Abstract
The relationship between bacterial metabolism and antibiotic treatment is complex. On the one hand, antibiotics leverage cell metabolism to function. On the other hand, increasing research has highlighted that the metabolic state of the cell also impacts all aspects of antibiotic biology, from drug efficacy to the evolution of antimicrobial resistance (AMR). Given that AMR is a growing threat to the current global antibiotic arsenal and ability to treat infectious diseases, understanding these relationships is key to improving both public and human health. However, quantifying the contribution of metabolism to antibiotic activity and subsequent bacterial evolution has often proven challenging. In this Review, we discuss the complex and often bidirectional relationships between metabolism and the various facets of antibiotic treatment and response. We first summarize how antibiotics leverage metabolism for their function. We then focus on the converse of this relationship by specifically delineating the unique contribution of metabolism to three distinct but related arms of antibiotic biology: antibiotic efficacy, AMR evolution and AMR mechanisms. Finally, we note the relevance of metabolism in clinical contexts and explore the future of metabolic-based strategies for personalized antimicrobial therapies. A deeper understanding of these connections is crucial for the broader scientific community to address the growing crisis of AMR and develop future effective therapeutics.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Hutchings, M. I., Truman, A. W. & Wilkinson, B. Antibiotics: past, present and future. Curr. Opin. Microbiology 51, 72–80 (2019).
Mancuso, G., Midiri, A., Gerace, E. & Biondo, C. Bacterial antibiotic resistance: the most critical pathogens. Pathogens https://doi.org/10.3390/pathogens10101310 (2021).
Naghavi, M. et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet 404, 1199–1226 (2024).
Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).
Bhargava, P. & Collins, J. J. Boosting bacterial metabolism to combat antibiotic resistance. Cell Metab. 21, 154–155 (2015).
Liu, Y., Yang, K., Zhang, H., Jia, Y. & Wang, Z. Combating antibiotic tolerance through activating bacterial metabolism. Front. Microbiol. 11, 577564 (2020).
Kitzenberg, D. A. et al. Adenosine awakens metabolism to enhance growth-independent killing of tolerant and persister bacteria across multiple classes of antibiotics. mBio 13, e00480–e00522 (2022).
Stokes, J. M., Lopatkin, A. J., Lobritz, M. A. & Collins, J. J. Bacterial metabolism and antibiotic efficacy. Cell Metab. 30, 251–259 (2019).
Hooper, D. C. & Jacoby, G. A. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb. Perspect. Med. 6, a025320 (2016).
Gutierrez, A. et al. Understanding and sensitizing density-dependent persistence to quinolone antibiotics. Mol. Cell 68, 1147–1154.e3 (2017).
Krause, K. M., Serio, A. W., Kane, T. R. & Connolly, L. E. Aminoglycosides: an overview. Cold Spring Harb. Perspect. Med. 6, a027029 (2016).
Wohlgemuth, I. et al. Translation error clusters induced by aminoglycoside antibiotics. Nat. Commun. 12, 1830 (2021).
Cabral, D. J. et al. Microbial metabolism modulates antibiotic susceptibility within the murine gut microbiome. Cell Metab. 30, 800–823 (2019).
Mohiuddin, S. G., Ngo, H. & Orman, M. A. Unveiling the critical roles of cellular metabolism suppression in antibiotic tolerance. npj Antimicrob. Resist. 2, 1–10 (2024).
Reese, A. T. et al. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. eLife 7, e35987 (2018).
VanHook, A. M. Antibiotics directly affect host cell metabolism. Sci. Signal. 11, eaas9172 (2018).
Lopatkin, A. J. et al. Bacterial metabolic state more accurately predicts antibiotic lethality than growth rate. Nat. Microbiol. 4, 2109–2117 (2019).
Baquero, F. & Levin, B. R. Proximate and ultimate causes of the bactericidal action of antibiotics. Nat. Rev. Microbiol. 19, 123–132 (2021).
Cho, H., Uehara, T. & Bernhardt, T. G. β-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159, 1300–1311 (2014).
Dawan, J. & Ahn, J. Bacterial stress responses as potential targets in overcoming antibiotic resistance. Microorganisms 10, 1385 (2022).
Qi, W. et al. The effect of the stringent response and oxidative stress response on fitness costs of de novo acquisition of antibiotic resistance. Int. J. Mol. Sci. 25, 2582 (2024).
Kawai, Y. et al. On the mechanisms of lysis triggered by perturbations of bacterial cell wall biosynthesis. Nat. Commun. 14, 4123 (2023).
Dwyer, D. J. et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl Acad. Sci. USA 111, E2100–E2109 (2014).
Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).
Liu, Y. et al. Inhibitors of reactive oxygen species accumulation delay and/or reduce the lethality of several antistaphylococcal agents. Antimicrob. Agents Chemother. 56, 6048–6050 (2012).
Rowan, A. D., Cabral, D. J. & Belenky, P. Bactericidal antibiotics induce programmed metabolic toxicity. Microb. Cell 3, 178–180 (2015).
Qi, W., Jonker, M. J., de Leeuw, W., Brul, S. & Ter Kuile, B. H. Reactive oxygen species accelerate de novo acquisition of antibiotic resistance in E. coli. iScience 26, 108373 (2023).
Kalghatgi, S. et al. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci. Transl. Med. 5, 192ra85 (2013).
Zeng, S. et al. Isoniazid bactericidal activity involves electron transport chain perturbation. Antimicrob. Agents Chemother. 63, e01841–e01918 (2019).
Lobritz, M. A. et al. Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl Acad. Sci. USA 112, 8173–8180 (2015).
Xu, Z. et al. Droplet-based high-throughput single microbe RNA sequencing by smRandom-seq. Nat. Commun. 14, 5130 (2023).
Lopatkin, A. J. et al. Clinically relevant mutations in core metabolic genes confer antibiotic resistance. Science 371, eaba0862 (2021).
Shetty, A. & Dick, T. Mycobacterial cell wall synthesis inhibitors cause lethal ATP burst. Front. Microbiol. 9, 1898 (2018).
Lee, B. S. et al. Inhibitors of energy metabolism interfere with antibiotic-induced death in mycobacteria. J. Biol. Chem. 294, 1936–1943 (2019).
Wong, F. et al. Reactive metabolic byproducts contribute to antibiotic lethality under anaerobic conditions. Mol. Cell 82, 3499–3512 (2022).
Yang, J. H. et al. A white-box machine learning approach for revealing antibiotic mechanisms of action. Cell 177, 1649–1661 (2019).
Hernandez, D. M. et al. Purine and pyrimidine synthesis differently affect the strength of the inoculum effect for aminoglycoside and β-lactam antibiotics. Microbiol. Spectr. 0, e01895–24 (2024).
Lin, X., Kang, L., Li, H. & Peng, X. Fluctuation of multiple metabolic pathways is required for Escherichia coli in response to chlortetracycline stress. Mol. Biosyst. 10, 901–908 (2014).
Loree, J. & Lappin, S. L. Bacteriostatic antibiotics. in: StatPearls. (StatPearls Publishing, 2024).
Wald-Dickler, N., Holtom, P. & Spellberg, B. Busting the myth of “Static vs Cidal”: a systemic literature review. Clin. Infect. Dis. 66, 1470–1474 (2018).
Ishak, A., Mazonakis, N., Spernovasilis, N., Akinosoglou, K. & Tsioutis, C. Bactericidal versus bacteriostatic antibacterials: clinical significance, differences and synergistic potential in clinical practice. J. Antimicrob. Chemother. 80, 1–17 (2025).
Brauner, A., Fridman, O., Gefen, O. & Balaban, N. Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–330 (2016).
Lewis, K. Persister cells. Annu. Rev. Microbiol. 64, 357–372 (2010).
Yuan, S. et al. Molecular mechanism and application of emerging technologies in study of bacterial persisters. BMC Microbiol. 24, 480 (2024).
Paul, P., Sahu, B. R. & Suar, M. Plausible role of bacterial toxin–antitoxin system in persister cell formation and elimination. Mol. Oral. Microbiol. 34, 97–107 (2019).
Shi, W. et al. Pyrazinamide inhibits trans-translation in mycobacterium tuberculosis. Science 333, 1630–1632 (2011).
Li, J., Ji, L., Shi, W., Xie, J. & Zhang, Y. Trans-translation mediates tolerance to multiple antibiotics and stresses in Escherichia coli. J. Antimicrob. Chemother, 68, 2477–2481 (2013).
Wood, W. N., Mohler, K., Rinehart, J. & Ibba, M. Deacylated tRNA accumulation is a trigger for bacterial antibiotic persistence independent of the stringent response. mBio 12, e0113221 (2021).
Springer, M. T., Singh, V. K., Cheung, A. L., Donegan, N. P. & Chamberlain, N. R. Effect of clpP and clpC deletion on persister cell number in Staphylococcus aureus. J. Med. Microbiol. 65, 848–857 (2016).
Kwan, B. W., Valenta, J. A., Benedik, M. J. & Wood, T. K. Arrested protein synthesis increases persister-like cell formation. Antimicrob. Agents Chemother. 57, 1468–1473 (2013).
Liu, X., Liu, F., Ding, S., Shen, J. & Zhu, K. Sublethal levels of antibiotics promote bacterial persistence in epithelial cells. Adv. Sci. 7, 1900840 (2020).
Harms, A., Maisonneuve, E. & Gerdes, K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354, aaf4268 (2016).
Niu, H., Gu, J. & Zhang, Y. Bacterial persisters: molecular mechanisms and therapeutic development. Sig Transduct. Target. Ther. 9, 1–32 (2024).
Goossens, S. N., Sampson, S. L. & Van Rie, A. Mechanisms of drug-induced tolerance in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 34, e00141–20 (2020).
Peterson, E. J. R., Ma, S., Sherman, D. R. & Baliga, N. S. Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis. Nat. Microbiol. 1, 16078 (2016).
Eng, R. H., Padberg, F. T., Smith, S. M., Tan, E. N. & Cherubin, C. E. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob. Agents Chemother. 35, 1824–1828 (1991).
Lee, A. J. et al. Robust, linear correlations between growth rates and β-lactam–mediated lysis rates. Proc. Natl Acad. Sci. USA 115, 4069–4074 (2018).
Tuomanen, E., Cozens, R., Tosch, W., Zak, O. & Tomasz, A. The rate of killing of Escherichia coli by β-lactam antibiotics is strictly proportional to the rate of bacterial growth. J. Gen. Microbiol. 132, 1297–1304 (1986).
Low, E. W. & Chase, H. A. Reducing production of excess biomass during wastewater treatment. Water Res. 33, 1119–1132 (1999).
Molenaar, D., van Berlo, R., de Ridder, D. & Teusink, B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol. Syst. Biol. 5, 323 (2009).
Erickson, D. W. et al. A global resource allocation strategy governs growth transition kinetics of Escherichia coli. Nature 551, 119–123 (2017).
Bren, A., Glass, D. S., Kohanim, Y. K., Mayo, A. & Alon, U. Tradeoffs in bacterial physiology determine the efficiency of antibiotic killing. Proc. Natl Acad. Sci. USA 120, e2312651120 (2023).
Allison, K. R., Brynildsen, M. P. & Collins, J. J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473, 216–220 (2011).
Martínez, J. L. & Rojo, F. Metabolic regulation of antibiotic resistance. FEMS Microbiol. Rev. 35, 768–789 (2011).
Povolotsky, T. L., Keren-Paz, A. & Kolodkin-Gal, I. Metabolic microenvironments drive microbial differentiation and antibiotic resistance. Trends Genet. 37, 4–8 (2021).
Zampieri, M. et al. Metabolic constraints on the evolution of antibiotic resistance. Mol. Syst. Biol. 13, 917 (2017).
Zampieri, M., Zimmermann, M., Claassen, M. & Sauer, U. Nontargeted metabolomics reveals the multilevel response to antibiotic perturbations. Cell Rep. 19, 1214–1228 (2017).
Yang, J. H., Bening, S. C. & Collins, J. J. Antibiotic efficacy — context matters. Curr. Opin. Microbiol. 39, 73–80 (2017).
Belenky, P. et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep. 13, 968–980 (2015).
Diaz-Tang, G. et al. Growth productivity as a determinant of the inoculum effect for bactericidal antibiotics. Sci. Adv. 8, eadd0924 (2022).
Lenhard, J. R. & Bulman, Z. P. Inoculum effect of β-lactam antibiotics. J. Antimicrob. Chemother. 74, 2825–2843 (2019).
Soriano, F., Santamaría, M., Ponte, C., Castilla, C. & Fernández-Roblas, R. In vivo significance of the inoculum effect of antibiotics on Escherichia coli. Eur. J. Clin. Microbiol. Infect. Dis. 7, 410–412 (1988).
Sibila, O. et al. Airway bacterial load and inhaled antibiotic response in bronchiectasis. Am. J. Respir. Crit. Care Med. 200, 33–41 (2019).
Stevens, D. L., Yan, S. & Bryant, A. E. Penicillin-binding protein expression at different growth stages determines penicillin efficacy in vitro and in vivo: an explanation for the inoculum effect. J. Infect. Dis. 167, 1401–1405 (1993).
Pankey, G. A. & Sabath, L. D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of gram-positive bacterial infections. Clin. Infect. Dis. 38, 864–870 (2004).
Tilanus, A. & Drusano, G. Inoculum-based dosing: a novel concept for combining time with concentration-dependent antibiotics to optimize clinical and microbiological outcomes in severe gram negative sepsis. Antibiotics 12, 1581 (2023).
Danjean, M. et al. Evaluation of the inoculum effect of new antibiotics against carbapenem-resistant enterobacterales. Clin. Microbiol. Infect. 28, 1503.e1–1503.e3 (2022).
Stevens, D. L., Maier, K. A., Laine, B. M. & Mitten, J. E. Comparison of clindamycin, rifampin, tetracycline, metronidazole, and penicillin for efficacy in prevention of experimental gas gangrene due to Clostridium perfringens. J. Infect. Dis. 155, 220–228 (1987).
Stevens, D. L., Gibbons, A. E., Bergstrom, R. & Winn, V. The Eagle effect revisited: efficacy of clindamycin, erythromycin, and penicillin in the treatment of streptococcal myositis. J. Infect. Dis. 158, 23–28 (1988).
Webster, C. M. et al. Proton motive force underpins respiration-mediated potentiation of aminoglycoside lethality in pathogenic Escherichia coli. Arch. Microbiol. 204, 120 (2022).
Meylan, S. et al. Carbon sources tune antibiotic susceptibility in pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem. Biol. 24, 195–206 (2017).
Gill, W. P. et al. A replication clock for Mycobacterium tuberculosis. Nat. Med. 15, 211–214 (2009).
Gomez, J. E. & McKinney, J. D. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis 84, 29–44 (2004).
Muñoz-Elías, E. J. et al. Replication dynamics of Mycobacterium tuberculosis in chronically infected mice. Infect. Immun. 73, 546–551 (2005).
Vilchèze, C. et al. Enhanced respiration prevents drug tolerance and drug resistance in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 114, 4495–4500 (2017).
Nandakumar, M., Nathan, C. & Rhee, K. Y. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nat. Commun. 5, 4306 (2014).
Cheng, Z.-X. et al. The depressed central carbon and energy metabolisms is associated to the acquisition of levofloxacin resistance in Vibrio alginolyticus. J. Proteom. 181, 83–91 (2018).
Ortiz-Severín, J. et al. Nutrient scarcity in a new defined medium reveals metabolic resistance to antibiotics in the fish pathogen Piscirickettsia salmonis. Front. Microbiol. 12, 734239 (2021).
Jamal, M. et al. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 81, 7–11 (2018).
López, D., Vlamakis, H. & Kolter, R. Biofilms. Cold Spring Harb. Perspect. Biol. 2, a000398 (2010).
Lai, S., Tremblay, J. & Déziel, E. Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Env. Microbiol. 11, 126–136 (2009).
Drenkard, E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect. 5, 1213–1219 (2003).
Stewart, P. S. & William Costerton, J. Antibiotic resistance of bacteria in biofilms. Lancet 358, 135–138 (2001).
Sauer, K. et al. The biofilm life cycle — expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 20, 608–620 (2022).
Okuda, K.-I. et al. Small-molecule-induced activation of cellular respiration inhibits biofilm formation and triggers metabolic remodeling in Staphylococcus aureus. mBio 13, e0084522 (2022).
Mashruwala, A. A., van de Guchte, A. & Boyd, J. M. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus. Elife 6, e23845 (2017).
Pisithkul, T. et al. Metabolic remodeling during biofilm development of Bacillus subtilis. mBio 10, e00623–e00719 (2019).
Li, Y., Xiao, P., Wang, Y. & Hao, Y. Mechanisms and control measures of mature biofilm resistance to antimicrobial agents in the clinical context. ACS Omega 5, 22684–22690 (2020).
Irazoki, O., Campoy, S. & Barbé, J. The transient multidrug resistance phenotype of Salmonella enterica swarming cells is abolished by sub-inhibitory concentrations of antimicrobial compounds. Front. Microbiol. 8, 1360 (2017).
Yeung, A. T. Y., Bains, M. & Hancock, R. E. W. The sensor kinase CbrA is a global regulator that modulates metabolism, virulence, and antibiotic resistance in Pseudomonas aeruginosa. J. Bacteriol. 193, 918–931 (2011).
Kim, W. & Surette, M. G. Metabolic differentiation in actively swarming Salmonella. Mol. Microbiol. 54, 702–714 (2004).
Armitage, J. P. Changes in metabolic activity of proteus mirabilis during swarming. Microbiology 125, 445–450 (1981).
Yong, Y.-C. & Zhong, J.-J. Impacts of quorum sensing on microbial metabolism and human health. Adv. Biochem. Eng. Biotechnol. 131, 25–61 (2013).
Boyle, K. E., Monaco, H., van Ditmarsch, D., Deforet, M. & Xavier, J. B. Integration of metabolic and quorum sensing signals governing the decision to cooperate in a bacterial social trait. PLOS Comput. Biol. 11, e1004279 (2015).
Yan, J., Monaco, H. & Xavier, J. B. The ultimate guide to bacterial swarming: an experimental model to study the evolution of cooperative behavior. Annu. Rev. Microbiology 73, 293–312 (2019).
An, J. H., Goo, E., Kim, H., Seo, Y.-S. & Hwang, I. Bacterial quorum sensing and metabolic slowing in a cooperative population. Proc. Natl Acad. Sci. USA 111, 14912–14917 (2014).
Goo, E., An, J. H., Kang, Y. & Hwang, I. Control of bacterial metabolism by quorum sensing. Trends Microbiol. 23, 567–576 (2015).
Pribis, J. P., Zhai, Y., Hastings, P. J. & Rosenberg, S. M. Stress-induced mutagenesis, gambler cells, and stealth targeting antibiotic-induced evolution. mBio 13, e01074–22 (2022).
Tran, T. T. et al. Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids. mBio 4, e00281–e00313 (2013).
Piddock, L. J. V. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev. 19, 382–402 (2006).
Livermore, D. M. Defining an extended-spectrum β-lactamase. Clin. Microbiol. Infect. 14, 3–10 (2008).
Kohanski, M. A., DePristo, M. A. & Collins, J. J. Sub-lethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol. Cell 37, 311–320 (2010).
Eliopoulos, G. M. & Blázquez, J. Hypermutation as a factor contributing to the acquisition of antimicrobial resistance. Clin. Infect. Dis. 37, 1201–1209 (2003).
Radman, M. Enzymes of evolutionary change. Nature 401, 866–869 (1999).
Martinez, J. L. & Baquero, F. Mutation frequencies and antibiotic resistance. Antimicrob. Agents Chemother. 44, 1771–1777 (2000).
Rosenberg, S. M. Evolving responsively: adaptive mutation. Nat. Rev. Genet. 2, 504–515 (2001).
Revitt-Mills, S. A. & Robinson, A. Antibiotic-induced mutagenesis: under the microscope. Front. Microbiol. 11, 585175 (2020).
Carvajal-Garcia, J., Samadpour, A. N., Hernandez Viera, A. J. & Merrikh, H. Oxidative stress drives mutagenesis through transcription-coupled repair in bacteria. Proc. Natl Acad. Sci. USA 120, e2300761120 (2023).
Rodríguez-Rojas, A., Makarova, O. & Rolff, J. Antimicrobials, stress and mutagenesis. PLOS Pathog. 10, e1004445 (2014).
Bernier, S. P. et al. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet. 9, e1003144 (2013).
Smith, T., Wolff, K. A. & Nguyen, L. Molecular biology of drug resistance in Mycobacterium tuberculosis. Curr. Top. Microbiol. Immunol. 374, 53–80 (2013).
Tao, S., Chen, H., Li, N., Wang, T. & Liang, W. The spread of antibiotic resistance genes in vivo model. Can. J. Infect. Dis. Med. Microbiol. 2022, 3348695 (2022).
Graf, F. E., Palm, M., Warringer, J. & Farewell, A. Inhibiting conjugation as a tool in the fight against antibiotic resistance. Drug. Dev. Res. 80, 19–23 (2019).
Redondo-Salvo, S. et al. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat. Commun. 11, 3602 (2020).
Lopatkin, A. J. et al. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat. Commun. 8, 1689 (2017).
Sharma, D., Misba, L. & Khan, A. U. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control. 8, 76 (2019).
Madsen, J. S., Burmølle, M., Hansen, L. H. & Sørensen, S. J. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol. Med. Microbiol. 65, 183–195 (2012).
Savage, V. J., Chopra, I. & O’Neill, A. J. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob. Agents Chemother. 57, 1968–1970 (2013).
Curtsinger, H. D., Martínez-Absalón, S., Liu, Y. & Lopatkin, A. J. The metabolic burden associated with plasmid acquisition: an assessment of the unrecognized benefits to host cells. Bioessays 47, e2400164 (2024).
Lopatkin, A. J. et al. Antibiotics as a selective driver for conjugation dynamics. Nat. Microbiol. 1, 16044 (2016).
Sysoeva, T. A., Kim, Y., Rodriguez, J., Lopatkin, A. J. & You, L. Growth-stage-dependent regulation of conjugation. AIChE J. 66, e16848 (2020).
Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl Acad. Sci. USA 96, 3801–3806 (1999).
Lamberte, L. E. et al. Horizontally acquired AT-rich genes in Escherichia coli cause toxicity by sequestering RNA polymerase. Nat. Microbiol. 2, 16249 (2017).
Lynch, M. & Marinov, G. K. The bioenergetic costs of a gene. Proc. Natl Acad. Sci. USA 112, 15690–15695 (2015).
Pál, C., Papp, B. & Lercher, M. J. Horizontal gene transfer depends on gene content of the host. Bioinformatics 21, ii222–ii223 (2005).
Tuller, T. et al. Association between translation efficiency and horizontal gene transfer within microbial communities. Nucleic Acids Res. 39, 4743–4755 (2011).
Ahmad, M. et al. Tradeoff between lag time and growth rate drives the plasmid acquisition cost. Nat. Commun. 14, 2343 (2023).
Prensky, H., Gomez‐Simmonds, A., Uhlemann, A. & Lopatkin, A. J. Conjugation dynamics depend on both the plasmid acquisition cost and the fitness cost. Mol. Syst. Biol. 17, e9913 (2021).
San Millan, A. & MacLean, R. C. Fitness costs of plasmids: a limit to plasmid transmission. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MTBP-0016-2017 (2017).
Hall, J. P. J. et al. Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLOS Biol. 19, e3001225 (2021).
Harrison, E. & Brockhurst, M. A. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol. 20, 262–267 (2012).
Vogwill, T. & MacLean, R. C. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evolut. Appl. 8, 284–295 (2015).
Shanker, E. & Federle, M. J. Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes 8, 15 (2017).
Suckow, G., Seitz, P. & Blokesch, M. Quorum sensing contributes to natural transformation of vibrio cholerae in a species-specific manner▿. J. Bacteriol. 193, 4914–4924 (2011).
Leclerc, Q. J., Wildfire, J., Gupta, A., Lindsay, J. A. & Knight, G. M. Growth-dependent predation and generalized transduction of antimicrobial resistance by bacteriophage. mSystems 7, e0013522 (2022).
Levin-Reisman, I. et al. Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826–830 (2017).
Zheng, E. J. et al. Modulating the evolutionary trajectory of tolerance using antibiotics with different metabolic dependencies. Nat. Commun. 13, 2525 (2022).
Santi, I., Manfredi, P., Maffei, E., Egli, A. & Jenal, U. Evolution of antibiotic tolerance shapes resistance development in chronic Pseudomonas aeruginosa infections. mBio 12, e03482–20 (2021).
Liu, J., Gefen, O., Ronin, I., Bar-Meir, M. & Balaban, N. Q. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 367, 200–204 (2020).
Palomino, A. et al. Metabolic genes on conjugative plasmids are highly prevalent in Escherichia coli and can protect against antibiotic treatment. ISME J. 17, 151–162 (2022).
Brynildsen, M. P., Winkler, J. A., Spina, C. S., MacDonald, I. C. & Collins, J. J. Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nat. Biotechnol. 31, 160–165 (2013).
Masters, P. A., O’Bryan, T. A., Zurlo, J., Miller, D. Q. & Joshi, N. Trimethoprim-sulfamethoxazole revisited. Arch. Intern. Med. 163, 402–410 (2003).
Eliopoulos, G. M. & Huovinen, P. Resistance to trimethoprim-sulfamethoxazole. Clin. Infect. Dis. 32, 1608–1614 (2001).
Munita, J. M. & Arias, C. A. Mechanisms of antibiotic resistance. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0016–2015 (2016).
Nguyen, M. et al. Using machine learning to predict antimicrobial mics and associated genomic features for nontyphoidal salmonella. J. Clin. Microbiol. 57, e01260–18 (2019).
Aduru, S. V. et al. Sub-inhibitory antibiotic treatment selects for enhanced metabolic efficiency. Microbiol. Spectr. 12, e03241–23 (2024).
Kenney, L. J. & Anand, G. S. EnvZ/OmpR two-component signaling: an archetype system that can function non-canonically. EcoSal. Plus https://doi.org/10.1128/ecosalplus.ESP-0001–2019 (2020).
Perkins, A. E. & Nicholson, W. L. Uncovering new metabolic capabilities of bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants. J. Bacteriol. 190, 807–814 (2008).
Łapińska, U. et al. Fast bacterial growth reduces antibiotic accumulation and efficacy. eLife 11, e74062 (2022).
Singer, J. R. et al. Preventing dysbiosis of the neonatal mouse intestinal microbiome protects against late-onset sepsis. Nat. Med. 25, 1772–1782 (2019).
Sun, L. et al. PDCD6 regulates lactate metabolism to modulate LC3-associated phagocytosis and antibacterial defense. Nat. Commun. 15, 10157 (2024).
Meier, K. H. U. et al. Metabolic landscape of the male mouse gut identifies different niches determined by microbial activities. Nat. Metab. 5, 968–980 (2023).
Zhang, T., Hasegawa, Y. & Waldor, M. K. Enteric bacterial infection stimulates remodelling of bile metabolites to promote intestinal homeostasis. Nat. Microbiol. 9, 3376–3390 (2024).
Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014).
Brown, K. et al. Microbiota alters the metabolome in an age- and sex- dependent manner in mice. Nat. Commun. 14, 1348 (2023).
Van Roy, Z. et al. Tissue niche influences immune and metabolic profiles to Staphylococcus aureus biofilm infection. Nat. Commun. 15, 8965 (2024).
Heim, C. E. et al. Lactate production by Staphylococcus aureus biofilm inhibits HDAC11 to reprogramme the host immune response during persistent infection. Nat. Microbiol. 5, 1271–1284 (2020).
Wilde, A. D. et al. Bacterial hypoxic responses revealed as critical determinants of the host-pathogen outcome by TnSeq analysis of Staphylococcus aureus invasive infection. PLOS Pathog. 11, e1005341 (2015).
Bjarnsholt, T. et al. The importance of understanding the infectious microenvironment. Lancet Infect. Dis. 22, e88–e92 (2022).
Müller, D. N., Wilck, N., Haase, S., Kleinewietfeld, M. & Linker, R. A. Sodium in the microenvironment regulates immune responses and tissue homeostasis. Nat. Rev. Immunol. 19, 243–254 (2019).
DePas, W. H. et al. Exposing the three-dimensional biogeography and metabolic states of pathogens in cystic fibrosis sputum via hydrogel embedding, clearing, and rRNA labeling. mBio 7, e00796-16 (2016).
Xu, Y. et al. In vivo gene expression in a Staphylococcus aureus prosthetic joint infection characterized by RNA sequencing and metabolomics: a pilot study. BMC Microbiol. 16, 80 (2016).
Goldmann, O. & Medina, E. Staphylococcus aureus strategies to evade the host acquired immune response. Int. J. Med. Microbiol. 308, 625–630 (2018).
Matsumoto, M. et al. Interaction between Staphylococcus Agr virulence and neutrophils regulates pathogen expansion in the skin. Cell Host Microbe 29, 930–940.e4 (2021).
Beesetty, P. et al. Tissue specificity drives protective immunity against Staphylococcus aureus infection. Front. Immunol. 13, 795792 (2022).
Passalacqua, K. D., Charbonneau, M.-E. & O’Riordan, M. X. D. Bacterial metabolism shapes the host–pathogen interface. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0027–2015 (2016).
Eisenreich, W., Heesemann, J., Rudel, T. & Goebel, W. Metabolic host responses to infection by intracellular bacterial pathogens. Front. Cell. Infect. Microbiol. 3, 24 (2013).
Kreimendahl, S. & Pernas, L. Metabolic immunity against microbes. Trends Cell Biol. 34, 496–508 (2024).
Troha, K. & Ayres, J. S. Metabolic adaptations to infections at the organismal level. Trends Immunol. 41, 113–125 (2020).
Zhang, Y., Chen, R., Zhang, D., Qi, S. & Liu, Y. Metabolite interactions between host and microbiota during health and disease: which feeds the other? Biomed. Pharmacother. 160, 114295 (2023).
Eisenreich, W., Heesemann, J., Rudel, T. & Goebel, W. Metabolic adaptations of intracellullar bacterial pathogens and their mammalian host cells during infection (“Pathometabolism”). Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.mbp-0002–2014 (2015).
Demangel, C. & Surace, L. Host–pathogen interactions from a metabolic perspective: methods of investigation. Microbes Infect. 26, 105267 (2024).
Murdoch, C. C. & Skaar, E. P. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 20, 657–670 (2022).
Yang, J. H. et al. Antibiotic-induced changes to the host metabolic environment inhibit drug efficacy and alter immune function. Cell Host Microbe 22, 757–765 (2017).
Gehre, L. et al. Sequestration of host metabolism by an intracellular pathogen. eLife 5, e12552 (2016).
Chaukimath, P., Frankel, G. & Visweswariah, S. S. The metabolic impact of bacterial infection in the gut. FEBS J. 290, 3928–3945 (2023).
Jansma, J. & El Aidy, S. Understanding the host-microbe interactions using metabolic modeling. Microbiome 9, 16 (2021).
Howden, B. P. et al. Staphylococcus aureus host interactions and adaptation. Nat. Rev. Microbiol. 21, 380–395 (2023).
Ribet, D. & Cossart, P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 17, 173–183 (2015).
Schaible, B., Taylor, C. T. & Schaffer, K. Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrob. Agents Chemother. 56, 2114–2118 (2012).
Hull, R. C. et al. Antibiotics limit adaptation of drug-resistant Staphylococcus aureus to hypoxia. Antimicrob. Agents Chemother. 66, e00926–22 (2022).
Hajdamowicz, N. H., Hull, R. C., Foster, S. J. & Condliffe, A. M. The impact of hypoxia on the host–pathogen interaction between neutrophils and Staphylococcus aureus. Int. J. Mol. Sci. 20, 5561 (2019).
Alteri, C. J. & Mobley, H. L. T. Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Curr. Opin. Microbiol. 15, 3–9 (2012).
Mann, R., Mediati, D. G., Duggin, I. G., Harry, E. J. & Bottomley, A. L. Metabolic adaptations of uropathogenic E. coli in the urinary tract. Front. Cell. Infect. Microbiol. 7, 241 (2017).
Chan, C. C. Y. & Lewis, I. A. Role of metabolism in uropathogenic Escherichia coli. Trends Microbiol. 30, 1174–1204 (2022).
AlRabiah, H., Allwood, J. W., Correa, E., Xu, Y. & Goodacre, R. pH plays a role in the mode of action of trimethoprim on Escherichia coli. PLoS ONE 13, e0200272 (2018).
Bhosle, A. et al. A strategic target rescues trimethoprim sensitivity in Escherichia coli. iScience 23, 100986 (2020).
Manna, M. S. et al. A trimethoprim derivative impedes antibiotic resistance evolution. Nat. Commun. 12, 2949 (2021).
Dolan, S. K. et al. Contextual flexibility in pseudomonas aeruginosa central carbon metabolism during growth in single carbon sources. mBio 11, e02684–19 (2020).
Flynn, J. M., Niccum, D., Dunitz, J. M. & Hunter, R. C. Evidence and role for bacterial mucin degradation in cystic fibrosis airway disease. PLoS Pathog. 12, e1005846 (2016).
Chen, Y. et al. Repressed central carbon metabolism and its effect on related metabolic pathways in cefoperazone/sulbactam-resistant Pseudomonas aeruginosa. Front. Microbiol. 13, 847634 (2022).
Hoffman, C. L., Lalsiamthara, J. & Aballay, A. Host mucin is exploited by Pseudomonas aeruginosa to provide monosaccharides required for a successful infection. mBio 11, e00060-20 (2020).
Rouillard, K. R., Kissner, W. J., Markovetz, M. R. & Hill, D. B. Effects of mucin and DNA concentrations in airway mucus on Pseudomonas aeruginosa biofilm recalcitrance. mSphere 7, e00291–22 (2022).
Müller, L. et al. Human airway mucus alters susceptibility of Pseudomonas aeruginosa biofilms to tobramycin, but not colistin. J. Antimicrob. Chemother. 73, 2762–2769 (2018).
Wang, X. et al. Whole genome CRISPRi screening identifies druggable vulnerabilities in an isoniazid resistant strain of Mycobacterium tuberculosis. Nat. Commun. 15, 9791 (2024).
Dahiya, D. & Nigam, P. S. Antibiotic-therapy-induced gut dysbiosis affecting gut microbiota—brain axis and cognition: restoration by intake of probiotics and synbiotics. Int. J. Mol. Sci. 24, 3074 (2023).
Patangia, D. V., Ryan, C. A., Dempsey, E., Ross, R. P. & Stanton, C. Impact of antibiotics on the human microbiome and consequences for host health. MicrobiologyOpen 11, e1260 (2022).
Li, P. H., He, J. & Jia, P. W. The influence of gut microbiota on drug metabolism and toxicity. Expert. Opin. drug. Metab. Toxicol. 12, 31 (2015).
Gipson, K. S. et al. The Great ESKAPE: exploring the crossroads of bile and antibiotic resistance in bacterial pathogens. Infect. Immun. 88, e00865–19 (2020).
Nguyen, D. et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334, 982–986 (2011).
Su, Y.-B. et al. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria. Proc. Natl Acad. Sci. USA 115, E1578–E1587 (2018).
Yang, M.-J. et al. Boosted TCA cycle enhances survival of zebrafish to Vibrio alginolyticus infection. Virulence 9, 634–644 (2018).
Yang, M.-J. et al. Malate enhances survival of zebrafish against Vibrio alginolyticus infection in the same manner as taurine. Virulence 11, 349–364 (2020).
Li, L., Su, Y.-B., Peng, B., Peng, X.-X. & Li, H. Metabolic mechanism of colistin resistance and its reverting in Vibrio alginolyticus. Env. Microbiol. 22, 4295–4313 (2020).
Radlinski, L. C. et al. Chemical induction of aminoglycoside uptake overcomes antibiotic tolerance and resistance in Staphylococcus aureus. Cell Chem. Biol. 26, 1355–1364.e4 (2019).
Peng, B. et al. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab. 21, 249–262 (2015).
Duan, X. et al. I-Serine potentiates fluoroquinolone activity against Escherichia coli by enhancing endogenous reactive oxygen species production. J. Antimicrob. Chemother. 71, 2192–2199 (2016).
Chen, X.-H. et al. Exogenous I-valine promotes phagocytosis to kill multidrug-resistant bacterial pathogens. Front. Immunol. 8, 207 (2017).
Chakraborty, N. et al. Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. J. Nanobiotechnol. 20, 375 (2022).
Holbein, B. E., Ang, M. T. C., Allan, D. S., Chen, W. & Lehmann, C. Iron-withdrawing anti-infectives for new host-directed therapies based on iron dependence, the Achilles’ heel of antibiotic-resistant microbes. Env. Chem. Lett. 19, 2789–2808 (2021).
Zhou, Y.-J. et al. Hexadentate 3-hydroxypyridin-4-ones with high iron(III) affinity: design, synthesis and inhibition on methicillin resistant Staphylococcus aureus and Pseudomonas strains. Eur. J. Med. Chem. 94, 8–21 (2015).
Workman, D. G., Hunter, M., Dover, L. G. & Tétard, D. Synthesis of novel Iron(III) chelators based on triaza macrocycle backbone and 1-hydroxy-2(H)-pyridin-2-one coordinating groups and their evaluation as antimicrobial agents. J. Inorg. Biochem. 160, 49–58 (2016).
Parquet, M. D. C., Savage, K. A., Allan, D. S., Davidson, R. J. & Holbein, B. E. Novel iron-chelator DIBI inhibits Staphylococcus aureus growth, suppresses experimental MRSA infection in mice and enhances the activities of diverse antibiotics in vitro. Front. Microbiol. 9, 1811 (2018).
Allan, D. S., Parquet, M. D. C., Savage, K. A. & Holbein, B. E. Iron sequestrant DIBI, a potential alternative for nares decolonization of methicillin-resistant Staphylococcus aureus, is anti-infective and inhibitory for mupirocin-resistant isolates. Antimicrob. Agents Chemother. 64, e02353–19 (2020).
Parquet, M. D. C. et al. Antibiotic-resistant acinetobacter baumannii is susceptible to the novel iron-sequestering anti-infective DIBI in vitro and in experimental pneumonia in mice. Antimicrob. Agents Chemother. 63, e00855–19 (2019).
Abbina, S., Gill, A., Mathew, S., Abbasi, U. & Kizhakkedathu, J. N. Polyglycerol-based macromolecular iron chelator adjuvants for antibiotics to treat drug-resistant bacteria. ACS Appl. Mater. Interfaces 12, 37834–37844 (2020).
Chitambar, C. R. Gallium and its competing roles with iron in biological systems. Biochim. Biophys. Acta 1863, 2044–2053 (2016).
Choi, S.-R., Switzer, B., Britigan, B. E. & Narayanasamy, P. Gallium porphyrin and gallium nitrate synergistically inhibit mycobacterial species by targeting different aspects of iron/heme metabolism. ACS Infect. Dis. 6, 2582–2591 (2020).
Hijazi, S. et al. Antimicrobial activity of gallium compounds on ESKAPE pathogens. Front. Cell Infect. Microbiol. 8, 316 (2018).
Choi, S.-R., Britigan, B. E. & Narayanasamy, P. Dual inhibition of Klebsiella pneumoniae and Pseudomonas aeruginosa iron metabolism using gallium porphyrin and gallium nitrate. ACS Infect. Dis. 5, 1559–1569 (2019).
Choi, S.-R., Britigan, B. E. & Narayanasamy, P. Iron/heme metabolism-targeted gallium(III) nanoparticles are active against extracellular and intracellular Pseudomonas aeruginosa and Acinetobacter baumannii. Antimicrob. Agents Chemother. 63, e02643–18 (2019).
Choi, S.-R., Talmon, G. A., Britigan, B. E. & Narayanasamy, P. Nanoparticulate β-cyclodextrin with gallium tetraphenylporphyrin demonstrates in vitro and in vivo antimicrobial efficacy against Mycobacteroides abscessus and Mycobacterium avium. ACS Infect. Dis. 7, 2299–2309 (2021).
Centola, G. et al. Gallium(III)-salophen as a dual inhibitor of Pseudomonas aeruginosa heme sensing and iron acquisition. ACS Infect. Dis. 6, 2073–2085 (2020).
Baker, J. M., Baba-Dikwa, A., Shah, R., Lea, S. & Singh, D. Gallium protoporphyrin as an antimicrobial for non-typeable Haemophilus influenzae in COPD patients. Life Sci. 305, 120794 (2022).
Goss, C. H. et al. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections. Sci. Transl. Med. 10, eaat7520 (2018).
Costabile, G. et al. Boosting lung accumulation of gallium with inhalable nano-embedded microparticles for the treatment of bacterial pneumonia. Int. J. Pharm. 629, 122400 (2022).
Zheng, H. et al. Gallium ions incorporated silk fibroin hydrogel with antibacterial efficacy for promoting healing of Pseudomonas aeruginosa-infected wound. Front. Chem. 10, 1017548 (2022).
Qin, J. et al. Gallium(III)-mediated dual-cross-linked alginate hydrogels with antibacterial properties for promoting infected wound healing. ACS Appl. Mater. Interfaces 14, 22426–22442 (2022).
Li, F., Liu, F., Huang, K. & Yang, S. Advancement of gallium and gallium-based compounds as antimicrobial agents. Front. Bioeng. Biotechnol. 10, 827960 (2022).
Chitambar, C. R. The therapeutic potential of iron-targeting gallium compounds in human disease: from basic research to clinical application. Pharmacol. Res. 115, 56–64 (2017).
Doern, C. D. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J. Clin. Microbiol. 52, 4124–4128 (2014).
Doern, G. V. & Brecher, S. M. The clinical predictive value (or lack thereof) of the results of in vitro antimicrobial susceptibility tests. J. Clin. Microbiol. 49, S11–S14 (2011).
Ersoy, S. C. et al. Correcting a fundamental flaw in the paradigm for antimicrobial susceptibility testing. EBioMedicine 20, 173–181 (2017).
Mu, C. & Zhu, W. Antibiotic effects on gut microbiota, metabolism, and beyond. Appl. Microbiol. Biotechnol. 103, 9277–9285 (2019).
Olishevska, S., Nickzad, A. & Déziel, E. Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Appl. Microbiol. Biotechnol. 103, 1189–1215 (2019).
McCaughey, L. C., Ritchie, N. D., Douce, G. R., Evans, T. J. & Walker, D. Efficacy of species-specific protein antibiotics in a murine model of acute Pseudomonas aeruginosa lung infection. Sci. Rep. 6, 30201 (2016).
Fernández, L., Delgado, S., Herrero, H., Maldonado, A. & Rodríguez, J. M. The bacteriocin nisin, an effective agent for the treatment of Staphylococcal mastitis during lactation. J. Hum. Lact. 24, 311–316 (2008).
Kitching, M. et al. A live bio-therapeutic for mastitis, containing lactococcus lactis DPC3147 with comparable efficacy to antibiotic treatment. Front. Microbiol. 10, 2220 (2019).
Mori, M., Hwa, T., Martin, O. C., Martino, A. D. & Marinari, E. Constrained allocation flux balance analysis. PLOS Comput. Biol. 12, e1004913 (2016).
Lopatkin, A. J. & Yang, J. H. Digital insights into nucleotide metabolism and antibiotic treatment failure. Front. Digit. Health 3, 58348 (2021).
Acknowledgements
This work was supported by the National Institute of Health awards 1R35GM150871-01 (A.J.L.) and R15AI159902-01A1 (R.P.S. and A.J.L.), and the Pew Charitable Trust Foundation (A.J.L.).
Author information
Authors and Affiliations
Contributions
M.A., R.P.S., Z.Z. and A.J.L. researched data for the article. M.A., S.V.A. and A.J.L. contributed substantially to discussion of the content. M.A. and A.J.L. wrote the article. M.A., R.P.S., Z.Z. and A.J.L. reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Microbiology thanks Jessica Blair, Peter Belenky and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ahmad, M., Aduru, S.V., Smith, R.P. et al. The role of bacterial metabolism in antimicrobial resistance. Nat Rev Microbiol 23, 439–454 (2025). https://doi.org/10.1038/s41579-025-01155-0
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41579-025-01155-0
This article is cited by
-
Pomegranate hydrochar and tamanu oil-enriched chitosan-PF127 hydrogel: antimicrobial efficacy against multidrug-resistant bacteria
Polymer Bulletin (2026)
-
Whole-genome sequencing and probiotic properties of Lactobacillus helveticus KM7 isolated from the gut of the Chinese honey bee (Apis cerana): A promising exopolysaccharide-producing strain
BMC Microbiology (2025)
-
Biomaterials mediated 3R (remove-remodel-repair) strategy: holistic management of Helicobacter pylori infection
Journal of Nanobiotechnology (2025)
-
Bioenergetic stress potentiates antimicrobial resistance and persistence
Nature Communications (2025)
-
Polymyxin B lethality requires energy-dependent outer membrane disruption
Nature Microbiology (2025)


