction barristor. Nano Energy 84, 105947 (2021).

    Article  CAS  Google Scholar 

  176. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Jahangir, I., Uddin, M. A., Singh, A. K., Chandrashekhar, M. & Koley, G. Graphene/MoS2 thin film based two dimensional barristors with tunable Schottky barrier for sensing applications. IEEE Sens. J. 21, 26549–26555 (2021).

    Article  CAS  Google Scholar 

  178. Jahangir, I., Uddin, M. A., Singh, A. K., Koley, G. & Chandrashekhar, M. V. S. Richardson constant and electrostatics in transfer-free CVD grown few-layer MoS2/graphene barristor with Schottky barrier modulation >0.6eV. Appl. Phys. Lett. 111, 142101 (2017).

    Article  Google Scholar 

  179. Shin, D.-H. et al. Low-power complementary inverter based on graphene/carbon-nanotube and graphene/MoS2 barristors. Nanomaterials 12, 3820 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Widiapradja, L. J., Hong, S., Jeong, Y. & Im, S. Maximizing Schottky barrier modulation in graphene-WSe2/MoSe2 heterojunction barristor through Dirac-cone induced phenomenon. Carbon 221, 118920 (2024).

    Article  CAS  Google Scholar 

  181. Huh, W. et al. Synaptic barristor based on phase-engineered 2D heterostructures. Adv. Mater. 30, 1801447 (2018).

    Article  Google Scholar 

  182. Bach, T. P.-A. et al. Schottky barrier height modulation and photoconductivity in a vertical graphene/ReSe2 vdW p-n heterojunction barristor. J. Mater. Res. Technol. 17, 2796–2806 (2022).

    Article  CAS  Google Scholar 

  183. Jang, S. et al. Three-terminal vertical ferroelectric synaptic barristor enabled by HZO/graphene heterostructure with rebound depolarization. J. Alloy. Compd. 965, 171247 (2023).

    Article  CAS  Google Scholar 

  184. Kim, D. J. et al. Retention of resistance states in ferroelectric tunnel memristors. Appl. Phys. Lett. 103, 142908 (2013).

    Article  Google Scholar 

  185. Ma, C. et al. Sub-nanosecond memristor based on ferroelectric tunnel junction. Nat. Commun. 11, 1439 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wen, Z., Li, C., Wu, D., Li, A. & Ming, N. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 12, 617–621 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Ihlefeld, J. F. et al. Scaling effects in perovskite ferroelectrics: fundamental limits and process-structure-property relations. J. Am. Ceram. Soc. 99, 2537–2557 (2016).

    Article  CAS  Google Scholar 

  188. Du, X. et al. High-speed switching and giant electroresistance in an epitaxial Hf0.5Zr0.5O2-based ferroelectric tunnel junction memristor. ACS Appl. Mater. Interfaces 14, 1355–1361 (2022).

    Article  CAS  PubMed  Google Scholar 

  189. Wen, Z. & Wu, D. Ferroelectric tunnel junctions: modulations on the potential barrier. Adv. Mater. 32, 1904123 (2020).

    Article  CAS  Google Scholar 

  190. Lim, E., Kim, D., Park, J., Koo, M. & Kim, S. Recent advances in the mechanism, properties, and applications of hafnia ferroelectric tunnel junctions. J. Phys. D 57, 473001 (2024).

    Article  CAS  Google Scholar 

  191. Wu, J. et al. High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat. Electron. 3, 466–472 (2020).

    Article  Google Scholar 

  192. Jia, T. et al. Ferroelectricity and piezoelectricity in 2D van der Waals CuInP2S6 ferroelectric tunnel junctions. Nanomaterials 12, 2516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wang, Q. et al. Extraordinary tunnel electroresistance in layer-by-layer engineered van der Waals ferroelectric tunnel junctions. Matter 5, 4425–4436 (2022).

    Article  CAS  Google Scholar 

  194. Wang, Q. et al. Gate-tunable giant tunneling electroresistance in van der Waals ferroelectric tunneling junctions. Mater. Sci. Eng. B 283, 115829 (2022).

    Article  CAS  Google Scholar 

  195. Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Baek, S. et al. Ferroelectric field-effect-transistor integrated with ferroelectrics heterostructure. Adv. Sci. 9, 2200566 (2022).

    Article  CAS  Google Scholar 

  197. Jiang, J. et al. Ultrashort vertical-channel van der Waals semiconductor transistors. Adv. Sci. 7, 1902964 (2020).

    Article  CAS  Google Scholar 

  198. Li, H. et al. Recent experimental breakthroughs on 2D transistors: approaching the theoretical limit. Adv. Funct. Mater. 34, 2402474 (2024).

    Article  CAS  Google Scholar 

  199. Zou, X., Liu, L., Xu, J., Wang, H. & Tang, W.-M. Few-layered MoS2 field-effect transistors with a vertical channel of sub-10 nm. ACS Appl. Mater. Interfaces 12, 32943–32950 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Liu, L. et al. Ultrashort vertical-channel MoS2 transistor using a self-aligned contact. Nat. Commun. 15, 165 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Jia, X. et al. Nanoscale channel length MoS2 vertical field-effect transistor arrays with side-wall source/drain electrodes. ACS Appl. Mater. Interfaces 16, 16544–16552 (2024).

    Article  CAS  PubMed  Google Scholar 

  202. Lee, T. S. et al. Compliance current-controlled conducting filament formation in tantalum oxide-based RRAM devices with different top electrodes. ACS Appl. Electron. Mater. 2, 1154–1161 (2020).

    Article  CAS  Google Scholar 

  203. Clarke, H., Deremo, L., Anderson, J., Ganguli, S. & Shamberger, P. J. Conductive filament shape in HfO2 electrochemical metallization cells under a range of forming voltages. Nanotechnology 31, 075706 (2020).

    Article  CAS  PubMed  Google Scholar 

  204. She, Y. et al. Oxygen vacancy-dependent synaptic dynamic behavior of TiOx-based transparent memristor. IEEE Trans. Electron. Devices 68, 1950–1955 (2021).

    Article  CAS  Google Scholar 

  205. Chung, Y.-L. et al. Joint contributions of Ag ions and oxygen vacancies to conducting filament evolution of Ag/TaOx/Pt memory device. J. Appl. Phys. 116, 164502 (2014).

    Article  Google Scholar 

  206. Wang, Y. et al. High on/off ratio black phosphorus based memristor with ultra-thin phosphorus oxide layer. Appl. Phys. Lett. 115, 193503 (2019).

    Article  Google Scholar 

  207. Zhao, L. et al. Ultrathin (~2nm) HfOx as the fundamental resistive switching element: thickness scaling limit, stack engineering and 3D integration. In 2014 IEEE Int. Electron Devices Meet. 6.6.1–6.6.4 (IEEE, 2014).

  208. Li, X.-D. et al. Resistive memory devices at the thinnest limit: progress and challenges. Adv. Mater. 36, 2307951 (2024).

    Article  CAS  Google Scholar 

  209. Zahoor, F., Azni Zulkifli, T. Z. & Khanday, F. A. Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res. Lett. 15, 90 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Lee, J., Du, C., Sun, K., Kioupakis, E. & Lu, W. D. Tuning ionic transport in memristive devices by graphene with engineered nanopores. ACS Nano 10, 3571–3579 (2016).

    Article  CAS  PubMed  Google Scholar 

  211. Nikam, R. D. & Hwang, H. Atomic threshold switch based on all-2D material heterostructures with excellent control over filament growth and volatility. Adv. Funct. Mater. 32, 2201749 (2022).

    Article  CAS  Google Scholar 

  212. Chen, S. et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 3, 638–645 (2020).

    Article  CAS  Google Scholar 

  213. Sun, L. et al. Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 10, 3161 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Wang, X.-F. et al. Two-mode MoS2 filament transistor with extremely low subthreshold swing and record high on/off ratio. ACS Nano 13, 2205–2212 (2019).

    PubMed  Google Scholar 

  215. Xie, M. et al. Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T–4R structure for high-density memory. Nat. Commun. 14, 5952 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Kim, J. et al. Switching power universality in unipolar resistive switching memories. Sci. Rep. 6, 23930 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lee, K. et al. Enhancement of resistive switching under confined current path distribution enabled by insertion of atomically thin defective monolayer graphene. Sci. Rep. 5, 11279 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Ge, R. et al. A library of atomically thin 2D materials featuring the conductive-point resistive switching phenomenon. Adv. Mater. 33, 2007792 (2021).

    Article  CAS  Google Scholar 

  219. Ge, R. et al. Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18, 434–441 (2018).

    Article  CAS  PubMed  Google Scholar 

  220. Wu, X. et al. Thinnest nonvolatile memory based on monolayer h-BN. Adv. Mater. 31, 1806790 (2019).

    Article  Google Scholar 

  221. Li, X.-D., Wang, B.-Q., Chen, N.-K. & Li, X.-B. Resistive switching mechanism of MoS2 based atomristor. Nanotechnology 34, 205201 (2023).

    Article  CAS  Google Scholar 

  222. Yang, S. J. et al. Reconfigurable low-voltage hexagonal boron nitride nonvolatile switches for millimeter-wave wireless communications. Nano Lett. 23, 1152–1158 (2023).

    Article  CAS  PubMed  Google Scholar 

  223. Lu, X. F. et al. Exploring low power and ultrafast memristor on p-type van der Waals SnS. Nano Lett. 21, 8800–8807 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. Hong, H. et al. Dynamic convolutional neural networks based on adaptive 2D memristors. Adv. Funct. Mater. 35, 2422321 (2025).

    Article  CAS  Google Scholar 

  225. Yuan, Y. et al. On-chip atomristors. Mater. Sci. Eng. R Rep. 165, 101006 (2025).

    Article  Google Scholar 

  226. Rajput, M. et al. Defect-engineered monolayer MoS2 with enhanced memristive and synaptic functionality for neuromorphic computing. Commun. Mater. 5, 190 (2024).

    Article  CAS  Google Scholar 

  227. Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article  CAS  PubMed  Google Scholar 

  228. Chuang, H.-J. et al. Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 16, 1896–1902 (2016).

    Article  CAS  PubMed  Google Scholar 

  229. Mondal, A. et al. Low ohmic contact resistance and high on/off ratio in transition metal dichalcogenides field-effect transistors via residue-free transfer. Nat. Nanotechnol. 19, 34–43 (2024).

    Article  CAS  PubMed  Google Scholar 

  230. International Roadmap for Devices and Systems. International Roadmap for Devices and Systems (IRDS) 2022 edition. IRDS http://irds.ieee.org/editions (IEEE, 2022).

  231. Yu, H. et al. MIS or MS? Source/drain contact scheme evaluation for 7nm Si CMOS technology and beyond. In 2016 16th Int. Workshop Junct. Technol. 19–24 (IEEE, 2016).

  232. Datta, S., Chakraborty, W. & Radosavljevic, M. Toward attojoule switching energy in logic transistors. Science 378, 733–740 (2022).

    Article  CAS  PubMed  Google Scholar 

  233. Li, W. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023).

    Article  CAS  PubMed  Google Scholar 

  234. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  PubMed  Google Scholar 

  235. Choi, M. S. et al. Recent progress in 1D contacts for 2D-material-based devices. Adv. Mater. 34, 2202408 (2022).

    Article  CAS  Google Scholar 

  236. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  PubMed  Google Scholar 

  237. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  CAS  PubMed  Google Scholar 

  238. Kwon, G. et al. Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat. Electron. 5, 241–247 (2022).

    Article  CAS  Google Scholar 

  239. Liu, L. et al. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron. 4, 342–347 (2021).

    Article  CAS  Google Scholar 

  240. Jena, D., Banerjee, K. & Xing, G. H. Intimate contacts. Nat. Mater. 13, 1076–1078 (2014).

    Article  CAS  PubMed  Google Scholar 

  241. Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    Article  CAS  PubMed  Google Scholar 

  242. Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article  CAS  Google Scholar 

  243. Cai, X. et al. Bridging the gap between atomically thin semiconductors and metal leads. Nat. Commun. 13, 1777 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Tan, Y. et al. Controllable 2H-to-1T′ phase transition in few-layer MoTe2. Nanoscale 10, 19964–19971 (2018).

    Article  CAS  PubMed  Google Scholar 

  245. Ryu, H. et al. Laser-induced phase transition and patterning of hBN-encapsulated MoTe2. Small 19, 2205224 (2023).

    Article  CAS  Google Scholar 

  246. Jiang, J., Xu, L., Qiu, C. & Peng, L.-M. Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023).

    Article  CAS  PubMed  Google Scholar 

  247. Jiang, J. et al. Yttrium-doping-induced metallization of molybdenum disulfide for ohmic contacts in two-dimensional transistors. Nat. Electron. 7, 545–556 (2024).

    Article  CAS  Google Scholar 

  248. Wu, P. & Kong, J. Doping for ohmic contacts in 2D transistors. Nat. Electron. 7, 519–520 (2024).

    Article  CAS  Google Scholar 

  249. Shur, M. S. & Eastman, L. F. Ballistic transport in semiconductor at low temperatures for low-power high-speed logic. IEEE Trans. Electron. Devices 26, 1677–1683 (1979).

    Article  Google Scholar 

  250. Wang, Y. et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022).

    Article  PubMed  Google Scholar 

  251. Chuang, S. et al. MoS2 P-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14, 1337–1342 (2014).

    Article  CAS  PubMed  Google Scholar 

  252. Nakaharai, S., Yamamoto, M., Ueno, K. & Tsukagoshi, K. Carrier polarity control in α-MoTe2 Schottky junctions based on weak Fermi-level pinning. ACS Appl. Mater. Interfaces 8, 14732–14739 (2016).

    Article  CAS  PubMed  Google Scholar 

  253. Derry, G. N., Kern, M. E. & Worth, E. H. Recommended values of clean metal surface work functions. J. Vac. Sci. Technol. A 33, 060801 (2015).

    Article  Google Scholar 

  254. Liu, X. et al. On-device phase engineering. Nat. Mater. 23, 1363–1369 (2024).

    Article  CAS  PubMed  Google Scholar 

  255. Lee, Y. & Yang, H. Tailoring phases on the device. Nat. Mater. 23, 1309–1310 (2024).

    Article  CAS  PubMed  Google Scholar 

  256. Banerjee, W., Kashir, A. & Kamba, S. Hafnium oxide (HfO2) — a multifunctional oxide: a review on the prospect and challenges of hafnium oxide in resistive switching and ferroelectric memories. Small 18, 2107575 (2022).

    Article  CAS  Google Scholar 

  257. Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    Article  CAS  Google Scholar 

  258. Liu, K. et al. A wafer-scale van der Waals dielectric made from an inorganic molecular crystal film. Nat. Electron. 4, 906–913 (2021).

    Article  CAS  Google Scholar 

  259. Knobloch, T. et al. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021).

    Article  CAS  Google Scholar 

  260. Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 11, 3385 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Yang, S. et al. Gate dielectrics integration for 2D electronics: challenges, advances, and outlook. Adv. Mater. 35, 2207901 (2023).

    Article  CAS  Google Scholar 

  262. Choi, J. H., Mao, Y. & Chang, J. P. Development of hafnium based high-k materials — a review. Mater. Sci. Eng. R Rep. 72, 97–136 (2011).

    Article  Google Scholar 

  263. Robertson, J. & Wallace, R. M. High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. R Rep. 88, 1–41 (2015).

    Article  Google Scholar 

  264. Peacock, P. W., Xiong, K., Tse, K. & Robertson, J. Bonding and interface states of Si:HfO2 and Si:ZrO2 interfaces. Phys. Rev. B 73, 075328 (2006).

    Article  Google Scholar 

  265. Tang, J. et al. Low-power 2D gate-all-around logics via epitaxial monolithic 3D integration. Nat. Mater. 24, 519–526 (2025).

    Article  CAS  PubMed  Google Scholar 

  266. Yin, L. et al. High-κ monocrystalline dielectrics for low-power two-dimensional electronics. Nat. Mater. 24, 197–204 (2025).

    Article  CAS  PubMed  Google Scholar 

  267. Kang, T. et al. High-κ dielectric (HfO2)/2D semiconductor (HfSe2) gate stack for low-power steep-switching computing devices. Adv. Mater. 36, 2312747 (2024).

    Article  CAS  Google Scholar 

  268. Luo, P. et al. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat. Electron. 5, 849–858 (2022).

    Article  CAS  Google Scholar 

  269. Agrawal, A. et al. Silicon ribbonFET CMOS at 6nm gate length. In 2024 IEEE Int. Electron Devices Meet. (IEEE, 2024).

  270. Ding, X. et al. Bi2O2Se: a rising star for semiconductor devices. Matter 5, 4274–4314 (2022).

    Article  CAS  Google Scholar 

  271. Zhang, Y. et al. A single-crystalline native dielectric for two-dimensional semiconductors with an equivalent oxide thickness below 0.5 nm. Nat. Electron. 5, 643–649 (2022).

    Article  CAS  Google Scholar 

  272. Tan, C. et al. 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616, 66–72 (2023).

    Article  CAS  PubMed  Google Scholar 

  273. Yoon, C. W. The fundamentals of NAND flash memory: technology for tomorrow’s fourth industrial revolution. IEEE Solid-State Circuits Mag. 14, 56–65 (2022).

    Article  Google Scholar 

  274. Bubnova, O. 2D materials for fast flash memory devices. Nat. Nanotechnol. 17, 1238–1238 (2022).

    Article  CAS  PubMed  Google Scholar 

  275. Hattori, Y., Taniguchi, T., Watanabe, K. & Nagashio, K. Layer-by-layer dielectric breakdown of hexagonal boron nitride. ACS Nano 9, 916–921 (2015).

    Article  CAS  PubMed  Google Scholar 

  276. Ranjan, A. et al. Dielectric breakdown in single-crystal hexagonal boron nitride. ACS Appl. Electron. Mater. 3, 3547–3554 (2021).

    Article  CAS  Google Scholar 

  277. Kouchi, T. et al. A 128Gb 1-bit/cell 96-word-line-layer 3D flash memory to improve the random read latency with tPROG = 75 µs and tR = 4 µs. In 2020 IEEE Int. Solid-State Circuits Conf. 226–228 (IEEE, 2020).

  278. Tan, T., Jiang, X., Wang, C., Yao, B. & Zhang, H. 2D material optoelectronics for information functional device applications: status and challenges. Adv. Sci. 7, 2000058 (2020).

    Article  CAS  Google Scholar 

  279. Gao, F. et al. High-performance van der Waals metal-insulator-semiconductor photodetector optimized with valence band matching. Adv. Funct. Mater. 31, 2104359 (2021).

    Article  CAS  Google Scholar 

  280. Hüser, F., Olsen, T. & Thygesen, K. S. How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: monolayer MoS2. Phys. Rev. B 88, 245309 (2013).

    Article  Google Scholar 

  281. Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    Article  CAS  PubMed  Google Scholar 

  282. Ahn, J., Yeon, E. & Hwang, D. K. Recent progress in 2D heterostructures for high-performance photodetectors and their applications. Adv. Opt. Mater. 13, 2403412 (2025).

    Article  CAS  Google Scholar 

  283. Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9, 111–115 (2014).

    Article  CAS  PubMed  Google Scholar 

  284. Jiang, J. et al. Recent advances in 2D materials for photodetectors. Adv. Electron. Mater. 7, 2001125 (2021).

    Article  CAS  Google Scholar 

  285. Wang, Y. et al. Ultrahigh-speed graphene-based optical coherent receiver. Nat. Commun. 12, 5076 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Hwang, A. et al. Visible and infrared dual-band imaging via Ge/MoS2 van der Waals heterostructure. Sci. Adv. 7, eabj2521 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Koepfli, S. M. et al. Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz. Science 380, 1169–1174 (2023).

    Article  CAS  PubMed  Google Scholar 

  288. Knispel, T. et al. Charge puddles in the bulk and on the surface of the topological insulator BiSbTeSe2 studied by scanning tunneling microscopy and optical spectroscopy. Phys. Rev. B 96, 195135 (2017).

    Article  Google Scholar 

  289. Lischke, S. et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat. Photonics 15, 925–931 (2021).

    Article  CAS  Google Scholar 

  290. Inoue, D. et al. Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si. Appl. Phys. Lett. 113, 093506 (2018).

    Article  Google Scholar 

  291. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  CAS  PubMed  Google Scholar 

  292. Xia, F., Mueller, T., Lin, Y. -m, Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009).

    Article  CAS  PubMed  Google Scholar 

  293. Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article  CAS  PubMed  Google Scholar 

  294. Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362, 817–821 (2018).

    Article  CAS  PubMed  Google Scholar 

  295. Kim, K. S. et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023).

    Article  CAS  PubMed  Google Scholar 

  296. Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

    Article  CAS  PubMed  Google Scholar 

  297. Moon, D. et al. Hypotaxy of wafer-scale single-crystal transition metal dichalcogenides. Nature 638, 957–964 (2025).

    Article  CAS  PubMed  Google Scholar 

  298. Zhang, W. et al. An ultrathin memristor based on a two-dimensional WS2/MoS2 heterojunction. Nanoscale 13, 11497–11504 (2021).

    Article  CAS  PubMed  Google Scholar 

  299. Park, S.-O. et al. Phase-change memory via a phase-changeable self-confined nano-filament. Nature 628, 293–298 (2024).

    Article  CAS  PubMed  Google Scholar 

  300. Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).

    Article  CAS  PubMed  Google Scholar 

  301. Kim, S. et al. Proximity engineering of the van der waals interaction in multilayered graphene. ACS Appl. Mater. Interfaces 11, 42528–42533 (2019).

    Article  CAS  PubMed  Google Scholar 

  302. Jeong, J. et al. Spin-selective memtransistors with magnetized graphene. Adv. Mater. 36, 2310291 (2024).

    Article  CAS  Google Scholar 

  303. Reidy, K. et al. Direct imaging and electronic structure modulation of moiré superlattices at the 2D/3D interface. Nat. Commun. 12, 1290 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).

    Article  CAS  PubMed  Google Scholar 

  305. Yin, L.-J., Jiang, H., Qiao, J.-B. & He, L. Direct imaging of topological edge states at a bilayer graphene domain wall. Nat. Commun. 7, 11760 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Huang, F.-T. et al. Polar and phase domain walls with conducting interfacial states in a Weyl semimetal MoTe2. Nat. Commun. 10, 4211 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Pedramrazi, Z. et al. Manipulating topological domain boundaries in the single-layer quantum spin hall insulator 1T′–WSe2. Nano Lett. 19, 5634–5639 (2019).

    Article  CAS  PubMed  Google Scholar 

  308. Islam, Z. & Haque, A. Defects and grain boundary effects in MoS2: a molecular dynamics study. J. Phys. Chem. Solids 148, 109669 (2021).

    Article  CAS  Google Scholar 

  309. Kim, S.-Y. et al. The impact of substrate surface defects on the properties of two-dimensional van der Waals heterostructures. Nanoscale 10, 19212–19219 (2018).

    Article  CAS  PubMed  Google Scholar 

  310. McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).

    Article  CAS  PubMed  Google Scholar 

  311. Zhao, M., Kim, D., Lee, Y. H., Yang, H. & Cho, S. Quantum sensing of thermoelectric power in low-dimensional materials. Adv. Mater. 35, 2106871 (2023).

    Article  CAS  Google Scholar 

  312. Luo, C., Wang, C., Wu, X., Zhang, J. & Chu, J. In situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene. Small 13, 1604259 (2017).

    Article  Google Scholar 

  313. Zhao, M. et al. Coherent thermoelectric power from graphene quantum dots. Nano Lett. 19, 61–68 (2019).

    Article  CAS  PubMed  Google Scholar 

  314. Zhao, M. et al. Harnessing thermoelectric puddles via the stacking order and electronic screening in graphene. ACS Nano 15, 5397–5404 (2021).

    Article  CAS  PubMed  Google Scholar 

  315. Liu, C. et al. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 14, 662–667 (2019).

    Article  CAS  PubMed  Google Scholar 

  316. Chen, H. et al. Logic gates based on neuristors made from two-dimensional materials. Nat. Electron. 4, 399–404 (2021).

    Article  CAS  Google Scholar 

  317. Zeng, S. et al. An application-specific image processing array based on WSe2 transistors with electrically switchable logic functions. Nat. Commun. 13, 56 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Zhang, Z. et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).

    Article  PubMed  Google Scholar 

  319. Pang, X. et al. Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition. Nat. Commun. 15, 1613 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Zhu, K. et al. The development of integrated circuits based on two-dimensional materials. Nat. Electron. 4, 775–785 (2021).

    Article  CAS  Google Scholar 

  321. Ma, J. et al. Circuit-level memory technologies and applications based on 2D materials. Adv. Mater. 34, 2202371 (2022).

    Article  CAS  Google Scholar 

  322. Xia, X. et al. 2D-material-based volatile and nonvolatile memristive devices for neuromorphic computing. ACS Mater. Lett. 5, 1109–1135 (2023).

    Article  CAS  Google Scholar 

  323. Naqi, M., Cho, Y., Bala, A. & Kim, S. The trend of synthesized 2D materials toward artificial intelligence: memory technology and neuromorphic computing. Mater. Today Electron. 5, 100052 (2023).

    Article  Google Scholar 

  324. Chen, S. et al. Channel and contact length scaling of two-dimensional transistors using composite metal electrodes. Nat. Electron. 8, 394–402 (2025).

    Article  CAS  Google Scholar 

  325. Xu, W., Min, S.-Y., Hwang, H. & Lee, T.-W. Organic core–sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2, e1501326 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  326. Xu, Y., Liu, K., Xiong, X., Wu, Y. & Zhai, T. Towards state-of-the-art semiconductor/dielectric interface in two-dimensional electronics. J. Mater. Sci. Technol. 239, 93–108 (2025).

    Article  CAS  Google Scholar 

  327. Subrina, S., Kotchetkov, D. & Balandin, A. A. Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders. IEEE Electron. Device Lett. 30, 1281–1283 (2009).

    Article  CAS  Google Scholar 

  328. Barua, A., Hossain, M. S., Masood, K. I. & Subrina, S. Thermal management in 3-D integrated circuits with graphene heat spreaders. Phys. Procedia 25, 311–316 (2012).

    Article  CAS  Google Scholar 

  329. Kong, L. et al. Wafer-scale and universal van der Waals metal semiconductor contact. Nat. Commun. 14, 1014 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Duerloo, K.-A. N., Li, Y. & Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014).

    Article  CAS  PubMed  Google Scholar 

  331. Duerloo, K.-A. N. & Reed, E. J. Structural phase transitions by design in monolayer alloys. ACS Nano 10, 289–297 (2016).

    Article  CAS  PubMed  Google Scholar 

  332. Akola, J. et al. Experimentally constrained density-functional calculations of the amorphous structure of the prototypical phase-change material Ge2Sb2Te5. Phys. Rev. B 80, 020201 (2009).

    Article  Google Scholar 

  333. Wang, L. et al. Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv. Funct. Mater. 29, 1901106 (2019).

    Article  Google Scholar 

  334. Xie, L. et al. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 29, 1702522 (2017).

    Article  Google Scholar 

  335. Nourbakhsh, A. et al. MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 16, 7798–7806 (2016).

    Article  CAS  PubMed  Google Scholar 

  336. Xu, K. et al. Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 17, 1065–1070 (2017).

    Article  CAS  PubMed  Google Scholar 

  337. Patel, K. A., Grady, R. W., Smithe, K. K. H., Pop, E. & Sordan, R. Ultra-scaled MoS2 transistors and circuits fabricated without nanolithography. 2D Mater. 7, 015018 (2020).

    Article  CAS  Google Scholar 

  338. Hutin, L. et al. GeOI pMOSFETs scaled down to 30-nm gate length with record off-state current. IEEE Electron. Device Lett. 31, 234–236 (2010).

    Article  CAS  Google Scholar 

  339. Wu, H. & Ye, P. D. Fully depleted Ge CMOS devices and logic circuits on Si. IEEE Trans. Electron. Devices 63, 3028–3035 (2016).

    Article  CAS  Google Scholar 

  340. Wu, H. et al. Germanium nMOSFETs with recessed channel and S/D: contact, scalability, interface, and drain current exceeding 1 A/mm. IEEE Trans. Electron. Devices 62, 1419–1426 (2015).

    Article  CAS  Google Scholar 

  341. Mitard, J. et al. Record ION/IOFF performance for 65nm Ge pMOSFET and novel Si passivation scheme for improved EOT scalability. In 2008 IEEE Int. Electron Devices Meet. 1–4 (IEEE, 2008).

  342. Song, J., Woo, J., Prakash, A., Lee, D. & Hwang, H. Threshold selector with high selectivity and steep slope for cross-point memory array. IEEE Electron. Device Lett. 36, 681–683 (2015).

    Article  CAS  Google Scholar 

  343. Woo, J. et al. Selector-less RRAM with non-linearity of device for cross-point array applications. Microelectron. Eng. 109, 360–363 (2013).

    Article  CAS  Google Scholar 

  344. Song, B. et al. A HfO2/SiTe based dual-layer selector device with minor threshold voltage variation. Nanomaterials 9, 408 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Li, Y. et al. High-uniformity threshold switching HfO2-based selectors with patterned Ag nanodots. Adv. Sci. 7, 2002251 (2020).

    Article  CAS  Google Scholar 

  346. Wang, R., Shi, T., Zhang, X., Wu, Z. & Liu, Q. A dual-functional Ta/TaOx/Ru device with both nonlinear selector and resistive switching behaviors. RSC Adv. 11, 18241–18245 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Bhattacharjee, S. et al. Insights into multilevel resistive switching in monolayer MoS2. ACS Appl. Mater. Interfaces 12, 6022–6029 (2020).

    Article  CAS  PubMed  Google Scholar 

  348. Wang, S. et al. All-atomristor logic gates. Nano Res. 16, 1688–1694 (2023).

    Article  Google Scholar 

  349. Na, Y. S. et al. Irreversible conductive filament contacts for passivated van der Waals heterostructure devices. Adv. Funct. Mater. 32, 2207351 (2022).

    Article  CAS  Google Scholar 

  350. Chen, X. et al. Oscillatory neural network-based ising machine using 2D memristors. ACS Nano 18, 10758–10767 (2024).

    Article  CAS  PubMed  Google Scholar 

  351. Xu, R. et al. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 19, 2411–2417 (2019).

    Article  CAS  PubMed  Google Scholar 

  352. Jeon, Y.-R., Akinwande, D. & Choi, C. Volatile threshold switching and synaptic properties controlled by Ag diffusion using Schottky defects. Nanoscale Horiz. 9, 853–862 (2024).

    Article  CAS  PubMed  Google Scholar 

  353. Maikap, S. & Rahaman, S. Z. Bipolar resistive switching memory characteristics using Al/Cu/GeOx/W memristor. ECS Trans. 45, 257 (2012).

    Article  CAS  Google Scholar 

  354. Lee, H. Y. et al. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM. In 2008 IEEE Int. Electron Devices Meet. (IEEE, 2008).

  355. Yang, J. J. et al. High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 97, 232102 (2010).

    Article  Google Scholar 

  356. He, H.-K. et al. Ultrafast and stable phase transition realized in MoTe2-based memristive devices. Mater. Horiz. 9, 1036–1044 (2022).

    Article  CAS  PubMed  Google Scholar 

  357. Won, U. Y. et al. Multi-neuron connection using multi-terminal floating–gate memristor for unsupervised learning. Nat. Commun. 14, 3070 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Su, Z., Cheng, H., Sun, X., Sun, H. & Zuo, C. High-performance floating gate heterostructure with WSe2-MoS2 diode channel for neural synapse. IEEE Electron. Device Lett. 44, 1084–1087 (2023).

    Article  CAS  Google Scholar 

  359. Yu, J. et al. Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts. Nat. Commun. 14, 5662 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Zhao, X. et al. Confining cation injection to enhance CBRAM performance by nanopore graphene layer. Small 13, 1603948 (2017).

    Article  Google Scholar 

  361. Yang, S. J. et al. Giant memory window performance and low power consumption of hexagonal boron nitride monolayer atomristor. npj 2D Mater. Appl. 9, 9 (2025).

    Article  CAS  Google Scholar 

  362. Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699 (2016).

    Article  CAS  PubMed  Google Scholar 

  363. Oh, S. et al. HfZrOx-based ferroelectric synapse device with 32 levels of conductance states for neuromorphic applications. IEEE Electron. Device Lett. 38, 732–735 (2017).

    Article  CAS  Google Scholar 

  364. Lu, T. et al. Two-dimensional fully ferroelectric-gated hybrid computing-in-memory hardware for high-precision and energy-efficient dynamic tracking. Sci. Adv. 10, eadp0174 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Merrikh-Bayat, F. et al. High-performance mixed-signal neurocomputing with nanoscale floating-gate memory cell arrays. IEEE Trans. Neural Netw. Learn. Syst. 29, 4782–4790 (2018).

    Article  PubMed  Google Scholar 

  366. Yu, J. et al. High operation speed(10ns/100ns) and low read current (sub-1μA) 2D floating gate transistor. In 2024 IEEE Int. Mem. Workshop https://doi.org/10.1109/IMW59701.2024.10536953 (IEEE, 2024).

  367. Chang, C.-F. et al. Revealing conducting filament evolution in low power and high reliability Fe3O4/Ta2O5 bilayer RRAM. Nano Energy 53, 871–879 (2018).

    Article  CAS  Google Scholar 

  368. Kim, J. et al. Attojoule hexagonal boron nitride-based memristor for high-performance neuromorphic computing. Small 20, 2403737 (2024).

    Article  CAS  Google Scholar 

  369. Xiao, Z. R. et al. Vertical n-type and p-type nanosheet FETs with C-shaped channel. IEEE Trans. Electron. Devices 70, 1380–1385 (2023).

    Article  CAS  Google Scholar 

  370. Jiang, R. J. et al. Record 60.3 mV/dec subthreshold swing and >20% performance enhancement in gate-all-around nanosheet CMOS devices using O3-based quasi-atomic layer etching treatment technique. IEEE Electron. Device Lett. 46, 341–344 (2025).

    Article  CAS  Google Scholar 

  371. Hafez, W. et al. An Intel 3 advanced FinFET platform technology for high performance computing and SOC product applications. In 2024 IEEE Symp. VLSI Technol. Circuits (IEEE, 2024).

  372. Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  373. Zhu, Y. et al. Monolayer molybdenum disulfide transistors with single-atom-thick gates. Nano Lett. 18, 3807–3813 (2018).

    Article  CAS  PubMed  Google Scholar 

  374. Tang, J. et al. Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 14, 3633 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Xu, Y. et al. Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors. Nat. Mater. 22, 1078–1084 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (RS-2025-16063688, RS-2025-00514456, RS-2025-02982993, RS-2024-00340377, RS-2025-02243032 and RS-2023-00256050) and by the Samsung Research Funding & Incubation Center of Samsung Electronics under project no. SRFC-MA1701-52.

Author information

Authors and Affiliations

Authors

Contributions

E.H. and H.H. contributed equally to all aspects of the article. Y.L., Y.J. and S.Y. researched data for the article. S.C. and H.Y. reviewed and edited the manuscript before submission. All authors contributed substantially to the discussion of the energy comparison.

Corresponding authors

Correspondence to Suyeon Cho or Heejun Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, E., Hong, H., Lee, Y. et al. Van der Waals materials for energy-efficient electronic devices. Nat Rev Mater (2026). https://doi.org/10.1038/s41578-025-00886-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41578-025-00886-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing