Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A guide to studying 3D genome structure and dynamics in the kidney

Abstract

The human genome is tightly packed into the 3D environment of the cell nucleus. Rapidly evolving and sophisticated methods of mapping 3D genome architecture have shed light on fundamental principles of genome organization and gene regulation. The genome is physically organized on different scales, from individual genes to entire chromosomes. Nuclear landmarks such as the nuclear envelope and nucleoli have important roles in compartmentalizing the genome within the nucleus. Genome activity (for example, gene transcription) is also functionally partitioned within this 3D organization. Rather than being static, the 3D organization of the genome is tightly regulated over various time scales. These dynamic changes in genome structure over time represent the fourth dimension of the genome. Innovative methods have been used to map the dynamic regulation of genome structure during important cellular processes including organism development, responses to stimuli, cell division and senescence. Furthermore, disruptions to the 4D genome have been linked to various diseases, including of the kidney. As tools and approaches to studying the 4D genome become more readily available, future studies that apply these methods to study kidney biology will provide insights into kidney function in health and disease.

Key points

  • Technological innovations in sequencing-based and imaging-based approaches to mapping 3D genome architecture have led to numerous insights into the 3D organization of the genome and chromatin interactions with nuclear features.

  • Time course and live cell imaging experiments have been used to study changes in 3D genome structure over time, which represents the fourth dimension of the genome.

  • Within the nucleus, the genome is highly ordered on different scales from nucleosomes to chromatin loops and topologically associated domains, A and B compartments and chromosome territories; this 3D organization and its dynamic regulation have an impact on genome function and gene expression.

  • Induced changes in chromatin looping bring enhancers into proximity with promoters to activate gene transcription; single-cell methods have shown remarkable variation in genome topology and gene expression, but how this translates into stable organ-level phenotypes remains unclear.

  • Kidney cells have distinct 3D genome architectures that impact kidney-specific cellular responses to disease; kidney genome-wide association studies and expression quantitative trait loci analyses utilize 3D genome maps to link sequence variants to putative target genes and identify disease-causing mechanisms.

  • Intensive efforts are being made to extend 3D genome mapping technologies into single cells and intact tissues and to study genome architecture over time; application of these technologies to studies of kidney biology will lead to remarkable advances in understanding the role of the 4D genome in kidney health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In situ hybridization and proximity-based ligation approaches to studying 3D genome architecture.
Fig. 2: Strategies to study the 3D genome over time (the 4D genome).
Fig. 3: Organization of DNA at different scales within the interphase nucleus.
Fig. 4: Chromatin looping and gene regulation.
Fig. 5: Mechanisms by which a GWAS variant could affects target gene expression.

Similar content being viewed by others

References

  1. Yang, J. H. et al. Loss of epigenetic information as a cause of mammalian aging. Cell 186, 305–326.e27 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Krijger, P. H. & de Laat, W. Regulation of disease-associated gene expression in the 3D genome. Nat. Rev. Mol. Cell Biol. 17, 771–782 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lambert, S. A. et al. The human transcription factors. Cell 175, 598–599 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Kim, S. & Shendure, J. Mechanisms of interplay between transcription factors and the 3D genome. Mol. Cell 76, 306–319 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Dekker, J. et al. Spatial and temporal organization of the genome: current state and future aims of the 4D nucleome project. Mol. Cell 83, 2624–2640 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mescher, A. L. in: Junqueira’s Basic Histology: Text and Atlas, 17th Edition. (McGraw Hill, 2024).

  8. Markaki, Y. et al. Functional nuclear organization of transcription and DNA replication: a topographical marriage between chromatin domains and the interchromatin compartment. Cold Spring Harb. Symp. Quant. Biol. 75, 475–492 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Gall, J. G. & Pardue, M. L. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl Acad. Sci. USA 63, 378–383 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rudkin, G. T. & Stollar, B. D. High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature 265, 472–473 (1977).

    Article  CAS  PubMed  Google Scholar 

  11. Singer, R. H. & Ward, D. C. Actin gene expression visualized in chicken muscle tissue culture by using in situ hybridization with a biotinated nucleotide analog. Proc. Natl Acad. Sci. USA 79, 7331–7335 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tanner, M. et al. Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am. J. Pathol. 157, 1467–1472 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moyzis, R. K. et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl Acad. Sci. USA 85, 6622–6626 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rigby, P. W., Dieckmann, M., Rhodes, C. & Berg, P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113, 237–251 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Beliveau, B. J. et al. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl Acad. Sci. USA 109, 21301–21306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boyle, S., Rodesch, M. J., Halvensleben, H. A., Jeddeloh, J. A. & Bickmore, W. A. Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. Chromosome Res. 19, 901–909 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamada, N. A. et al. Visualization of fine-scale genomic structure by oligonucleotide-based high-resolution FISH. Cytogenet. Genome Res. 132, 248–254 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Solovei, I. et al. Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp. Cell Res. 276, 10–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Takei, Y. et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature 590, 344–350 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nguyen, H. Q. et al. 3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing. Nat. Methods 17, 822–832 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. R. N. A imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee, J. H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Beliveau, B. J. et al. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat. Commun. 6, 7147 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Kishi, J. Y. et al. SABER amplifies FISH: enhanced multiplexed imaging of RNA and DNA in cells and tissues. Nat. Methods 16, 533–544 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Payne, A. C. et al. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science 371, eaay3446 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Mateo, L. J. et al. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49–54 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mateo, L. J., Sinnott-Armstrong, N. & Boettiger, A. N. Tracing DNA paths and RNA profiles in cultured cells and tissues with ORCA. Nat. Protoc. 16, 1647–1713 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cardozo Gizzi, A. M. et al. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol. Cell 74, 212–222.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Cardozo Gizzi, A. M. et al. Direct and simultaneous observation of transcription and chromosome architecture in single cells with Hi-M. Nat. Protoc. 15, 840–876 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Dostie, J. et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fiorillo, L. et al. Comparison of the Hi-C, GAM and SPRITE methods using polymer models of chromatin. Nat. Methods 18, 482–490 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Belaghzal, H., Dekker, J. & Gibcus, J. H. Hi-C 2.0: an optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation. Methods 123, 56–65 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hansen, A. S. et al. Distinct classes of chromatin loops revealed by deletion of an RNA-binding region in CTCF. Mol. Cell 76, 395–411.e13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757.e24 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ramani, V. et al. Massively multiplex single-cell Hi-C. Nat. Methods 14, 263–266 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nagano, T. et al. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell. Nat. Protoc. 10, 1986–2003 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, Z. et al. Linking genome structures to functions by simultaneous single-cell Hi-C and RNA-seq. Science 380, 1070–1076 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gross, D. S. & Garrard, W. T. Nuclease hypersensitive sites in chromatin. Annu. Rev. Biochem. 57, 159–197 (1988).

    Article  CAS  PubMed  Google Scholar 

  47. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, X. et al. ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing. Nat. Methods 13, 1013–1020 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hebbes, T. R., Thorne, A. W. & Crane-Robinson, C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395–1402 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tessarz, P. & Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703–708 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, X. et al. The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence. Genome Res. 31, 1121–1135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Padeken, J., Methot, S. P. & Gasser, S. M. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat. Rev. Mol. Cell Biol. 23, 623–640 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife 6, e21856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fullwood, M. J. et al. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462, 58–64 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Greil, F., Moorman, C. & van Steensel, B. DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase. Methods Enzymol. 410, 342–359 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Bersaglieri, C. et al. Genome-wide maps of nucleolus interactions reveal distinct layers of repressive chromatin domains. Nat. Commun. 13, 1483 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu, W. et al. Mapping RNA-chromatin interactions by sequencing with iMARGI. Nat. Protoc. 14, 3243–3272 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen, Y. et al. Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. J. Cell Biol. 217, 4025–4048 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tsue, A. F. et al. Oligonucleotide-directed proximity-interactome mapping (O-MAP): a unified method for discovering RNA-interacting proteins, transcripts and genomic loci in situ. Preprint at bioRxiv https://doi.org/10.1101/2023.01.19.524825 (2023).

  64. Belaghzal, H. et al. Liquid chromatin Hi-C characterizes compartment-dependent chromatin interaction dynamics. Nat. Genet. 53, 367–378 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tan, L., Xing, D., Chang, C. H., Li, H. & Xie, X. S. Three-dimensional genome structures of single diploid human cells. Science 361, 924–928 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, C. et al. tagHi-C reveals 3D chromatin architecture dynamics during mouse hematopoiesis. Cell Rep. 32, 108206 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kirschenbaum, D. et al. Time-resolved single-cell transcriptomics defines immune trajectories in glioblastoma. Cell 187, 149–165.e23 (2024).

    Article  CAS  PubMed  Google Scholar 

  71. Ma, H., Reyes-Gutierrez, P. & Pederson, T. Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. Proc. Natl Acad. Sci. USA 110, 21048–21053 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Miyanari, Y., Ziegler-Birling, C. & Torres-Padilla, M. E. Live visualization of chromatin dynamics with fluorescent TALEs. Nat. Struct. Mol. Biol. 20, 1321–1324 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Fu, Y. et al. CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci. Nat. Commun. 7, 11707 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ma, H. et al. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl Acad. Sci. USA 112, 3002–3007 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ma, H. et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat. Biotechnol. 34, 528–530 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, B. et al. Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res. 44, e75 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gu, B. et al. Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359, 1050–1055 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ye, H., Rong, Z. & Lin, Y. Live cell imaging of genomic loci using dCas9-SunTag system and a bright fluorescent protein. Protein Cell 8, 853–855 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Janicki, S. M. et al. From silencing to gene expression: real-time analysis in single cells. Cell 116, 683–698 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shav-Tal, Y. et al. Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797–1800 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Park, H. Y. et al. Visualization of dynamics of single endogenous mRNA labeled in live mouse. Science 343, 422–424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Duan, J. et al. Live imaging and tracking of genome regions in CRISPR/dCas9 knock-in mice. Genome Biol. 19, 192 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gibcus, J. H. & Dekker, J. The hierarchy of the 3D genome. Mol. Cell 49, 773–782 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gilbert, N., Gilchrist, S. & Bickmore, W. A. Chromatin organization in the mammalian nucleus. Int. Rev. Cytol. 242, 283–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Carter, C. W. Jr. Histone packing in the nucleosome core particle of chromatin. Proc. Natl Acad. Sci. USA 75, 3649–3653 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stein, A., Bina-Stein, M. & Simpson, R. T. Crosslinked histone octamer as a model of the nucleosome core. Proc. Natl Acad. Sci. USA 74, 2780–2784 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Leffak, I. M., Grainger, R. & Weintraub, H. Conservative assembly and segregation of nucleosomal histones. Cell 12, 837–845 (1977).

    Article  CAS  PubMed  Google Scholar 

  90. Oudet, P., Gross-Bellard, M. & Chambon, P. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4, 281–300 (1975).

    Article  CAS  PubMed  Google Scholar 

  91. Axel, R., Melchior, W. Jr., Sollner-Webb, B. & Felsenfeld, G. Specific sites of interaction between histones and DNA in chromatin. Proc. Natl Acad. Sci. USA 71, 4101–4105 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

    Article  CAS  PubMed  Google Scholar 

  93. Baldwin, J. P., Boseley, P. G., Bradbury, E. M. & Ibel, K. The subunit structure of the eukaryotic chromosome. Nature 253, 245–249 (1975).

    Article  CAS  PubMed  Google Scholar 

  94. Oosterhof, D. K., Hozier, J. C. & Rill, R. L. Nucleas action on chromatin: evidence for discrete, repeated nucleoprotein units along chromatin fibrils. Proc. Natl Acad. Sci. USA 72, 633–637 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Allan, J., Hartman, P. G., Crane-Robinson, C. & Aviles, F. X. The structure of histone H1 and its location in chromatin. Nature 288, 675–679 (1980).

    Article  CAS  PubMed  Google Scholar 

  96. Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Hao, X. et al. Super-resolution visualization and modeling of human chromosomal regions reveals cohesin-dependent loop structures. Genome Biol. 22, 150 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, Y. et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148, 908–921 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hafner, A. et al. Loop stacking organizes genome folding from TADs to chromosomes. Mol. Cell 83, 1377–1392 e1376 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Falk, M. et al. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570, 395–399 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Manuelidis, L. Individual interphase chromosome domains revealed by in situ hybridization. Hum. Genet. 71, 288–293 (1985).

    Article  CAS  PubMed  Google Scholar 

  105. Lichter, P., Cremer, T., Borden, J., Manuelidis, L. & Ward, D. C. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet. 80, 224–234 (1988).

    Article  CAS  PubMed  Google Scholar 

  106. Zink, D. et al. Structure and dynamics of human interphase chromosome territories in vivo. Hum. Genet. 102, 241–251 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Gasser, S. M. Visualizing chromatin dynamics in interphase nuclei. Science 296, 1412–1416 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Pickersgill, H. et al. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat. Genet. 38, 1005–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Reddy, K. L., Zullo, J. M., Bertolino, E. & Singh, H. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452, 243–247 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Peric-Hupkes, D. et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38, 603–613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Peric-Hupkes, D. & van Steensel, B. Role of the nuclear lamina in genome organization and gene expression. Cold Spring Harb. Symp. Quant. Biol. 75, 517–524 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Pliss, A. et al. Spatio-temporal dynamics at rDNA foci: global switching between DNA replication and transcription. J. Cell Biochem. 94, 554–565 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. van Koningsbruggen, S. et al. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol. Biol. Cell 21, 3735–3748 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Vertii, A. et al. Two contrasting classes of nucleolus-associated domains in mouse fibroblast heterochromatin. Genome Res. 29, 1235–1249 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Spector, D. L. & Lamond, A. I. Nuclear speckles. Cold Spring Harb. Perspect. Biol. 3, a000646 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Berry, J., Weber, S. C., Vaidya, N., Haataja, M. & Brangwynne, C. P. RNA transcription modulates phase transition-driven nuclear body assembly. Proc. Natl Acad. Sci. USA 112, E5237–E5245 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Riback, J. A. et al. Composition-dependent thermodynamics of intracellular phase separation. Nature 581, 209–214 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Osborne, C. S. et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat. Genet. 36, 1065–1071 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Carter, K. C. et al. A three-dimensional view of precursor messenger RNA metabolism within the mammalian nucleus. Science 259, 1330–1335 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Dillinger, S., Straub, T. & Nemeth, A. Nucleolus association of chromosomal domains is largely maintained in cellular senescence despite massive nuclear reorganisation. PLoS ONE 12, e0178821 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Croft, J. A. et al. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 145, 1119–1131 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Du, Z. et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232–235 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572.e24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Phanstiel, D. H. et al. Static and dynamic DNA loops form AP-1-bound activation hubs during macrophage development. Mol. Cell 67, 1037–1048.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, Y. et al. Dynamic epigenomic landscapes during early lineage specification in mouse embryos. Nat. Genet. 50, 96–105 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Guan, Y. et al. Senescence-activated enhancer landscape orchestrates the senescence-associated secretory phenotype in murine fibroblasts. Nucleic Acids Res. 48, 10909–10923 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tomimatsu, K. et al. Locus-specific induction of gene expression from heterochromatin loci during cellular senescence. Nat. Aging 2, 31–45 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Zirkel, A. et al. HMGB2 loss upon senescence entry disrupts genomic organization and induces CTCF clustering across cell types. Mol. Cell 70, 730–744.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Liu, G. H. et al. Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472, 221–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tavares-Cadete, F., Norouzi, D., Dekker, B., Liu, Y. & Dekker, J. Multi-contact 3C reveals that the human genome during interphase is largely not entangled. Nat. Struct. Mol. Biol. 27, 1105–1114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hansen, R. S. et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl Acad. Sci. USA 107, 139–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Liang, Z. et al. Chromosomes progress to metaphase in multiple discrete steps via global compaction/expansion cycles. Cell 161, 1124–1137 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kschonsak, M. et al. Structural basis for a safety-belt mechanism that anchors condensin to chromosomes. Cell 171, 588–600 e524 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gibcus, J. H. et al. A pathway for mitotic chromosome formation. Science 359, eaao6135 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Golfier, S., Quail, T., Kimura, H. & Brugues, J. Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner. Elife 9, e53885 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Martinez-Balbas, M. A., Dey, A., Rabindran, S. K., Ozato, K. & Wu, C. Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83, 29–38 (1995).

    Article  CAS  PubMed  Google Scholar 

  139. Palozola, K. C. et al. Mitotic transcription and waves of gene reactivation during mitotic exit. Science 358, 119–122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. van Schaik, T., Vos, M., Peric-Hupkes, D., Hn Celie, P. & van Steensel, B. Cell cycle dynamics of lamina-associated DNA. EMBO Rep. 21, e50636 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Caravaca, J. M. et al. Bookmarking by specific and nonspecific binding of FoxA1 pioneer factor to mitotic chromosomes. Genes. Dev. 27, 251–260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Deluz, C. et al. A role for mitotic bookmarking of SOX2 in pluripotency and differentiation. Genes. Dev. 30, 2538–2550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Festuccia, N. et al. Mitotic binding of Esrrb marks key regulatory regions of the pluripotency network. Nat. Cell Biol. 18, 1139–1148 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Raccaud, M. et al. Mitotic chromosome binding predicts transcription factor properties in interphase. Nat. Commun. 10, 487 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Young, D. W. et al. Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2. Proc. Natl Acad. Sci. USA 104, 3189–3194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Abramo, K. et al. A chromosome folding intermediate at the condensin-to-cohesin transition during telophase. Nat. Cell Biol. 21, 1393–1402 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang, H. et al. Chromatin structure dynamics during the mitosis-to-G1 phase transition. Nature 576, 158–162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Paul, J. & Gilmour, R. S. Organ-specific restriction of transcription in mammalian chromatin. J. Mol. Biol. 34, 305–316 (1968).

    Article  CAS  PubMed  Google Scholar 

  149. Balsalobre, A. & Drouin, J. Pioneer factors as master regulators of the epigenome and cell fate. Nat. Rev. Mol. Cell Biol. 23, 449–464 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Iwafuchi-Doi, M. & Zaret, K. S. Cell fate control by pioneer transcription factors. Development 143, 1833–1837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Vos, S. M. Understanding transcription across scales: from base pairs to chromosomes. Mol. Cell 81, 1601–1616 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  Google Scholar 

  153. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Neph, S. et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489, 83–90 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bulger, M. & Groudine, M. Functional and mechanistic diversity of distal transcription enhancers. Cell 144, 327–339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ghirlando, R. et al. Chromatin domains, insulators, and the regulation of gene expression. Biochim. Biophys. Acta 1819, 644–651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wu, C. The 5’ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286, 854–860 (1980).

    Article  CAS  PubMed  Google Scholar 

  158. Keene, M. A., Corces, V., Lowenhaupt, K. & Elgin, S. C. DNase I hypersensitive sites in Drosophila chromatin occur at the 5’ ends of regions of transcription. Proc. Natl Acad. Sci. USA 78, 143–146 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Shermoen, A. W. & Beckendorf, S. K. A complex of interacting DNAase I-hypersensitive sites near the Drosophila glue protein gene, Sgs4. Cell 29, 601–607 (1982).

    Article  CAS  PubMed  Google Scholar 

  160. Muskavitch, M. A. & Hogness, D. S. An expandable gene that encodes a Drosophila glue protein is not expressed in variants lacking remote upstream sequences. Cell 29, 1041–1051 (1982).

    Article  CAS  PubMed  Google Scholar 

  161. McGinnis, W., Shermoen, A. W., Heemskerk, J. & Beckendorf, S. K. DNA sequence changes in an upstream DNase I-hypersensitive region are correlated with reduced gene expression. Proc. Natl Acad. Sci. USA 80, 1063–1067 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. McGinnis, W., Shermoen, A. W. & Beckendorf, S. K. A transposable element inserted just 5’ to a Drosophila glue protein gene alters gene expression and chromatin structure. Cell 34, 75–84 (1983).

    Article  CAS  PubMed  Google Scholar 

  163. Ptashne, M. Gene regulation by proteins acting nearby and at a distance. Nature 322, 697–701 (1986).

    Article  CAS  PubMed  Google Scholar 

  164. Narlikar, G. J., Fan, H. Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Gorkin, D. U. et al. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature 583, 744–751 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Banerji, J., Rusconi, S. & Schaffner, W. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299–308 (1981).

    Article  CAS  PubMed  Google Scholar 

  167. Bulger, M. & Groudine, M. Looping versus linking: toward a model for long-distance gene activation. Genes. Dev. 13, 2465–2477 (1999).

    Article  CAS  PubMed  Google Scholar 

  168. Cullen, K. E., Kladde, M. P. & Seyfred, M. A. Interaction between transcription regulatory regions of prolactin chromatin. Science 261, 203–206 (1993).

    Article  CAS  PubMed  Google Scholar 

  169. Morgan, G. T. Imaging the dynamics of transcription loops in living chromosomes. Chromosoma 127, 361–374 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Chen, H. et al. Dynamic interplay between enhancer-promoter topology and gene activity. Nat. Genet. 50, 1296–1303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bartman, C. R. et al. Transcriptional burst initiation and polymerase pause release are key control points of transcriptional regulation. Mol. Cell 73, 519–532.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Jerabek, H. & Heermann, D. W. Expression-dependent folding of interphase chromatin. PLoS ONE 7, e37525 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Racko, D., Benedetti, F., Dorier, J. & Stasiak, A. Transcription-induced supercoiling as the driving force of chromatin loop extrusion during formation of TADs in interphase chromosomes. Nucleic Acids Res. 46, 1648–1660 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Calandrelli, R. et al. Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells. Nat. Commun. 14, 6519 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhang, S., Ubelmesser, N., Barbieri, M. & Papantonis, A. Enhancer-promoter contact formation requires RNAPII and antagonizes loop extrusion. Nat. Genet. 55, 832–840 (2023).

    Article  CAS  PubMed  Google Scholar 

  177. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Richter, W. F., Nayak, S., Iwasa, J. & Taatjes, D. J. The mediator complex as a master regulator of transcription by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 23, 732–749 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707 e614 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Winick-Ng, W. et al. Cell-type specialization is encoded by specific chromatin topologies. Nature 599, 684–691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 e324 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944.e22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Gong, Y. et al. Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries. Nat. Commun. 9, 542 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Nanni, L., Ceri, S. & Logie, C. Spatial patterns of CTCF sites define the anatomy of TADs and their boundaries. Genome Biol. 21, 197 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Thiecke, M. J. et al. Cohesin-dependent and -independent mechanisms mediate chromosomal contacts between promoters and enhancers. Cell Rep. 32, 107929 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Busslinger, G. A. et al. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544, 503–507 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wang, D. et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kim, T. K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. De Santa, F. et al. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 8, e1000384 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Zoller, B., Little, S. C. & Gregor, T. Diverse spatial expression patterns emerge from unified kinetics of transcriptional bursting. Cell 175, 835–847 e825 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Rodriguez, J. et al. Intrinsic dynamics of a human gene reveal the basis of expression heterogeneity. Cell 176, 213–226.e18 (2019).

    Article  CAS  PubMed  Google Scholar 

  195. Hakim, O. et al. Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements. Genome Res. 21, 697–706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. D’Ippolito, A. M. et al. Pre-established chromatin interactions mediate the genomic response to glucocorticoids. Cell Syst. 7, 146–160.e7 (2018).

    Article  PubMed  Google Scholar 

  197. Alexander, J. M. et al. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. Elife 8, e41769 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Fukaya, T., Lim, B. & Levine, M. Enhancer control of transcriptional bursting. Cell 166, 358–368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Goel, V. Y., Huseyin, M. K. & Hansen, A. S. Region capture micro-C reveals coalescence of enhancers and promoters into nested microcompartments. Nat. Genet. 55, 1048–1056 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kawasaki, K. & Fukaya, T. Functional coordination between transcription factor clustering and gene activity. Mol. Cell 83, 1605–1622 e1609 (2023).

    Article  CAS  PubMed  Google Scholar 

  201. Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Stadhouders, R., Filion, G. J. & Graf, T. Transcription factors and 3D genome conformation in cell-fate decisions. Nature 569, 345–354 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. Cardozo Gizzi, A. M. A shift in paradigms: spatial genomics approaches to reveal single-cell principles of genome organization. Front. Genet. 12, 780822 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Finn, E. H. & Misteli, T. Molecular basis and biological function of variability in spatial genome organization. Science 365, eaaw9498 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Bintu, L. et al. Dynamics of epigenetic regulation at the single-cell level. Science 351, 720–724 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Vierstra, J. et al. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science 346, 1007–1012 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Cheng, Y. et al. Principles of regulatory information conservation between mouse and human. Nature 515, 371–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Stergachis, A. B. et al. Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature 515, 365–370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Franke, M. et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538, 265–269 (2016).

    Article  CAS  PubMed  Google Scholar 

  211. Lupianez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Martinez, M. F., Martini, A. G., Sequeira-Lopez, M. L. S. & Gomez, R. A. Ctcf is required for renin expression and maintenance of the structural integrity of the kidney. Clin. Sci. 134, 1763–1774 (2020).

    Article  CAS  Google Scholar 

  213. Christov, M. et al. Inducible podocyte-specific deletion of CTCF drives progressive kidney disease and bone abnormalities. JCI Insight 3, e95091 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Alharbi, A. B. et al. Ctcf haploinsufficiency mediates intron retention in a tissue-specific manner. RNA Biol. 18, 93–103 (2021).

    Article  CAS  PubMed  Google Scholar 

  215. Moisan, S. et al. Novel long-range regulatory mechanisms controlling PKD2 gene expression. BMC Genomics 19, 515 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Livingston, S. et al. Cux1 regulation of the cyclin kinase inhibitor p27kip1 in polycystic kidney disease is attenuated by HDAC inhibitors. Gene 721S, 100007 (2019).

    Article  PubMed  Google Scholar 

  217. Wang, H. et al. Glucocorticoid receptor wields chromatin interactions to tune transcription for cytoskeleton stabilization in podocytes. Commun. Biol. 4, 675 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Luo, Z. et al. NicE-C efficiently reveals open chromatin-associated chromosome interactions at high resolution. Genome Res. 32, 534–544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Yeung, J. et al. Transcription factor activity rhythms and tissue-specific chromatin interactions explain circadian gene expression across organs. Genome Res. 28, 182–191 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Mermet, J. et al. Clock-dependent chromatin topology modulates circadian transcription and behavior. Genes. Dev. 32, 347–358 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zhang, Y. et al. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51, 1380–1388 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Dhillon, P. et al. Increased levels of endogenous retroviruses trigger fibroinflammation and play a role in kidney disease development. Nat. Commun. 14, 559 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Siebenthall, K. T. et al. Integrated epigenomic profiling reveals endogenous retrovirus reactivation in renal cell carcinoma. EBioMedicine 41, 427–442 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Gillies, C. E. et al. An eQTL landscape of kidney tissue in human nephrotic syndrome. Am. J. Hum. Genet. 103, 232–244 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ko, Y. A. et al. Genetic-variation-driven gene-expression changes highlight genes with important functions for kidney disease. Am. J. Hum. Genet. 100, 940–953 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Qiu, C. et al. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med. 24, 1721–1731 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Gorkin, D. U. et al. Common DNA sequence variation influences 3-dimensional conformation of the human genome. Genome Biol. 20, 255 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Chandra, V. et al. Promoter-interacting expression quantitative trait loci are enriched for functional genetic variants. Nat. Genet. 53, 110–119 (2021).

    Article  CAS  PubMed  Google Scholar 

  229. Duan, A. et al. Chromatin architecture reveals cell type-specific target genes for kidney disease risk variants. BMC Biol. 19, 38 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Sieber, K. B. et al. Integrated functional genomic analysis enables annotation of kidney genome-wide association study loci. J. Am. Soc. Nephrol. 30, 421–441 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Maurano, M. T. et al. Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo. Nat. Genet. 47, 1393–1401 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384.e19 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Muto, Y. et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat. Commun. 12, 2190 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Haug, S. et al. Multi-omic analysis of human kidney tissue identified medulla-specific gene expression patterns. Kidney Int. 105, 293–311 (2024).

    Article  CAS  PubMed  Google Scholar 

  235. Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Mukhi, D. et al. ACSS2 gene variants determine kidney disease risk by controlling de novo lipogenesis in kidney tubules. J. Clin. Invest. 134, e172963 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Mumbach, M. R. et al. Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat. Genet. 49, 1602–1612 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Lidberg, K. A. et al. Serum protein exposure activates a core regulatory program driving human proximal tubule injury. J. Am. Soc. Nephrol. 33, 949–965 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Gisch, D. L. et al. The chromatin landscape of healthy and injured cell types in the human kidney. Nat. Commun. 15, 433 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Eun, M. et al. Chromatin accessibility analysis and architectural profiling of human kidneys reveal key cell types and a regulator of diabetic kidney disease. Kidney Int. 105, 150–164 (2024).

    Article  CAS  PubMed  Google Scholar 

  241. Combes, A. N. et al. Haploinsufficiency for the Six2 gene increases nephron progenitor proliferation promoting branching and nephron number. Kidney Int. 93, 589–598 (2018).

    Article  CAS  PubMed  Google Scholar 

  242. Georgas, K. et al. Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev. Biol. 332, 273–286 (2009).

    Article  CAS  PubMed  Google Scholar 

  243. Kobayashi, A. et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3, 169–181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Perl, A. J. et al. Reduced nephron endowment in Six2-TGCtg mice is due to Six3 misexpression by aberrant enhancer-promoter interactions in the transgene. J. Am. Soc. Nephrol. 35, 566–577 (2024).

    Article  PubMed  Google Scholar 

  245. O’Brien, L. L. et al. Transcriptional regulatory control of mammalian nephron progenitors revealed by multi-factor cistromic analysis and genetic studies. PLoS Genet. 14, e1007181 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Ichimura, T. et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J. Biol. Chem. 273, 4135–4142 (1998).

    Article  CAS  PubMed  Google Scholar 

  247. Zhang, Z., Humphreys, B. D. & Bonventre, J. V. Shedding of the urinary biomarker kidney injury molecule-1 (KIM-1) is regulated by MAP kinases and juxtamembrane region. J. Am. Soc. Nephrol. 18, 2704–2714 (2007).

    Article  CAS  PubMed  Google Scholar 

  248. Wilson, P. C. et al. Mosaic loss of Y chromosome is associated with aging and epithelial injury in chronic kidney disease. Genome Biol. 25, 36 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Langelueddecke, C. et al. Lipocalin-2 (24p3/neutrophil gelatinase-associated lipocalin (NGAL)) receptor is expressed in distal nephron and mediates protein endocytosis. J. Biol. Chem. 287, 159–169 (2012).

    Article  CAS  PubMed  Google Scholar 

  250. Chen, X. et al. Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data. Nat. Comput. Sci. 3, 644–657 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Wang, R. et al. SARS-CoV-2 restructures host chromatin architecture. Nat. Microbiol. 8, 679–694 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Chiariello, A. M. et al. Multiscale modelling of chromatin 4D organization in SARS-CoV-2 infected cells. Nat. Commun. 15, 4014 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Akilesh, S. et al. Multicenter clinicopathologic correlation of kidney biopsies performed in COVID-19 patients presenting with acute kidney injury or proteinuria. Am. J. Kidney Dis. 77, 82–93.e1 (2021).

    Article  CAS  PubMed  Google Scholar 

  254. Nicosia, R. F., Ligresti, G., Caporarello, N., Akilesh, S. & Ribatti, D. COVID-19 vasculopathy: mounting evidence for an indirect mechanism of endothelial injury. Am. J. Pathol. 191, 1374–1384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Smith, K. D. & Akilesh, S. Pathogenesis of coronavirus disease 2019-associated kidney injury. Curr. Opin. Nephrol. Hypertens. 30, 324–331 (2021).

    Article  CAS  PubMed  Google Scholar 

  256. Davis, M. A. et al. A C57BL/6 mouse model of SARS-CoV-2 infection recapitulates age- and sex-based differences in human COVID-19 disease and recovery. Vaccines https://doi.org/10.3390/vaccines11010047 (2022).

  257. Zazhytska, M. et al. Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia. Cell 185, 1052–1064.e12 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Zaidman, N. A. & Pluznick, J. L. Understudied G protein-coupled receptors in the kidney. Nephron 146, 278–281 (2022).

    Article  CAS  PubMed  Google Scholar 

  259. Halperin Kuhns, V. L. et al. Characterizing novel olfactory receptors expressed in the murine renal cortex. Am. J. Physiol. Renal Physiol. 317, F172–F186 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Shepard, B. D., Koepsell, H. & Pluznick, J. L. Renal olfactory receptor 1393 contributes to the progression of type 2 diabetes in a diet-induced obesity model. Am. J. Physiol. Renal Physiol. 316, F372–F381 (2019).

    Article  PubMed  Google Scholar 

  261. Pluznick, J. L. et al. Functional expression of the olfactory signaling system in the kidney. Proc. Natl Acad. Sci. USA 106, 2059–2064 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Correa-Costa, M. et al. Transcriptome analysis of renal ischemia/reperfusion injury and its modulation by ischemic pre-conditioning or hemin treatment. PLoS ONE 7, e49569 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author’s work was supported in part by a Damon Runyon Dale F. Frey Breakthrough Award (to B.J.B. 32-19), the National Institutes of Health (under grants 1R35GM137916 to B.J.B, 1UM1HG011586 to Jay Shendure and B.J.B., 1R01DK130386 to S.A.), the Andy Hill Cancer Research Endowment (under a COVID-19 Response Grant Award to B.J.B. and S.A), and the Diabetic Complications Consortium (under grant 19AU3987 to S.A. and B.J.B.).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, contributed substantially to discussion of the content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Shreeram Akilesh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Jihwan Park, Emily Wong and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Acrocentric chromosomes

Chromosomes with centromeres located near to one end, resulting in a short and a long arm. The human acrocentric chromosomes (chromosomes 13, 14, 15, 21 and 22) harbour DNA elements that help to organize the nucleolus.

Background noise

Non-specific or random interactions in Hi-C data; the larger the genomic distance being examined, the more of these non-specific interactions are likely to be detected. Deep sequencing may be needed to achieve sufficient signal for specific interactions to be discernible above the background noise.

Chromogens

Substances that lack intrinsic colour, but can be enzymatically converted into a pigment that stays localized at the site of conversion.

Cis-coaccessibility networks

Weighted matrices of predicted enhancer–promoter interactions deduced from mapping the simultaneous open chromatin states (accessibility) of enhancer and promoter regions. If the promoter and enhancer are both accessible in some cell types, but not others, and this co-accessibility correlates with the expression of the target gene of the promoter, the cis-coaccessibility network connection implies regulation of the promoter and its associated gene by the co-accessible enhancer.

Constitutive genes

Also known as housekeeping genes, constitutive genes are expressed in most cells. They often encode proteins that are required for basic cellular structure and function.

Constitutive heterochromatin

Condensed chromatin that has a role in genome organization rather than gene expression. Pericentromeric regions and telomeres are examples of constitutive heterochromatin.

Facultative heterochromatin

Condensed chromatin that may be made accessible and become transcriptionally active in certain contexts, such as cell lineage specification.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beliveau, B.J., Akilesh, S. A guide to studying 3D genome structure and dynamics in the kidney. Nat Rev Nephrol 21, 97–114 (2025). https://doi.org/10.1038/s41581-024-00894-2

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-024-00894-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing