Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bloodstream infections: mechanisms of pathogenesis and opportunities for intervention

Abstract

Bloodstream infections (BSIs) are common in hospitals, often life-threatening and increasing in prevalence. Microorganisms in the blood are usually rapidly cleared by the immune system and filtering organs but, in some cases, they can cause an acute infection and trigger sepsis, a systemic response to infection that leads to circulatory collapse, multiorgan dysfunction and death. Most BSIs are caused by bacteria, although fungi also contribute to a substantial portion of cases. Escherichia coli, Staphylococcus aureus, coagulase-negative Staphylococcus, Klebsiella pneumoniae and Candida albicans are leading causes of BSIs, although their prevalence depends on patient demographics and geographical region. Each species is equipped with unique factors that aid in the colonization of initial sites and dissemination and survival in the blood, and these factors represent potential opportunities for interventions. As many pathogens become increasingly resistant to antimicrobials, new approaches to diagnose and treat BSIs at all stages of infection are urgently needed. In this Review, we explore the prevalence of major BSI pathogens, prominent mechanisms of BSI pathogenesis, opportunities for prevention and diagnosis, and treatment options.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Primary sites that can seed bloodstream infections and opportunities for prevention and treatment.
Fig. 2: Pathogens use diverse strategies to infect initial sites and disseminate into the bloodstream.
Fig. 3: Mechanisms of pathogen survival in the bloodstream.

Similar content being viewed by others

References

  1. Kontula, K. S. K., Skogberg, K., Ollgren, J., Järvinen, A. & Lyytikäinen, O. Population-based study of bloodstream infection incidence and mortality rates, Finland, 2004-2018. Emerg. Infect. Dis. 27, 2560–2569 (2021).

    PubMed  PubMed Central  Google Scholar 

  2. Diekema, D. J. et al. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob. Agents Chemother. 63, e00355-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  3. Wisplinghoff, H. et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39, 309–317 (2004).

    PubMed  Google Scholar 

  4. Marra, A. R. et al. Nosocomial bloodstream infections in Brazilian hospitals: analysis of 2,563 cases from a prospective nationwide surveillance study. J. Clin. Microbiol. 49, 1866–1871 (2011).

    PubMed  PubMed Central  Google Scholar 

  5. Verway, M. et al. Prevalence and mortality associated with bloodstream organisms: a population-wide retrospective cohort study. J. Clin. Microbiol. 60, e0242921 (2022).

    PubMed  Google Scholar 

  6. Wisplinghoff, H. et al. Nosocomial bloodstream infections in pediatric patients in United States hospitals: epidemiology, clinical features and susceptibilities. Pediatr. Infect. Dis. J. 22, 686–691 (2003).

    PubMed  Google Scholar 

  7. Smith, D. A. & Nehring, S. M. Bacteremia (StatPearls Publishing, 2023).

  8. Casadevall, A. & Pirofski, L. A. The damage-response framework of microbial pathogenesis. Nat. Rev. Microbiol. 1, 17–24 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Seifert, H. The clinical importance of microbiological findings in the diagnosis and management of bloodstream infections. Clin. Infect. Dis. 48, S238–S245 (2009).

    PubMed  Google Scholar 

  10. Viscoli, C. Bloodstream infections: the peak of the iceberg. Virulence 7, 248–251 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Holmes, C. L., Anderson, M. T., Mobley, H. L. T. & Bachman, M. A. Pathogenesis of gram-negative bacteremia. Clin. Microbiol. Rev. 34, e00234-20 (2021).

    PubMed  PubMed Central  Google Scholar 

  12. Kwiecinski, J. M. & Horswill, A. R. Staphylococcus aureus bloodstream infections: pathogenesis and regulatory mechanisms. Curr. Opin. Microbiol. 53, 51–60 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Shon, A. S., Bajwa, R. P. & Russo, T. A. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 4, 107–118 (2013).

    PubMed  PubMed Central  Google Scholar 

  14. Russo, T. A. & Marr, C. M. Hypervirulent Klebsiella pneumoniae. Clin. Microbiol. Rev. 32, e00001-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  15. Brouwer, M. C., Tunkel, A. R. & van de Beek, D. Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clin. Microbiol. Rev. 23, 467–492 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Durand, M. L. Endophthalmitis. Clin. Microbiol. Infect. 19, 227–234 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wertheim, H. F. et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 5, 751–762 (2005).

    PubMed  Google Scholar 

  18. Singer, M. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315, 801–810 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hajj, J., Blaine, N., Salavaci, J. & Jacoby, D. The “centrality of sepsis”: a review on incidence, mortality, and cost of care. Healthcare 6, 90 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Google Scholar 

  21. O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations (Review on Antimicrobial Resistance, 2016).

  22. Dehbanipour, R. & Ghalavand, Z. Anti-virulence therapeutic strategies against bacterial infections: recent advances. Germs 12, 262–275 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Naber, C. K. Staphylococcus aureus bacteremia: epidemiology, pathophysiology, and management strategies. Clin. Infect. Dis. 48, S231–S237 (2009).

    PubMed  Google Scholar 

  24. Wilson, J. et al. Trends in sources of meticillin-resistant Staphylococcus aureus (MRSA) bacteraemia: data from the national mandatory surveillance of MRSA bacteraemia in England, 2006-2009. J. Hosp. Infect. 79, 211–217 (2011).

    CAS  PubMed  Google Scholar 

  25. Becker, K., Heilmann, C. & Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 27, 870–926 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Francois Watkins, L. K. et al. Epidemiology of invasive group B streptococcal infections among nonpregnant adults in the United States, 2008-2016. JAMA Intern. Med. 179, 479–488 (2019).

    PubMed  PubMed Central  Google Scholar 

  27. Kallonen, T. et al. Systematic longitudinal survey of invasive Escherichia coli in England demonstrates a stable population structure only transiently disturbed by the emergence of ST131. Genome Res. 27, 1437–1449 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Decano, A. G. & Downing, T. An Escherichia coli ST131 pangenome atlas reveals population structure and evolution across 4,071 isolates. Sci. Rep. 9, 17394 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. Mills, E. G. et al. A one-year genomic investigation of Escherichia coli epidemiology and nosocomial spread at a large US healthcare network. Genome Med. 14, 147 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Brumwell, A. et al. Escherichia coli ST131 associated with increased mortality in bloodstream infections from urinary tract source. J. Clin. Microbiol. 61, e0019923 (2023).

    PubMed  Google Scholar 

  31. Burgaya, J. et al. The bacterial genetic determinants of Escherichia coli capacity to cause bloodstream infections in humans. PLoS Genet. 19, e1010842 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Daga, A. P. et al. Escherichia coli bloodstream infections in patients at a university hospital: virulence factors and clinical characteristics. Front. Cell Infect. Microbiol. 9, 191 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Martin, R. M. & Bachman, M. A. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front. Cell Infect. Microbiol. 8, 4 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. Magill, S. S. et al. Multistate point-prevalence survey of health care-associated infections. N. Engl. J. Med. 370, 1198–1208 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Anderson, M. T., Mitchell, L. A., Zhao, L. & Mobley, H. L. T. Citrobacter freundii fitness during bloodstream infection. Sci. Rep. 8, 11792 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. Subashchandrabose, S. et al. Acinetobacter baumannii genes required for bacterial survival during bloodstream infection. mSphere 1, e00013-15 (2016).

    PubMed  Google Scholar 

  37. Crepin, S. et al. The lytic transglycosylase MltB connects membrane homeostasis and in vivo fitness of Acinetobacter baumannii. Mol. Microbiol. 109, 745–762 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Crépin, S. et al. The UDP-GalNAcA biosynthesis genes gna-gne2 are required to maintain cell envelope integrity and in vivo fitness in multi-drug resistant Acinetobacter baumannii. Mol. Microbiol. 113, 153–172 (2020).

    PubMed  Google Scholar 

  39. Smith, S. N., Hagan, E. C., Lane, M. C. & Mobley, H. L. Dissemination and systemic colonization of uropathogenic Escherichia coli in a murine model of bacteremia. mBio 1, e00262-10 (2010).

    PubMed  PubMed Central  Google Scholar 

  40. Centres for Disease Control and Prevention. Antibiotic Resistance Threats in the United States https://www.cdc.gov/antimicrobial-resistance/media/pdfs/ar-threats-2013-508.pdf (2013).

  41. Centres for Disease Control and Prevention. 2019 Antibiotic Resistance Threats Report https://www.cdc.gov/antimicrobial-resistance/data-research/threats/index.html (2019).

  42. Kang, C. I. et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin. Infect. Dis. 37, 745–751 (2003).

    PubMed  Google Scholar 

  43. Vitkauskienė, A., Skrodenienė, E., Dambrauskienė, A., Macas, A. & Sakalauskas, R. Pseudomonas aeruginosa bacteremia: resistance to antibiotics, risk factors, and patient mortality. Medicina 46, 490–495 (2010).

    PubMed  Google Scholar 

  44. Pfaller, M. A., Diekema, D. J., Turnidge, J. D., Castanheira, M. & Jones, R. N. Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997-2016. Open Forum Infect. Dis. 6, S79–S94 (2019).

    PubMed  PubMed Central  Google Scholar 

  45. Bongomin, F., Gago, S., Oladele, R. O. & Denning, D. W. Global and multi-national prevalence of fungal diseases-estimate precision. J. Fungi 3, 57 (2017).

    Google Scholar 

  46. Pappas, P. G. et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 62, e1–e50 (2016).

    PubMed  Google Scholar 

  47. Mitchell, B. G. et al. The incidence of nosocomial bloodstream infection and urinary tract infection in Australian hospitals before and during the COVID-19 pandemic: an interrupted time series study. Antimicrob. Resist. Infect. Control 12, 61 (2023).

    PubMed  PubMed Central  Google Scholar 

  48. Anderson, F. M. et al. Candida albicans selection for human commensalism results in substantial within-host diversity without decreasing fitness for invasive disease. PLoS Biol. 21, e3001822 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Satoh, K. et al. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol. Immunol. 53, 41–44 (2009).

    CAS  PubMed  Google Scholar 

  50. Doğan, Ö. et al. Effect of initial antifungal therapy on mortality among patients with bloodstream infections with different Candida species and resistance to antifungal agents: a multicentre observational study by the Turkish Fungal Infections Study Group. Int. J. Antimicrob. Agents 56, 105992 (2020).

    PubMed  Google Scholar 

  51. Al-Musawi, T. S., Alkhalifa, W. A., Alasaker, N. A., Rahman, J. U. & Alnimr, A. M. A seven-year surveillance of Candida bloodstream infection at a university hospital in KSA. J. Taibah Univ. Med. Sci. 16, 184–190 (2021).

    PubMed  Google Scholar 

  52. Snitkin, E. S. et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci. Transl. Med. 4, 148ra116 (2012).

    PubMed  PubMed Central  Google Scholar 

  53. Yarovoy, J. Y., Monte, A. A., Knepper, B. C. & Young, H. L. Epidemiology of community-onset Staphylococcus aureus bacteremia. West J. Emerg. Med. 20, 438–442 (2019).

    PubMed  PubMed Central  Google Scholar 

  54. Woodward, S. E. et al. Gastric acid and escape to systemic circulation represent major bottlenecks to host infection by Citrobacter rodentium. ISME J. 17, 36–46 (2023).

    CAS  PubMed  Google Scholar 

  55. Borenshtein, D. & Schauer, D. B. In: The Prokaryotes: Volume 6: Proteobacteria: Gamma Subclass (eds Martin, D. et al.) 90-98 (Springer, 2006).

  56. Broadley, S. P. et al. Dual-track clearance of circulating bacteria balances rapid restoration of blood sterility with induction of adaptive immunity. Cell Host Microbe 20, 36–48 (2016).

    CAS  PubMed  Google Scholar 

  57. Otto, G., Magnusson, M., Svensson, M., Braconier, J. & Svanborg, C. pap genotype and P fimbrial expression in Escherichia coli causing bacteremic and nonbacteremic febrile urinary tract infection. Clin. Infect. Dis. 32, 1523–1531 (2001).

    CAS  PubMed  Google Scholar 

  58. Rijavec, M., Müller-Premru, M., Zakotnik, B. & Žgur-Bertok, D. Virulence factors and biofilm production among Escherichia coli strains causing bacteraemia of urinary tract origin. J. Med. Microbiol. 57, 1329–1334 (2008).

    PubMed  Google Scholar 

  59. Krawczyk, B. et al. Characterisation of Escherichia coli isolates from the blood of haematological adult patients with bacteraemia: translocation from gut to blood requires the cooperation of multiple virulence factors. Eur. J. Clin. Microbiol. Infect. Dis. 34, 1135–1143 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schwarzer, C., Fischer, H. & Machen, T. E. Chemotaxis and binding of Pseudomonas aeruginosa to scratch-wounded human cystic fibrosis airway epithelial cells. PLoS One 11, e0150109 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. Santana, D. J. et al. A Candida auris-specific adhesin, Scf1, governs surface association, colonization, and virulence. Science 381, 1461–1467 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Huang, H. Y. et al. Usefulness of EQUAL Candida Score for predicting outcomes in patients with candidaemia: a retrospective cohort study. Clin. Microbiol. Infect. 26, 1501–1506 (2020).

    CAS  PubMed  Google Scholar 

  63. Lee, W. J. et al. Pediatric Candida bloodstream infections complicated with mixed and subsequent bacteremia: the clinical characteristics and impacts on outcomes. J. Fungi 8, 1155 (2022).

    CAS  Google Scholar 

  64. Chen, Y. N. et al. Clinical and microbiological characteristics of neonates with candidemia and impacts of therapeutic strategies on the outcomes. J. Fungi 8, 465 (2022).

    CAS  Google Scholar 

  65. de Groot, P. W., Bader, O., de Boer, A. D., Weig, M. & Chauhan, N. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot. Cell 12, 470–481 (2013).

    PubMed  PubMed Central  Google Scholar 

  66. Ramage, G., Martínez, J. P. & López-Ribot, J. L. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res. 6, 979–986 (2006).

    CAS  PubMed  Google Scholar 

  67. Kuipers, A. et al. The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis. Microbiology 162, 1185–1194 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gorrie, C. L. et al. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clin. Infect. Dis. 65, 208–215 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Martin, R. M. et al. Molecular epidemiology of colonizing and infecting isolates of Klebsiella pneumoniae. mSphere 1, e00261-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Vornhagen, J. et al. A plasmid locus associated with Klebsiella clinical infections encodes a microbiome-dependent gut fitness factor. PLoS Pathog. 17, e1009537 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hudson, A. W., Barnes, A. J., Bray, A. S., Ornelles, D. A. & Zafar, M. A. Klebsiella pneumoniae l-fucose metabolism promotes gastrointestinal colonization and modulates its virulence determinants. Infect. Immun. 90, e0020622 (2022).

    PubMed  Google Scholar 

  72. Wong Fok Lung, T. et al. Klebsiella pneumoniae induces host metabolic stress that promotes tolerance to pulmonary infection. Cell Metab. 34, 761–774.e9 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ahn, D. et al. An acquired acyltransferase promotes Klebsiella pneumoniae ST258 respiratory infection. Cell Rep. 35, 109196 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Xiong, H. et al. Innate lymphocyte/Ly6Chi monocyte crosstalk promotes Klebsiella pneumoniae clearance. Cell 165, 679–689 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Xiong, H. et al. Distinct contributions of neutrophils and CCR2+ monocytes to pulmonary clearance of different Klebsiella pneumoniae strains. Infect. Immun. 83, 3418–3427 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sá-Pessoa, J. et al. Klebsiella pneumoniae reduces SUMOylation to limit host defense responses. mBio 11, e01733-20 (2020).

    PubMed  PubMed Central  Google Scholar 

  77. Bachman, M. A. et al. Genome-wide identification of Klebsiella pneumoniae fitness genes during lung infection. mBio 6, e00775 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lawlor, M. S., Hsu, J., Rick, P. D. & Miller, V. L. Identification of Klebsiella pneumoniae virulence determinants using an intranasal infection model. Mol. Microbiol. 58, 1054–1073 (2005).

    CAS  PubMed  Google Scholar 

  79. Bachman, M. A., Lenio, S., Schmidt, L., Oyler, J. E. & Weiser, J. N. Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of Klebsiella pneumoniae during pneumonia. mBio 3, e00224-11 (2012).

    PubMed  PubMed Central  Google Scholar 

  80. Clark, J. R. & Maresso, A. M. Comparative pathogenomics of Escherichia coli: polyvalent vaccine target identification through virulome analysis. Infect. Immun. 89, e0011521 (2021).

    CAS  PubMed  Google Scholar 

  81. McCarthy, K. L., Wailan, A. M., Jennison, A. V., Kidd, T. J. & Paterson, D. L. P. aeruginosa blood stream infection isolates: a “full house” of virulence genes in isolates associated with rapid patient death and patient survival. Microb. Pathog. 119, 81–85 (2018).

    CAS  PubMed  Google Scholar 

  82. Inclan, Y. F. et al. A scaffold protein connects type IV pili with the Chp chemosensory system to mediate activation of virulence signaling in Pseudomonas aeruginosa. Mol. Microbiol. 101, 590–605 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Persat, A., Inclan, Y. F., Engel, J. N., Stone, H. A. & Gitai, Z. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 112, 7563–7568 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Geiser, T. K., Kazmierczak, B. I., Garrity-Ryan, L. K., Matthay, M. A. & Engel, J. N. Pseudomonas aeruginosa ExoT inhibits in vitro lung epithelial wound repair. Cell Microbiol. 3, 223–236 (2001).

    CAS  PubMed  Google Scholar 

  85. Rutherford, V. et al. Environmental reservoirs for exoS+ and exoU+ strains of Pseudomonas aeruginosa. Env. Microbiol. Rep. 10, 485–492 (2018).

    CAS  Google Scholar 

  86. Shaver, C. M. & Hauser, A. R. Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect. Immun. 72, 6969–6977 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Garrity-Ryan, L. et al. The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages. Infect. Immun. 68, 7100–7113 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rangel, S. M., Diaz, M. H., Knoten, C. A., Zhang, A. & Hauser, A. R. The role of ExoS in dissemination of Pseudomonas aeruginosa during pneumonia. PLoS Pathog. 11, e1004945 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. Golovkine, G. et al. VE-cadherin cleavage by LasB protease from Pseudomonas aeruginosa facilitates type III secretion system toxicity in endothelial cells. PLoS Pathog. 10, e1003939 (2014).

    PubMed  PubMed Central  Google Scholar 

  90. Heggers, J. P. et al. Pseudomonas aeruginosa exotoxin A: its role in retardation of wound healing: the 1992 lindberg award. J. Burn Care Rehabil. 13, 512–518 (1992).

    CAS  PubMed  Google Scholar 

  91. Pont, S., Janet-Maitre, M., Faudry, E., Cretin, F. & Attrée, I. Molecular mechanisms involved in Pseudomonas aeruginosa bacteremia. Adv. Exp. Med. Biol. 1386, 325–345 (2022).

    CAS  PubMed  Google Scholar 

  92. Guttman, J. A. & Finlay, B. B. Tight junctions as targets of infectious agents. Biochim. Biophys. Acta 1788, 832–841 (2009).

    CAS  PubMed  Google Scholar 

  93. Vikström, E., Bui, L., Konradsson, P. & Magnusson, K. E. The junctional integrity of epithelial cells is modulated by Pseudomonas aeruginosa quorum sensing molecule through phosphorylation-dependent mechanisms. Exp. Cell Res. 315, 313–326 (2009).

    PubMed  Google Scholar 

  94. Vikström, E., Tafazoli, F. & Magnusson, K. E. Pseudomonas aeruginosa quorum sensing molecule N-(3 oxododecanoyl)-l-homoserine lactone disrupts epithelial barrier integrity of Caco-2 cells. FEBS Lett. 580, 6921–6928 (2006).

    PubMed  Google Scholar 

  95. Johnson, J. R. et al. Host characteristics and bacterial traits predict experimental virulence for Escherichia coli bloodstream isolates from patients with urosepsis. Open Forum Infect. Dis. 2, ofv083 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. Spurbeck, R. R. et al. Escherichia coli isolates that carry vat, fyuA, chuA, and yfcV efficiently colonize the urinary tract. Infect. Immun. 80, 4115–4122 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Shea, A. E., Frick-Cheng, A. E., Smith, S. N. & Mobley, H. L. T. Phenotypic assessment of clinical Escherichia coli isolates as an indicator for uropathogenic potential. mSystems 7, e0082722 (2022).

    CAS  PubMed  Google Scholar 

  98. Royer, G. et al. Epistatic interactions between the high pathogenicity island and other iron uptake systems shape Escherichia coli extra-intestinal virulence. Nat. Commun. 14, 3667 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Holden, V. I., Breen, P., Houle, S., Dozois, C. M. & Bachman, M. A. Klebsiella pneumoniae siderophores induce inflammation, bacterial dissemination, and HIF-1α stabilization during pneumonia. mBio 7, e01397-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  100. Rogga, V. & Kosalec, I. Untying the anchor for the lipopolysaccharide: lipid A structural modification systems offer diagnostic and therapeutic options to tackle polymyxin resistance. Arh. Hig. Rada Toksikol. 74, 145–166 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, C. Y. et al. Prc contributes to Escherichia coli evasion of classical complement-mediated serum killing. Infect. Immun. 80, 3399–3409 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Som, N. & Reddy, M. Cross-talk between phospholipid synthesis and peptidoglycan expansion by a cell wall hydrolase. Proc. Natl Acad. Sci. USA 120, e2300784120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Khadka, S. et al. Urine-mediated suppression of Klebsiella pneumoniae mucoidy is counteracted by spontaneous Wzc variants altering capsule chain length. mSphere 8, e0028823 (2023).

    PubMed  Google Scholar 

  104. Walker, K. A., Treat, L. P., Sepúlveda, V. E. & Miller, V. L. The small protein RmpD drives hypermucoviscosity in Klebsiella pneumoniae. mBio 11, e01750-20 (2020).

    PubMed  PubMed Central  Google Scholar 

  105. Mike, L. A. et al. A systematic analysis of hypermucoviscosity and capsule reveals distinct and overlapping genes that impact Klebsiella pneumoniae fitness. PLoS Pathog. 17, e1009376 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Marr, C. M. & Russo, T. A. Hypervirulent Klebsiella pneumoniae: a new public health threat. Expert Rev. Anti Infect. Ther. 17, 71–73 (2019).

    CAS  PubMed  Google Scholar 

  107. Crosby, H. A. et al. The Staphylococcus aureus global regulator MgrA modulates clumping and virulence by controlling surface protein expression. PLoS Pathog. 12, e1005604 (2016).

    PubMed  PubMed Central  Google Scholar 

  108. McAdow, M. et al. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog. 7, e1002307 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Surewaard, B. G. J. et al. α-Toxin induces platelet aggregation and liver injury during Staphylococcus aureus sepsis. Cell Host Microbe 24, 271–284.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Liesenborghs, L., Verhamme, P. & Vanassche, T. Staphylococcus aureus, master manipulator of the human hemostatic system. J. Thromb. Haemost. 16, 441–454 (2018).

    CAS  PubMed  Google Scholar 

  111. Claes, J. et al. Clumping factor A, von Willebrand factor-binding protein and von Willebrand factor anchor Staphylococcus aureus to the vessel wall. J. Thromb. Haemost. 15, 1009–1019 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gupta, E. et al. Unravelling the differential host immuno-inflammatory responses to Staphylococcus aureus and Escherichia coli infections in sepsis. Vaccines 10, 1648 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bassetti, M. et al. Characteristics of Staphylococcus aureus bacteraemia and predictors of early and late mortality. PLoS One 12, e0170236 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. García-Solache, M. & Rice, L. B. The enterococcus: a model of adaptability to its environment. Clin. Microbiol. Rev. 32, e00058-18 (2019).

    PubMed  PubMed Central  Google Scholar 

  115. Hong, Y. Q. & Ghebrehiwet, B. Effect of Pseudomonas aeruginosa elastase and alkaline protease on serum complement and isolated components C1q and C3. Clin. Immunol. Immunopathol. 62, 133–138 (1992).

    CAS  PubMed  Google Scholar 

  116. Laarman, A. J. et al. Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways. J. Immunol. 188, 386–393 (2012).

    CAS  PubMed  Google Scholar 

  117. Schmidtchen, A., Holst, E., Tapper, H. & Björck, L. Elastase-producing Pseudomonas aeruginosa degrade plasma proteins and extracellular products of human skin and fibroblasts, and inhibit fibroblast growth. Microb. Pathog. 34, 47–55 (2003).

    CAS  PubMed  Google Scholar 

  118. Schultz, D. R. & Miller, K. D. Elastase of Pseudomonas aeruginosa: inactivation of complement components and complement-derived chemotactic and phagocytic factors. Infect. Immun. 10, 128–135 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Weber, B., Nickol, M. M., Jagger, K. S. & Saelinger, C. B. Interaction of Pseudomonas exoproducts with phagocytic cells. Can. J. Microbiol. 28, 679–685 (1982).

    CAS  PubMed  Google Scholar 

  120. Pedersen, S. S., Kharazmi, A., Espersen, F. & Høiby, N. Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect. Immun. 58, 3363–3368 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Pier, G. B., Coleman, F., Grout, M., Franklin, M. & Ohman, D. E. Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect. Immun. 69, 1895–1901 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kintz, E., Scarff, J. M., DiGiandomenico, A. & Goldberg, J. B. Lipopolysaccharide O-antigen chain length regulation in Pseudomonas aeruginosa serogroup O11 strain PA103. J. Bacteriol. 190, 2709–2716 (2008).

    CAS  PubMed  Google Scholar 

  123. Hallström, T. et al. Pseudomonas aeruginosa uses dihydrolipoamide dehydrogenase (Lpd) to bind to the human terminal pathway regulators vitronectin and clusterin to inhibit terminal pathway complement attack. PLoS One 10, e0137630 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. Patricio, P., Paiva, J. A. & Borrego, L. M. Immune response in bacterial and Candida sepsis. Eur. J. Microbiol. Immunol. 9, 105–113 (2019).

    CAS  Google Scholar 

  125. Kashem, S. W. et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity 42, 356–366 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Lionakis, M. S., Iliev, I. D. & Hohl, T. M. Immunity against fungi. JCI Insight 2, e93156 (2017).

    PubMed  PubMed Central  Google Scholar 

  127. Holmes, C. L. et al. Insight into neutrophil extracellular traps through systematic evaluation of citrullination and peptidylarginine deiminases. J. Immunol. Res. 2019, 2160192 (2019).

    PubMed  PubMed Central  Google Scholar 

  128. Johnson, C. J. et al. The extracellular matrix of Candida albicans biofilms impairs formation of neutrophil extracellular traps. PLoS Pathog. 12, e1005884 (2016).

    PubMed  PubMed Central  Google Scholar 

  129. Kernien, J. F., Johnson, C. J. & Nett, J. E. Conserved inhibition of neutrophil extracellular trap release by clinical Candida albicans biofilms. J. Fungi 3, 49 (2017).

    Google Scholar 

  130. Johnson, C. J., Davis, J. M., Huttenlocher, A., Kernien, J. F. & Nett, J. E. Emerging fungal pathogen candida auris evades neutrophil attack. mBio 9, e01403-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  131. Huang, X. et al. Capsule type defines the capability of Klebsiella pneumoniae in evading Kupffer cell capture in the liver. PLoS Pathog. 18, e1010693 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Holmes, C. L. et al. Klebsiella pneumoniae causes bacteremia using factors that mediate tissue-specific fitness and resistance to oxidative stress. PLoS Pathog. 19, e1011233 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Holmes, C. L. et al. The ADP-heptose biosynthesis enzyme gmhb is a conserved gram-negative bacteremia fitness factor. Infect. Immun. 90, e0022422 (2022).

    PubMed  Google Scholar 

  134. Søgaard, M., Nørgaard, M., Dethlefsen, C. & Schønheyder, H. C. Temporal changes in the incidence and 30-day mortality associated with bacteremia in hospitalized patients from 1992 through 2006: a population-based cohort study. Clin. Infect. Dis. 52, 61–69 (2011).

    PubMed  Google Scholar 

  135. Poolman, J. T. & Anderson, A. S. Escherichia coli and Staphylococcus aureus: leading bacterial pathogens of healthcare associated infections and bacteremia in older-age populations. Expert Rev. Vaccines 17, 607–618 (2018).

    CAS  PubMed  Google Scholar 

  136. Uslan, D. Z. et al. Age- and sex-associated trends in bloodstream infection: a population-based study in Olmsted County, Minnesota. Arch. Intern. Med. 167, 834–839 (2007).

    PubMed  Google Scholar 

  137. Graff, L. R. et al. Antimicrobial therapy of gram-negative bacteremia at two university-affiliated medical centers. Am. J. Med. 112, 204–211 (2002).

    PubMed  Google Scholar 

  138. Vidal, F. et al. Bacteraemia in adults due to glucose non-fermentative Gram-negative bacilli other than P. aeruginosa. QJM 96, 227–234 (2003).

    CAS  PubMed  Google Scholar 

  139. Kaasch, A. J. et al. Staphylococcus aureus bloodstream infection: a pooled analysis of five prospective, observational studies. J. Infect. 68, 242–251 (2014).

    PubMed  Google Scholar 

  140. Quagliarello, B. et al. Strains of Staphylococcus aureus obtained from drug-use networks are closely linked. Clin. Infect. Dis. 35, 671–677 (2002).

    PubMed  Google Scholar 

  141. Bou-Antoun, S. et al. Descriptive epidemiology of Escherichia coli bacteraemia in England, April 2012 to March 2014. Eur. Surveill. 21, 30329 (2016).

    Google Scholar 

  142. Anderson, D. J. et al. Seasonal variation in Klebsiella pneumoniae bloodstream infection on 4 continents. J. Infect. Dis. 197, 752–756 (2008).

    PubMed  Google Scholar 

  143. Rao, K. et al. Risk factors for Klebsiella infections among hospitalized patients with preexisting colonization. mSphere 6, e0013221 (2021).

    PubMed  Google Scholar 

  144. Boyer, K. M. & Gotoff, S. P. Strategies for chemoprophylaxis of GBS early-onset infections. Antibiot. Chemother. 35, 267–280 (1985).

    CAS  PubMed  Google Scholar 

  145. Verani, J. R., McGee, L., Schrag, S. J. & Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC). Prevention of perinatal group B streptococcal disease — revised guidelines from CDC, 2010. MMWR Recomm. Rep. 59, 1–36 (2010).

    PubMed  Google Scholar 

  146. Mergenhagen, K. A. et al. Determining the utility of methicillin-resistant Staphylococcus aureus nares screening in antimicrobial stewardship. Clin. Infect. Dis. 71, 1142–1148 (2020).

    CAS  PubMed  Google Scholar 

  147. Popovich, K. J. et al. SHEA/IDSA/APIC practice recommendation: strategies to prevent methicillin-resistant Staphylococcus aureus transmission and infection in acute-care hospitals: 2022 update. Infect. Control. Hosp. Epidemiol. 44, 1039–1067 (2023).

    PubMed  PubMed Central  Google Scholar 

  148. Seidelman, J. L., Mantyh, C. R. & Anderson, D. J. Surgical site infection prevention: a review. JAMA 329, 244–252 (2023).

    PubMed  Google Scholar 

  149. Nicolle, L. E. et al. Clinical practice guideline for the management of asymptomatic bacteriuria: 2019 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 68, e83–e110 (2019).

    PubMed  Google Scholar 

  150. Tops, S. C. M. et al. Rectal culture-based versus empirical antibiotic prophylaxis to prevent infectious complications in men undergoing transrectal prostate biopsy: a randomized, nonblinded multicenter trial. Clin. Infect. Dis. 76, 1188–1196 (2023).

    PubMed  Google Scholar 

  151. Jacewicz, M. et al. Antibiotic prophylaxis versus no antibiotic prophylaxis in transperineal prostate biopsies (NORAPP): a randomised, open-label, non-inferiority trial. Lancet Infect. Dis. 22, 1465–1471 (2022).

    CAS  PubMed  Google Scholar 

  152. Taur, Y. et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 55, 905–914 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Sun, Y. et al. Measurement of Klebsiella intestinal colonization density to assess infection risk. mSphere 6, e0050021 (2021).

    PubMed  Google Scholar 

  154. Vornhagen, J. et al. Combined comparative genomics and clinical modeling reveals plasmid-encoded genes are independently associated with Klebsiella infection. Nat. Commun. 13, 4459 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Gargiullo, L., Del Chierico, F., D’Argenio, P. & Putignani, L. Gut microbiota modulation for multidrug-resistant organism decolonization: present and future perspectives. Front. Microbiol. 10, 1704 (2019).

    PubMed  PubMed Central  Google Scholar 

  156. Lee, C. C. et al. Prediction of community-onset bacteremia among febrile adults visiting an emergency department: rigor matters. Diagn. Microbiol. Infect. Dis. 73, 168–173 (2012).

    PubMed  Google Scholar 

  157. Fabre, V. et al. Does this patient need blood cultures? A scoping review of indications for blood cultures in adult nonneutropenic inpatients. Clin. Infect. Dis. 71, 1339–1347 (2020).

    PubMed  Google Scholar 

  158. López-Cortés, L. E. et al. Efficacy and safety of a structured de-escalation from antipseudomonal β-lactams in bloodstream infections due to Enterobacterales (SIMPLIFY): an open-label, multicentre, randomised trial. Lancet Infect. Dis. 24, 375–385 (2024).

    PubMed  Google Scholar 

  159. Yahav, D. et al. Seven versus 14 days of antibiotic therapy for uncomplicated gram-negative bacteremia: a noninferiority randomized controlled trial. Clin. Infect. Dis. 69, 1091–1098 (2019).

    CAS  PubMed  Google Scholar 

  160. Holland, T. L. et al. Effect of algorithm-based therapy vs usual care on clinical success and serious adverse events in patients with staphylococcal bacteremia: a randomized clinical trial. JAMA 320, 1249–1258 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. von Dach, E. et al. Effect of C-reactive protein-guided antibiotic treatment duration, 7-day treatment, or 14-day treatment on 30-day clinical failure rate in patients with uncomplicated gram-negative bacteremia: a randomized clinical trial. JAMA 323, 2160–2169 (2020).

    Google Scholar 

  162. Iversen, K. et al. Partial oral versus intravenous antibiotic treatment of endocarditis. N. Engl. J. Med. 380, 415–424 (2019).

    CAS  PubMed  Google Scholar 

  163. Kawasuji, H. et al. Effectiveness and safety of linezolid versus vancomycin, teicoplanin, or daptomycin against methicillin-resistant Staphylococcus aureus bacteremia: a systematic review and meta-analysis. Antibiotics 12, 697 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Sutton, J. D. et al. Oral β-lactam antibiotics vs fluoroquinolones or trimethoprim-sulfamethoxazole for definitive treatment of Enterobacterales bacteremia from a urine source. JAMA Netw. Open 3, e2020166 (2020).

    PubMed  PubMed Central  Google Scholar 

  165. Tong, S. Y. C. et al. Effect of vancomycin or daptomycin with vs without an antistaphylococcal β-lactam on mortality, bacteremia, relapse, or treatment failure in patients with MRSA bacteremia: a randomized clinical trial. JAMA 323, 527–537 (2020).

    PubMed  PubMed Central  Google Scholar 

  166. Cosgrove, S. E. et al. Initial low-dose gentamicin for Staphylococcus aureus bacteremia and endocarditis is nephrotoxic. Clin. Infect. Dis. 48, 713–721 (2009).

    PubMed  Google Scholar 

  167. Babich, T. et al. Combination versus monotherapy as definitive treatment for Pseudomonas aeruginosa bacteraemia: a multicentre retrospective observational cohort study. J. Antimicrob. Chemother. 76, 2172–2181 (2021).

    CAS  PubMed  Google Scholar 

  168. Kaye, K. S. et al. Colistin monotherapy versus combination therapy for carbapenem-resistant organisms. NEJM Evid. 2, https://doi.org/10.1056/evidoa2200131 (2023).

  169. Jones, F., Hu, Y. & Coates, A. The efficacy of using combination therapy against multi-drug and extensively drug-resistant Pseudomonas aeruginosa in clinical settings. Antibiotics 11, 323 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Tschudin-Sutter, S., Fosse, N., Frei, R. & Widmer, A. F. Combination therapy for treatment of Pseudomonas aeruginosa bloodstream infections. PLoS One 13, e0203295 (2018).

    PubMed  PubMed Central  Google Scholar 

  171. McDanel, J. S. et al. Comparative effectiveness of beta-lactams versus vancomycin for treatment of methicillin-susceptible Staphylococcus aureus bloodstream infections among 122 hospitals. Clin. Infect. Dis. 61, 361–367 (2015).

    CAS  PubMed  Google Scholar 

  172. Kim, S. H. et al. Outcome of vancomycin treatment in patients with methicillin-susceptible Staphylococcus aureus bacteremia. Antimicrob. Agents Chemother. 52, 192–197 (2008).

    CAS  PubMed  Google Scholar 

  173. Albin, O. R., Patel, T. S. & Kaye, K. S. Meropenem-vaborbactam for adults with complicated urinary tract and other invasive infections. Expert Rev. Anti Infect. Ther. 16, 865–876 (2018).

    CAS  PubMed  Google Scholar 

  174. Thabit, A. K. et al. Antibiotic penetration into bone and joints: an updated review. Int. J. Infect. Dis. 81, 128–136 (2019).

    CAS  PubMed  Google Scholar 

  175. Nau, R., Sörgel, F. & Eiffert, H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev. 23, 858–883 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Drwiega, E. N. & Rodvold, K. A. Penetration of antibacterial agents into pulmonary epithelial lining fluid: an update. Clin. Pharmacokinet. 61, 17–46 (2022).

    CAS  PubMed  Google Scholar 

  177. McKenzie, C. Antibiotic dosing in critical illness. J. Antimicrob. Chemother. 66, ii25–31, (2011).

    CAS  PubMed  Google Scholar 

  178. Silva, J. T. & López-Medrano, F. Cefiderocol, a new antibiotic against multidrug-resistant Gram-negative bacteria. Rev. Esp. Quimioter. 34, 41–43 (2021).

    PubMed  PubMed Central  Google Scholar 

  179. Donlan, R. M. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8, 881–890 (2002).

    PubMed  PubMed Central  Google Scholar 

  180. Thwaites, G. E. et al. Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 391, 668–678 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Wang, J. et al. Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int. J. Mol. Med. 17, 309–317 (2006).

    PubMed  Google Scholar 

  182. Zagaliotis, P., Michalik-Provasek, J., Gill, J. J. & Walsh, T. J. Therapeutic bacteriophages for gram-negative bacterial infections in animals and humans. Pathog. Immun. 7, 1–45 (2022).

    PubMed  PubMed Central  Google Scholar 

  183. Fleitas Martínez, O., Cardoso, M. H., Ribeiro, S. M. & Franco, O. L. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front. Cell Infect. Microbiol. 9, 74 (2019).

    PubMed  PubMed Central  Google Scholar 

  184. Ford, C. A., Hurford, I. M. & Cassat, J. E. Antivirulence strategies for the treatment of Staphylococcus aureus infections: a mini review. Front. Microbiol. 11, 632706 (2020).

    PubMed  Google Scholar 

  185. Braun, L. & Cossart, P. Interactions between Listeria monocytogenes and host mammalian cells. Microbes Infect. 2, 803–811 (2000).

    CAS  PubMed  Google Scholar 

  186. Hamon, M. A., Ribet, D., Stavru, F. & Cossart, P. Listeriolysin O: the Swiss army knife of Listeria. Trends Microbiol. 20, 360–368 (2012).

    CAS  PubMed  Google Scholar 

  187. Vázquez-Boland, J. A. et al. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14, 584–640 (2001).

    PubMed  PubMed Central  Google Scholar 

  188. Alvarez-Dominguez, C., Roberts, R. & Stahl, P. D. Internalized Listeria monocytogenes modulates intracellular trafficking and delays maturation of the phagosome. J. Cell Sci. 110, 731–743 (1997).

    CAS  PubMed  Google Scholar 

  189. Lasa, I., David, V., Gouin, E., Marchand, J. B. & Cossart, P. The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes; the central proline-rich region acts as a stimulator. Mol. Microbiol. 18, 425–436 (1995).

    CAS  PubMed  Google Scholar 

  190. Vázquez-Boland, J. A., Wagner, M. & Scortti, M. Why are some Listeria monocytogenes genotypes more likely to cause invasive (brain, placental) infection? mBio 11, https://doi.org/10.1128/mBio.03126-20 (2020).

  191. Helmy, K. Y. et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124, 915–927 (2006).

    CAS  PubMed  Google Scholar 

  192. Kim, K. H. et al. CRIg signals induce anti-intracellular bacterial phagosome activity in a chloride intracellular channel 3-dependent manner. Eur. J. Immunol. 43, 667–678 (2013).

    CAS  PubMed  Google Scholar 

  193. de Jong, H. K., Parry, C. M., van der Poll, T. & Wiersinga, W. J. Host-pathogen interaction in invasive Salmonellosis. PLoS Pathog. 8, e1002933 (2012).

    PubMed  PubMed Central  Google Scholar 

  194. Li, W. et al. Strategies adopted by Salmonella to survive in host: a review. Arch. Microbiol. 205, 362 (2023).

    CAS  PubMed  Google Scholar 

  195. Colonne, P. M., Winchell, C. G. & Voth, D. E. Hijacking host cell highways: manipulation of the host actin cytoskeleton by obligate intracellular bacterial pathogens. Front. Cell Infect. Microbiol. 6, 107 (2016).

    PubMed  PubMed Central  Google Scholar 

  196. Figueira, R. & Holden, D. W. Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology 158, 1147–1161 (2012).

    CAS  PubMed  Google Scholar 

  197. Maudet, C. et al. Bacterial inhibition of Fas-mediated killing promotes neuroinvasion and persistence. Nature 603, 900–906 (2022).

    CAS  PubMed  Google Scholar 

  198. Vazquez-Torres, A. et al. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401, 804–808 (1999).

    CAS  PubMed  Google Scholar 

  199. McClelland, M. et al. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat. Genet. 36, 1268–1274 (2004).

    CAS  PubMed  Google Scholar 

  200. Clancy, C. J. & Nguyen, M. H. Diagnosing invasive candidiasis. J. Clin. Microbiol. 56, e01909-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  201. Banerjee, R. et al. Randomized trial evaluating clinical impact of RAPid IDentification and susceptibility testing for gram-negative bacteremia: RAPIDS-GN. Clin. Infect. Dis. 73, e39–e46 (2021).

    CAS  PubMed  Google Scholar 

  202. Blauwkamp, T. A. et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat. Microbiol. 4, 663–674 (2019).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Michael A. Bachman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Naomi O’Grady, Jesús Rodríguez-Baño, Harald Seifert and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmes, C.L., Albin, O.R., Mobley, H.L.T. et al. Bloodstream infections: mechanisms of pathogenesis and opportunities for intervention. Nat Rev Microbiol 23, 210–224 (2025). https://doi.org/10.1038/s41579-024-01105-2

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-024-01105-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing