Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The roles of tertiary lymphoid structures in chronic diseases

Abstract

Tertiary lymphoid structures (TLSs) are ectopic lymphoid tissues that drive antigen-specific immune responses at sites of chronic inflammation. Unlike secondary lymphoid organs such as lymph nodes, TLSs lack capsules and have their own unique characteristics and functions. The presumed influence of TLSs on the disease course has led to widespread interest in obtaining a better understanding of their biology and function. Studies using single-cell analyses have suggested heterogeneity in TLS composition and phenotype, and consequently, functional correlates with disease progression are sometimes conflicting. The presence of TLSs correlates with a favourable disease course in cancer and infection. Conversely, in autoimmune diseases and chronic age-related inflammatory diseases including chronic kidney disease, the presence of TLSs is associated with a more severe disease course. However, the detailed mechanisms that underlie these clinical associations are not fully understood. To what extent the mechanisms of TLS development and maturation are shared across organs and diseases is also still obscure. Improved understanding of TLS development and function at the cellular and molecular levels may enable the exploitation of these structures to improve therapies for chronic diseases, including chronic kidney disease.

Key points

  • Tertiary lymphoid structures (TLSs) are organized lymphoid aggregates that develop in perivascular areas in response to disturbed tissue homeostasis.

  • TLSs serve as local immune niches to promote adaptive immunity; their unencapsulated structure enables direct exposure to diverse stimuli from an inflamed environment.

  • The development of TLSs in different organs involves common mechanisms that are presumably regulated by tissue-specific cues.

  • The presence of TLSs correlates with a favourable disease course in many types of cancer and infection.

  • In autoimmunity, chronic inflammation and ageing, the presence of TLSs correlates with pathological conditions and a more severe disease course.

  • Functional characterization of TLSs in human diseases and the development of interventions to induce or reduce TLSs could lead to promising therapeutic avenues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural differences between secondary lymphoid organs and tertiary lymphoid structures.
Fig. 2: Maturation of tertiary lymphoid structures.
Fig. 3: Presence of tertiary lymphoid structures in different tumour types.

Similar content being viewed by others

References

  1. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Antonioli, L. et al. Ectopic lymphoid organs and immune-mediated diseases: molecular basis for pharmacological approaches. Trends Mol. Med. 26, 1021–1033 (2020).

    Article  PubMed  Google Scholar 

  3. Schumacher, T. N. & Thommen, D. S. Tertiary lymphoid structures in cancer. Science 375, eabf9419 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Sato, Y. & Yanagita, M. Immunology of the ageing kidney. Nat. Rev. Nephrol. 15, 625–640 (2019).

    Article  PubMed  Google Scholar 

  5. Gago da Graca, C., van Baarsen, L. G. M. & Mebius, R. E. Tertiary lymphoid structures: diversity in their development, composition, and role. J. Immunol. 206, 273–281 (2021).

    Article  PubMed  Google Scholar 

  6. Ruddle, N. H. Lymphatic vessels and tertiary lymphoid organs. J. Clin. Invest. 124, 953–959 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sato, Y. et al. Heterogeneous fibroblasts underlie age-dependent tertiary lymphoid tissues in the kidney. JCI Insight 1, e87680 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Camell, C. D. et al. Aging induces an Nlrp3 inflammasome-dependent expansion of adipose B cells that impairs metabolic homeostasis. Cell Metab. 30, 1024–1039 e1026 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nayar, S. et al. Immunofibroblasts are pivotal drivers of tertiary lymphoid structure formation and local pathology. Proc. Natl Acad. Sci. USA 116, 13490–13497 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Sato, Y. et al. CD153/CD30 signaling promotes age-dependent tertiary lymphoid tissue expansion and kidney injury. J. Clin. Invest. 132, e146071 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mazor, R. D. et al. Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell 185, 1208–1222 e1221 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Meylan, M. et al. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 55, 527–541 e525 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Fridman, W. H. et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. 19, 441–457 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Moyron-Quiroz, J. E. et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat. Med. 10, 927–934 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Adachi, Y. et al. Distinct germinal center selection at local sites shapes memory B cell response to viral escape. J. Exp. Med. 212, 1709–1723 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Humby, F. et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 6, e1 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cippa, P. E. et al. A late B lymphocyte action in dysfunctional tissue repair following kidney injury and transplantation. Nat. Commun. 10, 1157 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sato, Y. et al. Developmental stages of tertiary lymphoid tissue reflect local injury and inflammation in mouse and human kidneys. Kidney Int. 98, 448–463 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Ligon, M. M. et al. Single cell and tissue-transcriptomic analysis of murine bladders reveals age- and TNFα-dependent but microbiota-independent tertiary lymphoid tissue formation. Mucosal Immunol. 13, 908–918 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh, P. et al. Lymphoid neogenesis and immune infiltration in aged liver. Hepatology 47, 1680–1690 (2008).

    Article  PubMed  Google Scholar 

  24. Sato, Y., Tamura, M. & Yanagita, M. Tertiary lymphoid tissues: a regional hub for kidney inflammation. Nephrol. Dial. Transpl. 38, 26–33 (2023).

    Article  Google Scholar 

  25. Rangel-Moreno, J. et al. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat. Immunol. 12, 639–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marinkovic, T. et al. Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid. J. Clin. Invest. 116, 2622–2632 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cupedo, T. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat. Immunol. 10, 66–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. van Dijk, N. et al. Preoperative ipilimumab plus nivolumab in locoregionally advanced urothelial cancer: the NABUCCO trial. Nat. Med. 26, 1839–1844 (2020).

    Article  PubMed  Google Scholar 

  29. Pikor, N. B. et al. Integration of Th17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate neuroinflammation. Immunity 43, 1160–1173 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Furtado, G. C. et al. TNFα-dependent development of lymphoid tissue in the absence of RORγt+ lymphoid tissue inducer cells. Mucosal Immunol. 7, 602–614 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Cyster, J. G., Hartley, S. B. & Goodnow, C. C. Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature 371, 389–395 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Cyster, J. G. & Goodnow, C. C. Antigen-induced exclusion from follicles and anergy are separate and complementary processes that influence peripheral B cell fate. Immunity 3, 691–701 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Le Pottier, L. et al. Ectopic germinal centers are rare in Sjogren’s syndrome salivary glands and do not exclude autoreactive B cells. J. Immunol. 182, 3540–3547 (2009).

    Article  PubMed  Google Scholar 

  34. Bombardieri, M., Lewis, M. & Pitzalis, C. Ectopic lymphoid neogenesis in rheumatic autoimmune diseases. Nat. Rev. Rheumatol. 13, 141–154 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Akama-Garren, E. H. & Carroll, M. C. T cell help in the autoreactive germinal center. Scand. J. Immunol. 95, e13192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moyron-Quiroz, J. E. et al. Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs. Immunity 25, 643–654 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Sarwal, M. et al. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N. Engl. J. Med. 349, 125–138 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Thaunat, O. et al. Lymphoid neogenesis in chronic rejection: evidence for a local humoral alloimmune response. Proc. Natl Acad. Sci. USA 102, 14723–14728 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bagnasco, S. M. et al. CD20-positive infiltrates in renal allograft biopsies with acute cellular rejection are not associated with worse graft survival. Am. J. Transpl. 7, 1968–1973 (2007).

    Article  CAS  Google Scholar 

  40. Scheepstra, C. et al. B cells in cluster or in a scattered pattern do not correlate with clinical outcome of renal allograft rejection. Transplantation 86, 772–778 (2008).

    Article  PubMed  Google Scholar 

  41. Silina, K. et al. Germinal centers determine the prognostic relevance of tertiary lymphoid structures and are impaired by corticosteroids in lung squamous cell carcinoma. Cancer Res. 78, 1308–1320 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Sautes-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Buckley, C. D., Barone, F., Nayar, S., Benezech, C. & Caamano, J. Stromal cells in chronic inflammation and tertiary lymphoid organ formation. Annu. Rev. Immunol. 33, 715–745 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, Y. H. et al. Advanced tertiary lymphoid tissues in protocol biopsies are associated with progressive graft dysfunction in kidney transplant recipients. J. Am. Soc. Nephrol. 33, 186–200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Masum, M. A. et al. Vasculature-associated lymphoid tissue: a unique tertiary lymphoid tissue correlates with renal lesions in lupus nephritis mouse model. Front. Immunol. 11, 595672 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grabner, R. et al. Lymphotoxin β receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J. Exp. Med. 206, 233–248 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dahlgren, M. W. & Molofsky, A. B. Adventitial cuffs: regional hubs for tissue immunity. Trends Immunol. 40, 877–887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dahlgren, M. W. et al. Adventitial stromal cells define group 2 innate lymphoid cell tissue niches. Immunity 50, 707–722 e706 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arai, H., Sato, Y. & Yanagita, M. Fibroblast heterogeneity and tertiary lymphoid tissues in the kidney. Immunol. Rev. 302, 196–210 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Krautler, N. J. et al. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 150, 194–206 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ichii, O. et al. Close association between altered urine-urothelium barrier and tertiary lymphoid structure formation in the renal pelvis during nephritis. J. Am. Soc. Nephrol. 33, 88–107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Denton, A. E. et al. Type I interferon induces CXCL13 to support ectopic germinal center formation. J. Exp. Med. 216, 621–637 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rodriguez, A. B. et al. Immune mechanisms orchestrate tertiary lymphoid structures in tumors via cancer-associated fibroblasts. Cell Rep. 36, 109422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sato, Y. & Yanagita, M. Functional heterogeneity of resident fibroblasts in the kidney. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 95, 468–478 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Barone, F. et al. IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs. Proc. Natl Acad. Sci. USA 112, 11024–11029 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yamamoto, S. & Yanagita, M. A novel pathological mechanism of tertiary lymphoid structure formation in the renal pelvis. J. Am. Soc. Nephrol. 33, 4–6 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fleig, S. et al. Loss of vascular endothelial notch signaling promotes spontaneous formation of tertiary lymphoid structures. Nat. Commun. 13, 2022 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Petrova, T. V. & Koh, G. Y. Biological functions of lymphatic vessels. Science 369, eaax4063 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Randolph, G. J., Angeli, V. & Swartz, M. A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5, 617–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Czepielewski, R. S. et al. Ileitis-associated tertiary lymphoid organs arise at lymphatic valves and impede mesenteric lymph flow in response to tumor necrosis factor. Immunity 54, 2795–2811.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shinoda, K. et al. Thy1+IL-7+ lymphatic endothelial cells in iBALT provide a survival niche for memory T-helper cells in allergic airway inflammation. Proc. Natl Acad. Sci. USA 113, E2842–E2851 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Miller, C. N. et al. IL-7 production in murine lymphatic endothelial cells and induction in the setting of peripheral lymphopenia. Int. Immunol. 25, 471–483 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Amezcua Vesely, M. C. et al. Effector TH17 cells give rise to long-lived TRM cells that are essential for an immediate response against bacterial infection. Cell 178, 1176–1188.e15 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Takemura, S. et al. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol. 167, 1072–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Chang, A. et al. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J. Immunol. 186, 1849–1860 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Korpos, E. et al. Identification and characterisation of tertiary lymphoid organs in human type 1 diabetes. Diabetologia 64, 1626–1641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gomez-Nguyen, A. et al. Chronic stress induces colonic tertiary lymphoid organ formation and protection against secondary injury through IL-23/IL-22 signaling. Proc. Natl Acad. Sci. USA 119, e2208160119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Armengol, M. P. et al. Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers. Am. J. Pathol. 159, 861–873 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lopez De Padilla, C. M., Vallejo, A. N., Lacomis, D., McNallan, K. & Reed, A. M. Extranodal lymphoid microstructures in inflamed muscle and disease severity of new-onset juvenile dermatomyositis. Arthritis Rheum. 60, 1160–1172 (2009).

    Article  PubMed  Google Scholar 

  70. Schonbeck, S., Padberg, F., Hohlfeld, R. & Wekerle, H. Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. A new model of myasthenia gravis. J. Clin. Invest. 90, 245–250 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cantaert, T. et al. B lymphocyte autoimmunity in rheumatoid synovitis is independent of ectopic lymphoid neogenesis. J. Immunol. 181, 785–794 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Canete, J. D. et al. Ectopic lymphoid neogenesis in psoriatic arthritis. Ann. Rheum. Dis. 66, 720–726 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Anders, H. J. et al. Lupus nephritis. Nat. Rev. Dis. Prim. 6, 7 (2020).

    Article  PubMed  Google Scholar 

  74. Yu, F. et al. Tubulointerstitial lesions of patients with lupus nephritis classified by the 2003 International Society of Nephrology and Renal Pathology Society system. Kidney Int. 77, 820–829 (2010).

    Article  PubMed  Google Scholar 

  75. Liarski, V. M. et al. Cell distance mapping identifies functional T follicular helper cells in inflamed human renal tissue. Sci. Transl. Med. 6, 230ra246 (2014).

    Article  Google Scholar 

  76. Yung, S., Tsang, R. C., Sun, Y., Leung, J. K. & Chan, T. M. Effect of human anti-DNA antibodies on proximal renal tubular epithelial cell cytokine expression: implications on tubulointerstitial inflammation in lupus nephritis. J. Am. Soc. Nephrol. 16, 3281–3294 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Jamaly, S., Rakaee, M., Abdi, R., Tsokos, G. C. & Fenton, K. A. Interplay of immune and kidney resident cells in the formation of tertiary lymphoid structures in lupus nephritis. Autoimmun. Rev. 20, 102980 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Stock, A. D. et al. Tertiary lymphoid structures in the choroid plexus in neuropsychiatric lupus. JCI Insight 4, 124203 (2019).

    Article  PubMed  Google Scholar 

  79. Rangel-Moreno, J. et al. Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J. Clin. Invest. 116, 3183–3194 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bugatti, S. et al. Involvement of subchondral bone marrow in rheumatoid arthritis: lymphoid neogenesis and in situ relationship to subchondral bone marrow osteoclast recruitment. Arthritis Rheum. 52, 3448–3459 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Luo, S. et al. Chronic inflammation: a common promoter in tertiary lymphoid organ neogenesis. Front. Immunol. 10, 2938 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Giannakis, M. et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 15, 857–865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Posch, F. et al. Maturation of tertiary lymphoid structures and recurrence of stage II and III colorectal cancer. Oncoimmunology 7, e1378844 (2018).

    Article  PubMed  Google Scholar 

  84. Rozek, L. S. et al. Tumor-infiltrating lymphocytes, Crohn’s-like lymphoid reaction, and survival from colorectal cancer. J. Natl Cancer Inst. 108, djw027 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pagliarulo, F. et al. Molecular, immunological, and clinical features associated with lymphoid neogenesis in muscle invasive bladder cancer. Front. Immunol. 12, 793992 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. A, J. G. et al. Germinal center reactions in tertiary lymphoid structures associate with neoantigen burden, humoral immunity and long-term survivorship in pancreatic cancer. Oncoimmunology 10, 1900635 (2021).

    Article  Google Scholar 

  87. Figenschau, S. L., Fismen, S., Fenton, K. A., Fenton, C. & Mortensen, E. S. Tertiary lymphoid structures are associated with higher tumor grade in primary operable breast cancer patients. BMC Cancer 15, 101 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lee, H. J. et al. Prognostic significance of tumor-infiltrating lymphocytes and the tertiary lymphoid structures in HER2-positive breast cancer treated with adjuvant trastuzumab. Am. J. Clin. Pathol. 144, 278–288 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Lee, S. J. et al. Expression of myxovirus resistance A (MxA) is associated with tumor-infiltrating lymphocytes in human epidermal growth factor receptor 2 (HER2)-positive breast cancers. Cancer Res. Treat. 49, 313–321 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Zou, Y., Zhao, J., Huang, F., Xiang, X. & Xia, Y. Decreased tertiary lymphoid structures in lung adenocarcinomas with ALK rearrangements. J. Clin. Med. 11, 5935 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ruffin, A. T. et al. B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma. Nat. Commun. 12, 3349 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wirsing, A. M., Rikardsen, O. G., Steigen, S. E., Uhlin-Hansen, L. & Hadler-Olsen, E. Characterisation and prognostic value of tertiary lymphoid structures in oral squamous cell carcinoma. BMC Clin. Pathol. 14, 38 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Sarma, K. P. The role of lymphoid reaction in bladder cancer. J. Urol. 104, 843–849 (1970).

    Article  CAS  PubMed  Google Scholar 

  94. Jiao, S. et al. Intratumor expanded T cell clones can be non-sentinel lymph node derived in breast cancer revealed by single-cell immune profiling. J. Immunother. Cancer 10, e003325 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Poschke, I. et al. Identification of a tumor-reactive T-cell repertoire in the immune infiltrate of patients with resectable pancreatic ductal adenocarcinoma. Oncoimmunology 5, e1240859 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Coronella-Wood, J. A. & Hersh, E. M. Naturally occurring B-cell responses to breast cancer. Cancer Immunol. Immunother. 52, 715–738 (2003).

    Article  PubMed  Google Scholar 

  97. Nzula, S., Going, J. J. & Stott, D. I. Antigen-driven clonal proliferation, somatic hypermutation, and selection of B lymphocytes infiltrating human ductal breast carcinomas. Cancer Res. 63, 3275–3280 (2003).

    CAS  PubMed  Google Scholar 

  98. Coronella, J. A. et al. Antigen-driven oligoclonal expansion of tumor-infiltrating B cells in infiltrating ductal carcinoma of the breast. J. Immunol. 169, 1829–1836 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Zhu, W. et al. A high density of tertiary lymphoid structure B cells in lung tumors is associated with increased CD4+ T cell receptor repertoire clonality. Oncoimmunology 4, e1051922 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Masuda, T. et al. Unique characteristics of tertiary lymphoid structures in kidney clear cell carcinoma: prognostic outcome and comparison with bladder cancer. J. Immunother. Cancer 10, e003883 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Li, H. et al. Existence of intratumoral tertiary lymphoid structures is associated with immune cells infiltration and predicts better prognosis in early-stage hepatocellular carcinoma. Aging 12, 3451–3472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wada, Y., Nakashima, O., Kutami, R., Yamamoto, O. & Kojiro, M. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology 27, 407–414 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Calderaro, J. et al. Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. J. Hepatol. 70, 58–65 (2019).

    Article  PubMed  Google Scholar 

  104. Finkin, S. et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat. Immunol. 16, 1235–1244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Remark, R. et al. Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin. Clin. Cancer Res. 19, 4079–4091 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Toulmonde, M. et al. Use of PD-1 targeting, macrophage infiltration, and IDO pathway activation in sarcomas: a phase 2 clinical trial. JAMA Oncol. 4, 93–97 (2018).

    Article  PubMed  Google Scholar 

  107. Italiano, A. et al. Pembrolizumab in soft-tissue sarcomas with tertiary lymphoid structures: a phase 2 PEMBROSARC trial cohort. Nat. Med. 28, 1199–1206 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Saerens, M. et al. Immune checkpoint inhibitors in treatment of soft-tissue sarcoma: a systematic review and meta-analysis. Eur. J. Cancer 152, 165–182 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Chen, L. et al. The immunosuppressive niche of soft-tissue sarcomas is sustained by tumor-associated macrophages and characterized by intratumoral tertiary lymphoid structures. Clin. Cancer Res. 26, 4018–4030 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gao, J. et al. Neoadjuvant PD-L1 plus CTLA-4 blockade in patients with cisplatin-ineligible operable high-risk urothelial carcinoma. Nat. Med. 26, 1845–1851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mori, T. et al. Tertiary lymphoid structures show infiltration of effective tumor-resident T cells in gastric cancer. Cancer Sci. 112, 1746–1757 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vanhersecke, L. et al. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nat. Cancer 2, 794–802 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614 e514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sweeney, K. J. et al. Tertiary lymphoid structures with overlapping histopathologic features of cutaneous marginal zone lymphoma during neoadjuvant cemiplimab therapy are associated with antitumor response. J. Cutan. Pathol. 48, 674–679 (2021).

    Article  PubMed  Google Scholar 

  116. Groeneveld, C. S. et al. Tertiary lymphoid structures marker CXCL13 is associated with better survival for patients with advanced-stage bladder cancer treated with immunotherapy. Eur. J. Cancer 148, 181–189 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Ukita, M. et al. CXCL13-producing CD4+ T cells accumulate in the early phase of tertiary lymphoid structures in ovarian cancer. JCI Insight 7, 157215 (2022).

    Article  Google Scholar 

  118. Yang, M. et al. CXCL13 shapes immunoactive tumor microenvironment and enhances the efficacy of PD-1 checkpoint blockade in high-grade serous ovarian cancer. J. Immunother. Cancer 9, e001136 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Filderman, J. N., Appleman, M., Chelvanambi, M., Taylor, J. L. & Storkus, W. J. STINGing the tumor microenvironment to promote therapeutic tertiary lymphoid structure development. Front. Immunol. 12, 690105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gallotta, M. et al. Inhaled TLR9 agonist renders lung tumors permissive to PD-1 blockade by promoting optimal CD4+ and CD8+ T-cell interplay. Cancer Res. 78, 4943–4956 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Huang, Y. et al. Dual-mechanism based CTLs infiltration enhancement initiated by Nano-sapper potentiates immunotherapy against immune-excluded tumors. Nat. Commun. 11, 622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Johansson-Percival, A. et al. De novo induction of intratumoral lymphoid structures and vessel normalization enhances immunotherapy in resistant tumors. Nat. Immunol. 18, 1207–1217 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Zhu, G. et al. Induction of tertiary lymphoid structures with antitumor function by a lymph node-derived stromal cell line. Front. Immunol. 9, 1609 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Delvecchio, F. R. et al. Pancreatic cancer chemotherapy is potentiated by induction of tertiary lymphoid structures in mice. Cell Mol. Gastroenterol. Hepatol. 12, 1543–1565 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ragusa, S. et al. Antiangiogenic immunotherapy suppresses desmoplastic and chemoresistant intestinal tumors in mice. J. Clin. Invest. 130, 1199–1216 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. van Hooren, L. et al. Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma. Nat. Commun. 12, 4127 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Castino, G. F. et al. Spatial distribution of B cells predicts prognosis in human pancreatic adenocarcinoma. Oncoimmunology 5, e1085147 (2016).

    Article  PubMed  Google Scholar 

  128. Blanchard, L. & Girard, J. P. High endothelial venules (HEVs) in immunity, inflammation and cancer. Angiogenesis 24, 719–753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hua, Y. et al. Cancer immunotherapies transition endothelial cells into HEVs that generate TCF1+ T lymphocyte niches through a feed-forward loop. Cancer Cell 40, 1600–1618.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Asrir, A. et al. Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy. Cancer Cell 40, 318–334.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Allen, E. et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 9, eaak9679 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Jiang, L. et al. Simultaneous targeting of primary tumor, draining lymph node, and distant metastases through high endothelial venule-targeted delivery. Nano Today 36, 101045 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Hewitt, R. J. & Lloyd, C. M. Regulation of immune responses by the airway epithelial cell landscape. Nat. Rev. Immunol. 21, 347–362 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Marin, N. D., Dunlap, M. D., Kaushal, D. & Khader, S. A. Friend or foe: the protective and pathological roles of inducible bronchus-associated lymphoid tissue in pulmonary diseases. J. Immunol. 202, 2519–2526 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Silva-Sanchez, A. & Randall, T. D. Role of iBALT in respiratory immunity. Curr. Top. Microbiol. Immunol. 426, 21–43 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Frija-Masson, J. et al. Bacteria-driven peribronchial lymphoid neogenesis in bronchiectasis and cystic fibrosis. Eur. Respir. J. 49, 1601873 (2017).

    Article  PubMed  Google Scholar 

  137. Orme, I. M., Robinson, R. T. & Cooper, A. M. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat. Immunol. 16, 57–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Gopal, R. et al. Interleukin-17-dependent CXCL13 mediates mucosal vaccine-induced immunity against tuberculosis. Mucosal Immunol. 6, 972–984 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kaushal, D. et al. Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis. Nat. Commun. 6, 8533 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Channappanavar, R., Fett, C., Zhao, J., Meyerholz, D. K. & Perlman, S. Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J. Virol. 88, 11034–11044 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  141. GeurtsvanKessel, C. H. et al. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J. Exp. Med. 206, 2339–2349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Gray, J. I. & Farber, D. L. Tissue-resident immune cells in humans. Annu. Rev. Immunol. 40, 195–220 (2022).

    Article  PubMed  Google Scholar 

  144. Swarnalekha, N. et al. T resident helper cells promote humoral responses in the lung. Sci. Immunol. 6, eabb6808 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Poon, M. M. L. et al. SARS-CoV-2 infection generates tissue-localized immunological memory in humans. Sci. Immunol. 6, eabl9105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ssemaganda, A. et al. Expansion of cytotoxic tissue-resident CD8+ T cells and CCR6+CD161+ CD4+ T cells in the nasal mucosa following mRNA COVID-19 vaccination. Nat. Commun. 13, 3357 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Szabo, P. A. et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity 54, 797–814.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhou, L. et al. Reversible CD8 T cell-neuron cross-talk causes aging-dependent neuronal regenerative decline. Science 376, eabd5926 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Sato, Y. & Yanagita, M. Immune cells and inflammation in AKI to CKD progression. Am. J. Physiol. Renal Physiol. 315, F1501–F1512 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Kuroda, E. et al. Inhaled fine particles induce alveolar macrophage death and interleukin-1α release to promote inducible bronchus-associated lymphoid tissue formation. Immunity 45, 1299–1310 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Conlon, T. M. et al. Inhibition of LTβR signalling activates WNT-induced regeneration in lung. Nature 588, 151–156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hogg, J. C. et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 350, 2645–2653 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Sullivan, J. L. et al. B Cell-adaptive immune profile in emphysema-predominant chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 200, 1434–1439 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Shikhagaie, M. M. et al. Neuropilin-1 is expressed on lymphoid tissue residing LTi-like group 3 innate lymphoid cells and associated with ectopic lymphoid aggregates. Cell Rep. 18, 1761–1773 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nakayama, T. et al. Th2 cells in health and disease. Annu. Rev. Immunol. 35, 53–84 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Morimoto, Y. et al. Amphiregulin-producing pathogenic memory T helper 2 cells instruct eosinophils to secrete osteopontin and facilitate airway fibrosis. Immunity 49, 134–150.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Ichikawa, T. et al. CD103hi Treg cells constrain lung fibrosis induced by CD103lo tissue-resident pathogenic CD4 T cells. Nat. Immunol. 20, 1469–1480 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Pei, G. et al. Renal interstitial infiltration and tertiary lymphoid organ neogenesis in IgA nephropathy. Clin. J. Am. Soc. Nephrol. 9, 255–264 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Togashi, R. et al. Tubulointerstitial B-cell infiltration and tertiary lymphoid tissue in adult-onset immunoglobulin A vasculitis with nephritis. Int. Urol. Nephrol. 55, 749–758 (2023).

    Article  CAS  PubMed  Google Scholar 

  160. Luo, R. et al. Tertiary lymphoid organs are associated with the progression of kidney damage and regulated by interleukin-17A. Theranostics 11, 117–131 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Miyanaga, T. et al. Tertiary lymphoid tissue in early-stage IgG4-related tubulointerstitial nephritis incidentally detected with a tumor lesion of the ureteropelvic junction: a case report. BMC Nephrol. 22, 34 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Singh, S. et al. Tertiary lymphoid structure signatures are associated with immune checkpoint inhibitor related acute interstitial nephritis. JCI Insight https://doi.org/10.1172/jci.insight.165108 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Heller, F. et al. The contribution of B cells to renal interstitial inflammation. Am. J. Pathol. 170, 457–468 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang, Z. F. et al. Characteristics and prognostic value of tertiary lymphoid organs in membranous nephropathy: a retrospective study. Front. Med. 8, 803929 (2021).

    Article  Google Scholar 

  165. Steinmetz, O. M. et al. Analysis and classification of B-cell infiltrates in lupus and ANCA-associated nephritis. Kidney Int. 74, 448–457 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Brix, S. R. et al. Organisation of lymphocytic infiltrates in ANCA-associated glomerulonephritis. Histopathology 72, 1093–1101 (2018).

    Article  PubMed  Google Scholar 

  167. Filippone, E. J. & Farber, J. L. The implications of B-lineage cells in kidney allografts. Transplantation 104, 2011–2023 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Thaunat, O. et al. Chronic rejection triggers the development of an aggressive intragraft immune response through recapitulation of lymphoid organogenesis. J. Immunol. 185, 717–728 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Kayler, L. K. et al. Acute cellular rejection with CD20-positive lymphoid clusters in kidney transplant patients following lymphocyte depletion. Am. J. Transpl. 7, 949–954 (2007).

    Article  CAS  Google Scholar 

  170. Hwang, H. S. et al. Clinical impacts of CD38+ B cells on acute cellular rejection with CD20+ B cells in renal allograft. Transplantation 89, 1489–1495 (2010).

    Article  PubMed  Google Scholar 

  171. Ishani, A. et al. Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 20, 223–228 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Sato, Y. & Yanagita, M. Renal anemia: from incurable to curable. Am. J. Physiol. Renal Physiol. 305, F1239–F1248 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Asada, N. et al. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J. Clin. Invest. 121, 3981–3990 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kaneko, K. et al. Lineage tracing analysis defines erythropoietin-producing cells as a distinct subpopulation of resident fibroblasts with unique behaviors. Kidney Int. 102, 280–292 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Tahir, S. et al. A CD153+CD4+ T follicular cell population with cell-senescence features plays a crucial role in lupus pathogenesis via osteopontin production. J. Immunol. 194, 5725–5735 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Fukushima, Y., Minato, N. & Hattori, M. The impact of senescence-associated T cells on immunosenescence and age-related disorders. Inflamm. Regen. 38, 24 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rubtsov, A. V. et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. Blood 118, 1305–1315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hao, Y., O’Neill, P., Naradikian, M. S., Scholz, J. L. & Cancro, M. P. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118, 1294–1304 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Manni, M. et al. Regulation of age-associated B cells by IRF5 in systemic autoimmunity. Nat. Immunol. 19, 407–419 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Fukushima, Y. et al. cis interaction of CD153 with TCR/CD3 is crucial for the pathogenic activation of senescence-associated T cells. Cell Rep. 40, 111373 (2022).

    Article  CAS  PubMed  Google Scholar 

  181. Huang, Y. et al. Identification of novel genes associated with renal tertiary lymphoid organ formation in aging mice. PLoS One 9, e91850 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Elyahu, Y. et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci. Adv. 5, eaaw8330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Rubtsova, K. et al. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity. J. Clin. Invest. 127, 1392–1404 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Nickerson, K. M. et al. Age-associated B cells are heterogeneous and dynamic drivers of autoimmunity in mice. J. Exp. Med. 220, e20221346 (2023).

    Article  CAS  PubMed  Google Scholar 

  185. Shirakawa, K. et al. Obesity accelerates T cell senescence in murine visceral adipose tissue. J. Clin. Invest. 126, 4626–4639 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Yoshida, S. et al. The CD153 vaccine is a senotherapeutic option for preventing the accumulation of senescent T cells in mice. Nat. Commun. 11, 2482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kusumbe, A. P. et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532, 380–384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Eil, R. et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537, 539–543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Binger, K. J. et al. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages. J. Clin. Invest. 125, 4223–4238 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518–522 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Rabb, H. et al. Inflammation in AKI: current understanding, key questions, and knowledge gaps. J. Am. Soc. Nephrol. 27, 371–379 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Nangaku, M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J. Am. Soc. Nephrol. 17, 17–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  194. Sato, Y., Takahashi, M. & Yanagita, M. Pathophysiology of AKI to CKD progression. Semin. Nephrol. 40, 206–215 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Pitzalis, C., Jones, G. W., Bombardieri, M. & Jones, S. A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14, 447–462 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. Drayton, D. L., Liao, S., Mounzer, R. H. & Ruddle, N. H. Lymphoid organ development: from ontogeny to neogenesis. Nat. Immunol. 7, 344–353 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and K.S. researched the data for the article. All authors contributed substantially to discussion of the content, and wrote the article. M.Y. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Motoko Yanagita.

Ethics declarations

Competing interests

M.Y. has received research grants from Mitsubishi Tanabe Pharma and Boehringer Ingelheim. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Reza Abdi, Kristin Fenton, A. Richard Kitching and George Tsokos for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, Y., Silina, K., van den Broek, M. et al. The roles of tertiary lymphoid structures in chronic diseases. Nat Rev Nephrol 19, 525–537 (2023). https://doi.org/10.1038/s41581-023-00706-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-023-00706-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing