Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of bacterial metabolism in antimicrobial resistance

Abstract

The relationship between bacterial metabolism and antibiotic treatment is complex. On the one hand, antibiotics leverage cell metabolism to function. On the other hand, increasing research has highlighted that the metabolic state of the cell also impacts all aspects of antibiotic biology, from drug efficacy to the evolution of antimicrobial resistance (AMR). Given that AMR is a growing threat to the current global antibiotic arsenal and ability to treat infectious diseases, understanding these relationships is key to improving both public and human health. However, quantifying the contribution of metabolism to antibiotic activity and subsequent bacterial evolution has often proven challenging. In this Review, we discuss the complex and often bidirectional relationships between metabolism and the various facets of antibiotic treatment and response. We first summarize how antibiotics leverage metabolism for their function. We then focus on the converse of this relationship by specifically delineating the unique contribution of metabolism to three distinct but related arms of antibiotic biology: antibiotic efficacy, AMR evolution and AMR mechanisms. Finally, we note the relevance of metabolism in clinical contexts and explore the future of metabolic-based strategies for personalized antimicrobial therapies. A deeper understanding of these connections is crucial for the broader scientific community to address the growing crisis of AMR and develop future effective therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interactions between antibiotics and metabolism.
Fig. 2: Bactericidal and bacteriostatic antibiotics leverage metabolism for their function.
Fig. 3: The unique impact of metabolism on antibiotic resistance, tolerance and lethality in Mycobacterium tuberculosis.
Fig. 4: Unique properties of biofilms confer antibiotic tolerance via altered metabolism.
Fig. 5: Metabolism promotes antimicrobial resistance evolution via its effect on conjugation.
Fig. 6: Classic and metabolic mechanisms of antimicrobial resistance.

Similar content being viewed by others

References

  1. Hutchings, M. I., Truman, A. W. & Wilkinson, B. Antibiotics: past, present and future. Curr. Opin. Microbiology 51, 72–80 (2019).

    Article  CAS  Google Scholar 

  2. Mancuso, G., Midiri, A., Gerace, E. & Biondo, C. Bacterial antibiotic resistance: the most critical pathogens. Pathogens https://doi.org/10.3390/pathogens10101310 (2021).

  3. Naghavi, M. et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet 404, 1199–1226 (2024).

    Article  Google Scholar 

  4. Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Bhargava, P. & Collins, J. J. Boosting bacterial metabolism to combat antibiotic resistance. Cell Metab. 21, 154–155 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, Y., Yang, K., Zhang, H., Jia, Y. & Wang, Z. Combating antibiotic tolerance through activating bacterial metabolism. Front. Microbiol. 11, 577564 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kitzenberg, D. A. et al. Adenosine awakens metabolism to enhance growth-independent killing of tolerant and persister bacteria across multiple classes of antibiotics. mBio 13, e00480–e00522 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stokes, J. M., Lopatkin, A. J., Lobritz, M. A. & Collins, J. J. Bacterial metabolism and antibiotic efficacy. Cell Metab. 30, 251–259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hooper, D. C. & Jacoby, G. A. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb. Perspect. Med. 6, a025320 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gutierrez, A. et al. Understanding and sensitizing density-dependent persistence to quinolone antibiotics. Mol. Cell 68, 1147–1154.e3 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Krause, K. M., Serio, A. W., Kane, T. R. & Connolly, L. E. Aminoglycosides: an overview. Cold Spring Harb. Perspect. Med. 6, a027029 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wohlgemuth, I. et al. Translation error clusters induced by aminoglycoside antibiotics. Nat. Commun. 12, 1830 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cabral, D. J. et al. Microbial metabolism modulates antibiotic susceptibility within the murine gut microbiome. Cell Metab. 30, 800–823 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mohiuddin, S. G., Ngo, H. & Orman, M. A. Unveiling the critical roles of cellular metabolism suppression in antibiotic tolerance. npj Antimicrob. Resist. 2, 1–10 (2024).

    Article  Google Scholar 

  15. Reese, A. T. et al. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. eLife 7, e35987 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. VanHook, A. M. Antibiotics directly affect host cell metabolism. Sci. Signal. 11, eaas9172 (2018).

    Article  Google Scholar 

  17. Lopatkin, A. J. et al. Bacterial metabolic state more accurately predicts antibiotic lethality than growth rate. Nat. Microbiol. 4, 2109–2117 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Baquero, F. & Levin, B. R. Proximate and ultimate causes of the bactericidal action of antibiotics. Nat. Rev. Microbiol. 19, 123–132 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Cho, H., Uehara, T. & Bernhardt, T. G. β-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159, 1300–1311 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dawan, J. & Ahn, J. Bacterial stress responses as potential targets in overcoming antibiotic resistance. Microorganisms 10, 1385 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qi, W. et al. The effect of the stringent response and oxidative stress response on fitness costs of de novo acquisition of antibiotic resistance. Int. J. Mol. Sci. 25, 2582 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawai, Y. et al. On the mechanisms of lysis triggered by perturbations of bacterial cell wall biosynthesis. Nat. Commun. 14, 4123 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dwyer, D. J. et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl Acad. Sci. USA 111, E2100–E2109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, Y. et al. Inhibitors of reactive oxygen species accumulation delay and/or reduce the lethality of several antistaphylococcal agents. Antimicrob. Agents Chemother. 56, 6048–6050 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rowan, A. D., Cabral, D. J. & Belenky, P. Bactericidal antibiotics induce programmed metabolic toxicity. Microb. Cell 3, 178–180 (2015).

    Article  Google Scholar 

  27. Qi, W., Jonker, M. J., de Leeuw, W., Brul, S. & Ter Kuile, B. H. Reactive oxygen species accelerate de novo acquisition of antibiotic resistance in E. coli. iScience 26, 108373 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kalghatgi, S. et al. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci. Transl. Med. 5, 192ra85 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zeng, S. et al. Isoniazid bactericidal activity involves electron transport chain perturbation. Antimicrob. Agents Chemother. 63, e01841–e01918 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lobritz, M. A. et al. Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl Acad. Sci. USA 112, 8173–8180 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, Z. et al. Droplet-based high-throughput single microbe RNA sequencing by smRandom-seq. Nat. Commun. 14, 5130 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lopatkin, A. J. et al. Clinically relevant mutations in core metabolic genes confer antibiotic resistance. Science 371, eaba0862 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shetty, A. & Dick, T. Mycobacterial cell wall synthesis inhibitors cause lethal ATP burst. Front. Microbiol. 9, 1898 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee, B. S. et al. Inhibitors of energy metabolism interfere with antibiotic-induced death in mycobacteria. J. Biol. Chem. 294, 1936–1943 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Wong, F. et al. Reactive metabolic byproducts contribute to antibiotic lethality under anaerobic conditions. Mol. Cell 82, 3499–3512 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang, J. H. et al. A white-box machine learning approach for revealing antibiotic mechanisms of action. Cell 177, 1649–1661 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hernandez, D. M. et al. Purine and pyrimidine synthesis differently affect the strength of the inoculum effect for aminoglycoside and β-lactam antibiotics. Microbiol. Spectr. 0, e01895–24 (2024).

    Google Scholar 

  38. Lin, X., Kang, L., Li, H. & Peng, X. Fluctuation of multiple metabolic pathways is required for Escherichia coli in response to chlortetracycline stress. Mol. Biosyst. 10, 901–908 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Loree, J. & Lappin, S. L. Bacteriostatic antibiotics. in: StatPearls. (StatPearls Publishing, 2024).

  40. Wald-Dickler, N., Holtom, P. & Spellberg, B. Busting the myth of “Static vs Cidal”: a systemic literature review. Clin. Infect. Dis. 66, 1470–1474 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Ishak, A., Mazonakis, N., Spernovasilis, N., Akinosoglou, K. & Tsioutis, C. Bactericidal versus bacteriostatic antibacterials: clinical significance, differences and synergistic potential in clinical practice. J. Antimicrob. Chemother. 80, 1–17 (2025).

    Article  CAS  PubMed  Google Scholar 

  42. Brauner, A., Fridman, O., Gefen, O. & Balaban, N. Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–330 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Lewis, K. Persister cells. Annu. Rev. Microbiol. 64, 357–372 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Yuan, S. et al. Molecular mechanism and application of emerging technologies in study of bacterial persisters. BMC Microbiol. 24, 480 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Paul, P., Sahu, B. R. & Suar, M. Plausible role of bacterial toxin–antitoxin system in persister cell formation and elimination. Mol. Oral. Microbiol. 34, 97–107 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Shi, W. et al. Pyrazinamide inhibits trans-translation in mycobacterium tuberculosis. Science 333, 1630–1632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, J., Ji, L., Shi, W., Xie, J. & Zhang, Y. Trans-translation mediates tolerance to multiple antibiotics and stresses in Escherichia coli. J. Antimicrob. Chemother, 68, 2477–2481 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Wood, W. N., Mohler, K., Rinehart, J. & Ibba, M. Deacylated tRNA accumulation is a trigger for bacterial antibiotic persistence independent of the stringent response. mBio 12, e0113221 (2021).

    Article  PubMed  Google Scholar 

  49. Springer, M. T., Singh, V. K., Cheung, A. L., Donegan, N. P. & Chamberlain, N. R. Effect of clpP and clpC deletion on persister cell number in Staphylococcus aureus. J. Med. Microbiol. 65, 848–857 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Kwan, B. W., Valenta, J. A., Benedik, M. J. & Wood, T. K. Arrested protein synthesis increases persister-like cell formation. Antimicrob. Agents Chemother. 57, 1468–1473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, X., Liu, F., Ding, S., Shen, J. & Zhu, K. Sublethal levels of antibiotics promote bacterial persistence in epithelial cells. Adv. Sci. 7, 1900840 (2020).

    Article  CAS  Google Scholar 

  52. Harms, A., Maisonneuve, E. & Gerdes, K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354, aaf4268 (2016).

    Article  PubMed  Google Scholar 

  53. Niu, H., Gu, J. & Zhang, Y. Bacterial persisters: molecular mechanisms and therapeutic development. Sig Transduct. Target. Ther. 9, 1–32 (2024).

    Article  Google Scholar 

  54. Goossens, S. N., Sampson, S. L. & Van Rie, A. Mechanisms of drug-induced tolerance in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 34, e00141–20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Peterson, E. J. R., Ma, S., Sherman, D. R. & Baliga, N. S. Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis. Nat. Microbiol. 1, 16078 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Eng, R. H., Padberg, F. T., Smith, S. M., Tan, E. N. & Cherubin, C. E. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob. Agents Chemother. 35, 1824–1828 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, A. J. et al. Robust, linear correlations between growth rates and β-lactam–mediated lysis rates. Proc. Natl Acad. Sci. USA 115, 4069–4074 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tuomanen, E., Cozens, R., Tosch, W., Zak, O. & Tomasz, A. The rate of killing of Escherichia coli by β-lactam antibiotics is strictly proportional to the rate of bacterial growth. J. Gen. Microbiol. 132, 1297–1304 (1986).

    CAS  PubMed  Google Scholar 

  59. Low, E. W. & Chase, H. A. Reducing production of excess biomass during wastewater treatment. Water Res. 33, 1119–1132 (1999).

    Article  CAS  Google Scholar 

  60. Molenaar, D., van Berlo, R., de Ridder, D. & Teusink, B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol. Syst. Biol. 5, 323 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Erickson, D. W. et al. A global resource allocation strategy governs growth transition kinetics of Escherichia coli. Nature 551, 119–123 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bren, A., Glass, D. S., Kohanim, Y. K., Mayo, A. & Alon, U. Tradeoffs in bacterial physiology determine the efficiency of antibiotic killing. Proc. Natl Acad. Sci. USA 120, e2312651120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Allison, K. R., Brynildsen, M. P. & Collins, J. J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473, 216–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martínez, J. L. & Rojo, F. Metabolic regulation of antibiotic resistance. FEMS Microbiol. Rev. 35, 768–789 (2011).

    Article  PubMed  Google Scholar 

  65. Povolotsky, T. L., Keren-Paz, A. & Kolodkin-Gal, I. Metabolic microenvironments drive microbial differentiation and antibiotic resistance. Trends Genet. 37, 4–8 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Zampieri, M. et al. Metabolic constraints on the evolution of antibiotic resistance. Mol. Syst. Biol. 13, 917 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zampieri, M., Zimmermann, M., Claassen, M. & Sauer, U. Nontargeted metabolomics reveals the multilevel response to antibiotic perturbations. Cell Rep. 19, 1214–1228 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, J. H., Bening, S. C. & Collins, J. J. Antibiotic efficacy — context matters. Curr. Opin. Microbiol. 39, 73–80 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Belenky, P. et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep. 13, 968–980 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Diaz-Tang, G. et al. Growth productivity as a determinant of the inoculum effect for bactericidal antibiotics. Sci. Adv. 8, eadd0924 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lenhard, J. R. & Bulman, Z. P. Inoculum effect of β-lactam antibiotics. J. Antimicrob. Chemother. 74, 2825–2843 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Soriano, F., Santamaría, M., Ponte, C., Castilla, C. & Fernández-Roblas, R. In vivo significance of the inoculum effect of antibiotics on Escherichia coli. Eur. J. Clin. Microbiol. Infect. Dis. 7, 410–412 (1988).

    Article  CAS  PubMed  Google Scholar 

  73. Sibila, O. et al. Airway bacterial load and inhaled antibiotic response in bronchiectasis. Am. J. Respir. Crit. Care Med. 200, 33–41 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Stevens, D. L., Yan, S. & Bryant, A. E. Penicillin-binding protein expression at different growth stages determines penicillin efficacy in vitro and in vivo: an explanation for the inoculum effect. J. Infect. Dis. 167, 1401–1405 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Pankey, G. A. & Sabath, L. D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of gram-positive bacterial infections. Clin. Infect. Dis. 38, 864–870 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Tilanus, A. & Drusano, G. Inoculum-based dosing: a novel concept for combining time with concentration-dependent antibiotics to optimize clinical and microbiological outcomes in severe gram negative sepsis. Antibiotics 12, 1581 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Danjean, M. et al. Evaluation of the inoculum effect of new antibiotics against carbapenem-resistant enterobacterales. Clin. Microbiol. Infect. 28, 1503.e1–1503.e3 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Stevens, D. L., Maier, K. A., Laine, B. M. & Mitten, J. E. Comparison of clindamycin, rifampin, tetracycline, metronidazole, and penicillin for efficacy in prevention of experimental gas gangrene due to Clostridium perfringens. J. Infect. Dis. 155, 220–228 (1987).

    Article  CAS  PubMed  Google Scholar 

  79. Stevens, D. L., Gibbons, A. E., Bergstrom, R. & Winn, V. The Eagle effect revisited: efficacy of clindamycin, erythromycin, and penicillin in the treatment of streptococcal myositis. J. Infect. Dis. 158, 23–28 (1988).

    Article  CAS  PubMed  Google Scholar 

  80. Webster, C. M. et al. Proton motive force underpins respiration-mediated potentiation of aminoglycoside lethality in pathogenic Escherichia coli. Arch. Microbiol. 204, 120 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Meylan, S. et al. Carbon sources tune antibiotic susceptibility in pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem. Biol. 24, 195–206 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gill, W. P. et al. A replication clock for Mycobacterium tuberculosis. Nat. Med. 15, 211–214 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gomez, J. E. & McKinney, J. D. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis 84, 29–44 (2004).

    Article  PubMed  Google Scholar 

  84. Muñoz-Elías, E. J. et al. Replication dynamics of Mycobacterium tuberculosis in chronically infected mice. Infect. Immun. 73, 546–551 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Vilchèze, C. et al. Enhanced respiration prevents drug tolerance and drug resistance in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 114, 4495–4500 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nandakumar, M., Nathan, C. & Rhee, K. Y. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nat. Commun. 5, 4306 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Cheng, Z.-X. et al. The depressed central carbon and energy metabolisms is associated to the acquisition of levofloxacin resistance in Vibrio alginolyticus. J. Proteom. 181, 83–91 (2018).

    Article  CAS  Google Scholar 

  88. Ortiz-Severín, J. et al. Nutrient scarcity in a new defined medium reveals metabolic resistance to antibiotics in the fish pathogen Piscirickettsia salmonis. Front. Microbiol. 12, 734239 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Jamal, M. et al. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 81, 7–11 (2018).

    Article  PubMed  Google Scholar 

  90. López, D., Vlamakis, H. & Kolter, R. Biofilms. Cold Spring Harb. Perspect. Biol. 2, a000398 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lai, S., Tremblay, J. & Déziel, E. Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Env. Microbiol. 11, 126–136 (2009).

    Article  CAS  Google Scholar 

  92. Drenkard, E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect. 5, 1213–1219 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Stewart, P. S. & William Costerton, J. Antibiotic resistance of bacteria in biofilms. Lancet 358, 135–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Sauer, K. et al. The biofilm life cycle — expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 20, 608–620 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Okuda, K.-I. et al. Small-molecule-induced activation of cellular respiration inhibits biofilm formation and triggers metabolic remodeling in Staphylococcus aureus. mBio 13, e0084522 (2022).

    Article  PubMed  Google Scholar 

  96. Mashruwala, A. A., van de Guchte, A. & Boyd, J. M. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus. Elife 6, e23845 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Pisithkul, T. et al. Metabolic remodeling during biofilm development of Bacillus subtilis. mBio 10, e00623–e00719 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, Y., Xiao, P., Wang, Y. & Hao, Y. Mechanisms and control measures of mature biofilm resistance to antimicrobial agents in the clinical context. ACS Omega 5, 22684–22690 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Irazoki, O., Campoy, S. & Barbé, J. The transient multidrug resistance phenotype of Salmonella enterica swarming cells is abolished by sub-inhibitory concentrations of antimicrobial compounds. Front. Microbiol. 8, 1360 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yeung, A. T. Y., Bains, M. & Hancock, R. E. W. The sensor kinase CbrA is a global regulator that modulates metabolism, virulence, and antibiotic resistance in Pseudomonas aeruginosa. J. Bacteriol. 193, 918–931 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Kim, W. & Surette, M. G. Metabolic differentiation in actively swarming Salmonella. Mol. Microbiol. 54, 702–714 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Armitage, J. P. Changes in metabolic activity of proteus mirabilis during swarming. Microbiology 125, 445–450 (1981).

    Article  CAS  Google Scholar 

  103. Yong, Y.-C. & Zhong, J.-J. Impacts of quorum sensing on microbial metabolism and human health. Adv. Biochem. Eng. Biotechnol. 131, 25–61 (2013).

    CAS  PubMed  Google Scholar 

  104. Boyle, K. E., Monaco, H., van Ditmarsch, D., Deforet, M. & Xavier, J. B. Integration of metabolic and quorum sensing signals governing the decision to cooperate in a bacterial social trait. PLOS Comput. Biol. 11, e1004279 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yan, J., Monaco, H. & Xavier, J. B. The ultimate guide to bacterial swarming: an experimental model to study the evolution of cooperative behavior. Annu. Rev. Microbiology 73, 293–312 (2019).

    Article  CAS  Google Scholar 

  106. An, J. H., Goo, E., Kim, H., Seo, Y.-S. & Hwang, I. Bacterial quorum sensing and metabolic slowing in a cooperative population. Proc. Natl Acad. Sci. USA 111, 14912–14917 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Goo, E., An, J. H., Kang, Y. & Hwang, I. Control of bacterial metabolism by quorum sensing. Trends Microbiol. 23, 567–576 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Pribis, J. P., Zhai, Y., Hastings, P. J. & Rosenberg, S. M. Stress-induced mutagenesis, gambler cells, and stealth targeting antibiotic-induced evolution. mBio 13, e01074–22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Tran, T. T. et al. Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids. mBio 4, e00281–e00313 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Piddock, L. J. V. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev. 19, 382–402 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Livermore, D. M. Defining an extended-spectrum β-lactamase. Clin. Microbiol. Infect. 14, 3–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Kohanski, M. A., DePristo, M. A. & Collins, J. J. Sub-lethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol. Cell 37, 311–320 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Eliopoulos, G. M. & Blázquez, J. Hypermutation as a factor contributing to the acquisition of antimicrobial resistance. Clin. Infect. Dis. 37, 1201–1209 (2003).

    Article  Google Scholar 

  114. Radman, M. Enzymes of evolutionary change. Nature 401, 866–869 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Martinez, J. L. & Baquero, F. Mutation frequencies and antibiotic resistance. Antimicrob. Agents Chemother. 44, 1771–1777 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rosenberg, S. M. Evolving responsively: adaptive mutation. Nat. Rev. Genet. 2, 504–515 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Revitt-Mills, S. A. & Robinson, A. Antibiotic-induced mutagenesis: under the microscope. Front. Microbiol. 11, 585175 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Carvajal-Garcia, J., Samadpour, A. N., Hernandez Viera, A. J. & Merrikh, H. Oxidative stress drives mutagenesis through transcription-coupled repair in bacteria. Proc. Natl Acad. Sci. USA 120, e2300761120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rodríguez-Rojas, A., Makarova, O. & Rolff, J. Antimicrobials, stress and mutagenesis. PLOS Pathog. 10, e1004445 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Bernier, S. P. et al. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet. 9, e1003144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Smith, T., Wolff, K. A. & Nguyen, L. Molecular biology of drug resistance in Mycobacterium tuberculosis. Curr. Top. Microbiol. Immunol. 374, 53–80 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Tao, S., Chen, H., Li, N., Wang, T. & Liang, W. The spread of antibiotic resistance genes in vivo model. Can. J. Infect. Dis. Med. Microbiol. 2022, 3348695 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Graf, F. E., Palm, M., Warringer, J. & Farewell, A. Inhibiting conjugation as a tool in the fight against antibiotic resistance. Drug. Dev. Res. 80, 19–23 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Redondo-Salvo, S. et al. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat. Commun. 11, 3602 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lopatkin, A. J. et al. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat. Commun. 8, 1689 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Sharma, D., Misba, L. & Khan, A. U. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control. 8, 76 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Madsen, J. S., Burmølle, M., Hansen, L. H. & Sørensen, S. J. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol. Med. Microbiol. 65, 183–195 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Savage, V. J., Chopra, I. & O’Neill, A. J. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob. Agents Chemother. 57, 1968–1970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Curtsinger, H. D., Martínez-Absalón, S., Liu, Y. & Lopatkin, A. J. The metabolic burden associated with plasmid acquisition: an assessment of the unrecognized benefits to host cells. Bioessays 47, e2400164 (2024).

    Article  PubMed  Google Scholar 

  130. Lopatkin, A. J. et al. Antibiotics as a selective driver for conjugation dynamics. Nat. Microbiol. 1, 16044 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sysoeva, T. A., Kim, Y., Rodriguez, J., Lopatkin, A. J. & You, L. Growth-stage-dependent regulation of conjugation. AIChE J. 66, e16848 (2020).

    Article  CAS  Google Scholar 

  132. Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl Acad. Sci. USA 96, 3801–3806 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lamberte, L. E. et al. Horizontally acquired AT-rich genes in Escherichia coli cause toxicity by sequestering RNA polymerase. Nat. Microbiol. 2, 16249 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lynch, M. & Marinov, G. K. The bioenergetic costs of a gene. Proc. Natl Acad. Sci. USA 112, 15690–15695 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pál, C., Papp, B. & Lercher, M. J. Horizontal gene transfer depends on gene content of the host. Bioinformatics 21, ii222–ii223 (2005).

    Article  PubMed  Google Scholar 

  136. Tuller, T. et al. Association between translation efficiency and horizontal gene transfer within microbial communities. Nucleic Acids Res. 39, 4743–4755 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ahmad, M. et al. Tradeoff between lag time and growth rate drives the plasmid acquisition cost. Nat. Commun. 14, 2343 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Prensky, H., Gomez‐Simmonds, A., Uhlemann, A. & Lopatkin, A. J. Conjugation dynamics depend on both the plasmid acquisition cost and the fitness cost. Mol. Syst. Biol. 17, e9913 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  139. San Millan, A. & MacLean, R. C. Fitness costs of plasmids: a limit to plasmid transmission. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MTBP-0016-2017 (2017).

  140. Hall, J. P. J. et al. Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLOS Biol. 19, e3001225 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Harrison, E. & Brockhurst, M. A. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol. 20, 262–267 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Vogwill, T. & MacLean, R. C. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evolut. Appl. 8, 284–295 (2015).

    Article  Google Scholar 

  143. Shanker, E. & Federle, M. J. Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes 8, 15 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Suckow, G., Seitz, P. & Blokesch, M. Quorum sensing contributes to natural transformation of vibrio cholerae in a species-specific manner. J. Bacteriol. 193, 4914–4924 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Leclerc, Q. J., Wildfire, J., Gupta, A., Lindsay, J. A. & Knight, G. M. Growth-dependent predation and generalized transduction of antimicrobial resistance by bacteriophage. mSystems 7, e0013522 (2022).

    Article  PubMed  Google Scholar 

  146. Levin-Reisman, I. et al. Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826–830 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Zheng, E. J. et al. Modulating the evolutionary trajectory of tolerance using antibiotics with different metabolic dependencies. Nat. Commun. 13, 2525 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Santi, I., Manfredi, P., Maffei, E., Egli, A. & Jenal, U. Evolution of antibiotic tolerance shapes resistance development in chronic Pseudomonas aeruginosa infections. mBio 12, e03482–20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liu, J., Gefen, O., Ronin, I., Bar-Meir, M. & Balaban, N. Q. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 367, 200–204 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Palomino, A. et al. Metabolic genes on conjugative plasmids are highly prevalent in Escherichia coli and can protect against antibiotic treatment. ISME J. 17, 151–162 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Brynildsen, M. P., Winkler, J. A., Spina, C. S., MacDonald, I. C. & Collins, J. J. Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nat. Biotechnol. 31, 160–165 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Masters, P. A., O’Bryan, T. A., Zurlo, J., Miller, D. Q. & Joshi, N. Trimethoprim-sulfamethoxazole revisited. Arch. Intern. Med. 163, 402–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Eliopoulos, G. M. & Huovinen, P. Resistance to trimethoprim-sulfamethoxazole. Clin. Infect. Dis. 32, 1608–1614 (2001).

    Article  Google Scholar 

  154. Munita, J. M. & Arias, C. A. Mechanisms of antibiotic resistance. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0016–2015 (2016).

  155. Nguyen, M. et al. Using machine learning to predict antimicrobial mics and associated genomic features for nontyphoidal salmonella. J. Clin. Microbiol. 57, e01260–18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Aduru, S. V. et al. Sub-inhibitory antibiotic treatment selects for enhanced metabolic efficiency. Microbiol. Spectr. 12, e03241–23 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Kenney, L. J. & Anand, G. S. EnvZ/OmpR two-component signaling: an archetype system that can function non-canonically. EcoSal. Plus https://doi.org/10.1128/ecosalplus.ESP-0001–2019 (2020).

  158. Perkins, A. E. & Nicholson, W. L. Uncovering new metabolic capabilities of bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants. J. Bacteriol. 190, 807–814 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Łapińska, U. et al. Fast bacterial growth reduces antibiotic accumulation and efficacy. eLife 11, e74062 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Singer, J. R. et al. Preventing dysbiosis of the neonatal mouse intestinal microbiome protects against late-onset sepsis. Nat. Med. 25, 1772–1782 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sun, L. et al. PDCD6 regulates lactate metabolism to modulate LC3-associated phagocytosis and antibacterial defense. Nat. Commun. 15, 10157 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Meier, K. H. U. et al. Metabolic landscape of the male mouse gut identifies different niches determined by microbial activities. Nat. Metab. 5, 968–980 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhang, T., Hasegawa, Y. & Waldor, M. K. Enteric bacterial infection stimulates remodelling of bile metabolites to promote intestinal homeostasis. Nat. Microbiol. 9, 3376–3390 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014).

    Article  PubMed  Google Scholar 

  165. Brown, K. et al. Microbiota alters the metabolome in an age- and sex- dependent manner in mice. Nat. Commun. 14, 1348 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Van Roy, Z. et al. Tissue niche influences immune and metabolic profiles to Staphylococcus aureus biofilm infection. Nat. Commun. 15, 8965 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Heim, C. E. et al. Lactate production by Staphylococcus aureus biofilm inhibits HDAC11 to reprogramme the host immune response during persistent infection. Nat. Microbiol. 5, 1271–1284 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wilde, A. D. et al. Bacterial hypoxic responses revealed as critical determinants of the host-pathogen outcome by TnSeq analysis of Staphylococcus aureus invasive infection. PLOS Pathog. 11, e1005341 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Bjarnsholt, T. et al. The importance of understanding the infectious microenvironment. Lancet Infect. Dis. 22, e88–e92 (2022).

    Article  CAS  PubMed  Google Scholar 

  170. Müller, D. N., Wilck, N., Haase, S., Kleinewietfeld, M. & Linker, R. A. Sodium in the microenvironment regulates immune responses and tissue homeostasis. Nat. Rev. Immunol. 19, 243–254 (2019).

    Article  PubMed  Google Scholar 

  171. DePas, W. H. et al. Exposing the three-dimensional biogeography and metabolic states of pathogens in cystic fibrosis sputum via hydrogel embedding, clearing, and rRNA labeling. mBio 7, e00796-16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Xu, Y. et al. In vivo gene expression in a Staphylococcus aureus prosthetic joint infection characterized by RNA sequencing and metabolomics: a pilot study. BMC Microbiol. 16, 80 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Goldmann, O. & Medina, E. Staphylococcus aureus strategies to evade the host acquired immune response. Int. J. Med. Microbiol. 308, 625–630 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Matsumoto, M. et al. Interaction between Staphylococcus Agr virulence and neutrophils regulates pathogen expansion in the skin. Cell Host Microbe 29, 930–940.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Beesetty, P. et al. Tissue specificity drives protective immunity against Staphylococcus aureus infection. Front. Immunol. 13, 795792 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Passalacqua, K. D., Charbonneau, M.-E. & O’Riordan, M. X. D. Bacterial metabolism shapes the host–pathogen interface. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0027–2015 (2016).

  177. Eisenreich, W., Heesemann, J., Rudel, T. & Goebel, W. Metabolic host responses to infection by intracellular bacterial pathogens. Front. Cell. Infect. Microbiol. 3, 24 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Kreimendahl, S. & Pernas, L. Metabolic immunity against microbes. Trends Cell Biol. 34, 496–508 (2024).

    Article  CAS  PubMed  Google Scholar 

  179. Troha, K. & Ayres, J. S. Metabolic adaptations to infections at the organismal level. Trends Immunol. 41, 113–125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhang, Y., Chen, R., Zhang, D., Qi, S. & Liu, Y. Metabolite interactions between host and microbiota during health and disease: which feeds the other? Biomed. Pharmacother. 160, 114295 (2023).

    Article  CAS  PubMed  Google Scholar 

  181. Eisenreich, W., Heesemann, J., Rudel, T. & Goebel, W. Metabolic adaptations of intracellullar bacterial pathogens and their mammalian host cells during infection (“Pathometabolism”). Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.mbp-0002–2014 (2015).

  182. Demangel, C. & Surace, L. Host–pathogen interactions from a metabolic perspective: methods of investigation. Microbes Infect. 26, 105267 (2024).

    Article  CAS  PubMed  Google Scholar 

  183. Murdoch, C. C. & Skaar, E. P. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 20, 657–670 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yang, J. H. et al. Antibiotic-induced changes to the host metabolic environment inhibit drug efficacy and alter immune function. Cell Host Microbe 22, 757–765 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Gehre, L. et al. Sequestration of host metabolism by an intracellular pathogen. eLife 5, e12552 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Chaukimath, P., Frankel, G. & Visweswariah, S. S. The metabolic impact of bacterial infection in the gut. FEBS J. 290, 3928–3945 (2023).

    Article  CAS  PubMed  Google Scholar 

  187. Jansma, J. & El Aidy, S. Understanding the host-microbe interactions using metabolic modeling. Microbiome 9, 16 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Howden, B. P. et al. Staphylococcus aureus host interactions and adaptation. Nat. Rev. Microbiol. 21, 380–395 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ribet, D. & Cossart, P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 17, 173–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Schaible, B., Taylor, C. T. & Schaffer, K. Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrob. Agents Chemother. 56, 2114–2118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hull, R. C. et al. Antibiotics limit adaptation of drug-resistant Staphylococcus aureus to hypoxia. Antimicrob. Agents Chemother. 66, e00926–22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Hajdamowicz, N. H., Hull, R. C., Foster, S. J. & Condliffe, A. M. The impact of hypoxia on the host–pathogen interaction between neutrophils and Staphylococcus aureus. Int. J. Mol. Sci. 20, 5561 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Alteri, C. J. & Mobley, H. L. T. Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Curr. Opin. Microbiol. 15, 3–9 (2012).

    Article  CAS  PubMed  Google Scholar 

  194. Mann, R., Mediati, D. G., Duggin, I. G., Harry, E. J. & Bottomley, A. L. Metabolic adaptations of uropathogenic E. coli in the urinary tract. Front. Cell. Infect. Microbiol. 7, 241 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Chan, C. C. Y. & Lewis, I. A. Role of metabolism in uropathogenic Escherichia coli. Trends Microbiol. 30, 1174–1204 (2022).

    Article  CAS  PubMed  Google Scholar 

  196. AlRabiah, H., Allwood, J. W., Correa, E., Xu, Y. & Goodacre, R. pH plays a role in the mode of action of trimethoprim on Escherichia coli. PLoS ONE 13, e0200272 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Bhosle, A. et al. A strategic target rescues trimethoprim sensitivity in Escherichia coli. iScience 23, 100986 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Manna, M. S. et al. A trimethoprim derivative impedes antibiotic resistance evolution. Nat. Commun. 12, 2949 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Dolan, S. K. et al. Contextual flexibility in pseudomonas aeruginosa central carbon metabolism during growth in single carbon sources. mBio 11, e02684–19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Flynn, J. M., Niccum, D., Dunitz, J. M. & Hunter, R. C. Evidence and role for bacterial mucin degradation in cystic fibrosis airway disease. PLoS Pathog. 12, e1005846 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Chen, Y. et al. Repressed central carbon metabolism and its effect on related metabolic pathways in cefoperazone/sulbactam-resistant Pseudomonas aeruginosa. Front. Microbiol. 13, 847634 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Hoffman, C. L., Lalsiamthara, J. & Aballay, A. Host mucin is exploited by Pseudomonas aeruginosa to provide monosaccharides required for a successful infection. mBio 11, e00060-20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Rouillard, K. R., Kissner, W. J., Markovetz, M. R. & Hill, D. B. Effects of mucin and DNA concentrations in airway mucus on Pseudomonas aeruginosa biofilm recalcitrance. mSphere 7, e00291–22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Müller, L. et al. Human airway mucus alters susceptibility of Pseudomonas aeruginosa biofilms to tobramycin, but not colistin. J. Antimicrob. Chemother. 73, 2762–2769 (2018).

    Article  PubMed  Google Scholar 

  205. Wang, X. et al. Whole genome CRISPRi screening identifies druggable vulnerabilities in an isoniazid resistant strain of Mycobacterium tuberculosis. Nat. Commun. 15, 9791 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Dahiya, D. & Nigam, P. S. Antibiotic-therapy-induced gut dysbiosis affecting gut microbiota—brain axis and cognition: restoration by intake of probiotics and synbiotics. Int. J. Mol. Sci. 24, 3074 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Patangia, D. V., Ryan, C. A., Dempsey, E., Ross, R. P. & Stanton, C. Impact of antibiotics on the human microbiome and consequences for host health. MicrobiologyOpen 11, e1260 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Li, P. H., He, J. & Jia, P. W. The influence of gut microbiota on drug metabolism and toxicity. Expert. Opin. drug. Metab. Toxicol. 12, 31 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Gipson, K. S. et al. The Great ESKAPE: exploring the crossroads of bile and antibiotic resistance in bacterial pathogens. Infect. Immun. 88, e00865–19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Nguyen, D. et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334, 982–986 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Su, Y.-B. et al. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria. Proc. Natl Acad. Sci. USA 115, E1578–E1587 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Yang, M.-J. et al. Boosted TCA cycle enhances survival of zebrafish to Vibrio alginolyticus infection. Virulence 9, 634–644 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Yang, M.-J. et al. Malate enhances survival of zebrafish against Vibrio alginolyticus infection in the same manner as taurine. Virulence 11, 349–364 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Li, L., Su, Y.-B., Peng, B., Peng, X.-X. & Li, H. Metabolic mechanism of colistin resistance and its reverting in Vibrio alginolyticus. Env. Microbiol. 22, 4295–4313 (2020).

    Article  CAS  Google Scholar 

  215. Radlinski, L. C. et al. Chemical induction of aminoglycoside uptake overcomes antibiotic tolerance and resistance in Staphylococcus aureus. Cell Chem. Biol. 26, 1355–1364.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Peng, B. et al. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab. 21, 249–262 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. Duan, X. et al. I-Serine potentiates fluoroquinolone activity against Escherichia coli by enhancing endogenous reactive oxygen species production. J. Antimicrob. Chemother. 71, 2192–2199 (2016).

    Article  PubMed  Google Scholar 

  218. Chen, X.-H. et al. Exogenous I-valine promotes phagocytosis to kill multidrug-resistant bacterial pathogens. Front. Immunol. 8, 207 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Chakraborty, N. et al. Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. J. Nanobiotechnol. 20, 375 (2022).

    Article  CAS  Google Scholar 

  220. Holbein, B. E., Ang, M. T. C., Allan, D. S., Chen, W. & Lehmann, C. Iron-withdrawing anti-infectives for new host-directed therapies based on iron dependence, the Achilles’ heel of antibiotic-resistant microbes. Env. Chem. Lett. 19, 2789–2808 (2021).

    Article  CAS  Google Scholar 

  221. Zhou, Y.-J. et al. Hexadentate 3-hydroxypyridin-4-ones with high iron(III) affinity: design, synthesis and inhibition on methicillin resistant Staphylococcus aureus and Pseudomonas strains. Eur. J. Med. Chem. 94, 8–21 (2015).

    Article  CAS  PubMed  Google Scholar 

  222. Workman, D. G., Hunter, M., Dover, L. G. & Tétard, D. Synthesis of novel Iron(III) chelators based on triaza macrocycle backbone and 1-hydroxy-2(H)-pyridin-2-one coordinating groups and their evaluation as antimicrobial agents. J. Inorg. Biochem. 160, 49–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  223. Parquet, M. D. C., Savage, K. A., Allan, D. S., Davidson, R. J. & Holbein, B. E. Novel iron-chelator DIBI inhibits Staphylococcus aureus growth, suppresses experimental MRSA infection in mice and enhances the activities of diverse antibiotics in vitro. Front. Microbiol. 9, 1811 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Allan, D. S., Parquet, M. D. C., Savage, K. A. & Holbein, B. E. Iron sequestrant DIBI, a potential alternative for nares decolonization of methicillin-resistant Staphylococcus aureus, is anti-infective and inhibitory for mupirocin-resistant isolates. Antimicrob. Agents Chemother. 64, e02353–19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Parquet, M. D. C. et al. Antibiotic-resistant acinetobacter baumannii is susceptible to the novel iron-sequestering anti-infective DIBI in vitro and in experimental pneumonia in mice. Antimicrob. Agents Chemother. 63, e00855–19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Abbina, S., Gill, A., Mathew, S., Abbasi, U. & Kizhakkedathu, J. N. Polyglycerol-based macromolecular iron chelator adjuvants for antibiotics to treat drug-resistant bacteria. ACS Appl. Mater. Interfaces 12, 37834–37844 (2020).

    Article  CAS  PubMed  Google Scholar 

  227. Chitambar, C. R. Gallium and its competing roles with iron in biological systems. Biochim. Biophys. Acta 1863, 2044–2053 (2016).

    Article  CAS  PubMed  Google Scholar 

  228. Choi, S.-R., Switzer, B., Britigan, B. E. & Narayanasamy, P. Gallium porphyrin and gallium nitrate synergistically inhibit mycobacterial species by targeting different aspects of iron/heme metabolism. ACS Infect. Dis. 6, 2582–2591 (2020).

    Article  CAS  PubMed  Google Scholar 

  229. Hijazi, S. et al. Antimicrobial activity of gallium compounds on ESKAPE pathogens. Front. Cell Infect. Microbiol. 8, 316 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Choi, S.-R., Britigan, B. E. & Narayanasamy, P. Dual inhibition of Klebsiella pneumoniae and Pseudomonas aeruginosa iron metabolism using gallium porphyrin and gallium nitrate. ACS Infect. Dis. 5, 1559–1569 (2019).

    Article  CAS  PubMed  Google Scholar 

  231. Choi, S.-R., Britigan, B. E. & Narayanasamy, P. Iron/heme metabolism-targeted gallium(III) nanoparticles are active against extracellular and intracellular Pseudomonas aeruginosa and Acinetobacter baumannii. Antimicrob. Agents Chemother. 63, e02643–18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Choi, S.-R., Talmon, G. A., Britigan, B. E. & Narayanasamy, P. Nanoparticulate β-cyclodextrin with gallium tetraphenylporphyrin demonstrates in vitro and in vivo antimicrobial efficacy against Mycobacteroides abscessus and Mycobacterium avium. ACS Infect. Dis. 7, 2299–2309 (2021).

    Article  CAS  PubMed  Google Scholar 

  233. Centola, G. et al. Gallium(III)-salophen as a dual inhibitor of Pseudomonas aeruginosa heme sensing and iron acquisition. ACS Infect. Dis. 6, 2073–2085 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Baker, J. M., Baba-Dikwa, A., Shah, R., Lea, S. & Singh, D. Gallium protoporphyrin as an antimicrobial for non-typeable Haemophilus influenzae in COPD patients. Life Sci. 305, 120794 (2022).

    Article  CAS  PubMed  Google Scholar 

  235. Goss, C. H. et al. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections. Sci. Transl. Med. 10, eaat7520 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Costabile, G. et al. Boosting lung accumulation of gallium with inhalable nano-embedded microparticles for the treatment of bacterial pneumonia. Int. J. Pharm. 629, 122400 (2022).

    Article  CAS  PubMed  Google Scholar 

  237. Zheng, H. et al. Gallium ions incorporated silk fibroin hydrogel with antibacterial efficacy for promoting healing of Pseudomonas aeruginosa-infected wound. Front. Chem. 10, 1017548 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Qin, J. et al. Gallium(III)-mediated dual-cross-linked alginate hydrogels with antibacterial properties for promoting infected wound healing. ACS Appl. Mater. Interfaces 14, 22426–22442 (2022).

    Article  CAS  PubMed  Google Scholar 

  239. Li, F., Liu, F., Huang, K. & Yang, S. Advancement of gallium and gallium-based compounds as antimicrobial agents. Front. Bioeng. Biotechnol. 10, 827960 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Chitambar, C. R. The therapeutic potential of iron-targeting gallium compounds in human disease: from basic research to clinical application. Pharmacol. Res. 115, 56–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  241. Doern, C. D. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J. Clin. Microbiol. 52, 4124–4128 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Doern, G. V. & Brecher, S. M. The clinical predictive value (or lack thereof) of the results of in vitro antimicrobial susceptibility tests. J. Clin. Microbiol. 49, S11–S14 (2011).

    Article  PubMed Central  Google Scholar 

  243. Ersoy, S. C. et al. Correcting a fundamental flaw in the paradigm for antimicrobial susceptibility testing. EBioMedicine 20, 173–181 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Mu, C. & Zhu, W. Antibiotic effects on gut microbiota, metabolism, and beyond. Appl. Microbiol. Biotechnol. 103, 9277–9285 (2019).

    Article  CAS  PubMed  Google Scholar 

  245. Olishevska, S., Nickzad, A. & Déziel, E. Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Appl. Microbiol. Biotechnol. 103, 1189–1215 (2019).

    Article  CAS  PubMed  Google Scholar 

  246. McCaughey, L. C., Ritchie, N. D., Douce, G. R., Evans, T. J. & Walker, D. Efficacy of species-specific protein antibiotics in a murine model of acute Pseudomonas aeruginosa lung infection. Sci. Rep. 6, 30201 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Fernández, L., Delgado, S., Herrero, H., Maldonado, A. & Rodríguez, J. M. The bacteriocin nisin, an effective agent for the treatment of Staphylococcal mastitis during lactation. J. Hum. Lact. 24, 311–316 (2008).

    Article  PubMed  Google Scholar 

  248. Kitching, M. et al. A live bio-therapeutic for mastitis, containing lactococcus lactis DPC3147 with comparable efficacy to antibiotic treatment. Front. Microbiol. 10, 2220 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Mori, M., Hwa, T., Martin, O. C., Martino, A. D. & Marinari, E. Constrained allocation flux balance analysis. PLOS Comput. Biol. 12, e1004913 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Lopatkin, A. J. & Yang, J. H. Digital insights into nucleotide metabolism and antibiotic treatment failure. Front. Digit. Health 3, 58348 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health awards 1R35GM150871-01 (A.J.L.) and R15AI159902-01A1 (R.P.S. and A.J.L.), and the Pew Charitable Trust Foundation (A.J.L.).

Author information

Authors and Affiliations

Authors

Contributions

M.A., R.P.S., Z.Z. and A.J.L. researched data for the article. M.A., S.V.A. and A.J.L. contributed substantially to discussion of the content. M.A. and A.J.L. wrote the article. M.A., R.P.S., Z.Z. and A.J.L. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Allison J. Lopatkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Jessica Blair, Peter Belenky and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M., Aduru, S.V., Smith, R.P. et al. The role of bacterial metabolism in antimicrobial resistance. Nat Rev Microbiol 23, 439–454 (2025). https://doi.org/10.1038/s41579-025-01155-0

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-025-01155-0

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology