Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles of sensory receptors in non-sensory organs: the kidney and beyond

Abstract

Olfactory receptors (ORs), taste receptors and opsins are well-known for their pivotal roles in mediating the senses of smell, taste and sight, respectively. However, in the past two decades, research has shown that these sensory receptors also regulate physiological processes in a variety of non-sensory tissues. Although ORs, taste receptors and opsins have all been shown to have physiological roles beyond their traditional locations, most work in the kidney has focused on ORs. To date, renal ORs have been shown to have roles in blood pressure regulation (OLFR78 and OLFR558) and glucose homeostasis (OLFR1393). However, sensory receptors remain drastically understudied outside of traditional sensory systems, in part because of inherent challenges in studying these receptors. Increased knowledge of the physiological and pathophysiological roles of sensory receptors has the potential to substantially improve understanding of the function of numerous organs and systems, including the kidney. In addition, most sensory receptors are G protein-coupled receptors, which are considered to be the most druggable class of proteins, and thus could potentially be exploited as future therapeutic targets.

Key points

  • Olfactory receptors (ORs), taste receptors and opsins have functional roles in non-sensory organs and tissues, including in the kidney, lungs, testis, spinal cord, adipose tissue, vasculature and immune system.

  • Studies of ORs are challenging but use of best practices in the field enable these important receptors to be interrogated in a rigorous fashion.

  • ORs have roles in sperm chemotaxis, macrophage chemosensation and migration, and lung vasodilation; taste receptors modulate lung vasodilation and sense pH changes in cerebrospinal fluid; and opsins have been reported to have roles in adipose tissue function and thermogenesis.

  • In the kidney, Olfr78 is expressed in blood vessels; activation of this OR in the renal afferent arteriole increases renin release.

  • Olfr558 localizes to blood vessels, including the renal afferent arteriole, and is required for sex differences in blood pressure.

  • Olfr1393 is expressed in the renal proximal tubule, where it modulates sodium–glucose cotransporters, resulting in effects on glucose tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: OLFR78 and renin release.
Fig. 2: OLFR558 and blood pressure.
Fig. 3: OLFR1393 and glucose handling.

Similar content being viewed by others

References

  1. Oteiza, P. & Baldwin, M. W. Evolution of sensory systems. Curr. Opin. Neurobiol. 71, 52–59 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Malnic, B., Godfrey, P. A. & Buck, L. B. The human olfactory receptor gene family. Proc. Natl Acad. Sci. USA 101, 7205–7205 (2004).

    Article  CAS  Google Scholar 

  4. Belluscio, L., Gold, G. H., Nemes, A. & Axel, R. Mice deficient in Golf are anosmic. Neuron 20, 69–81 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Wong, S. T. et al. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27, 487–497 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Diepeveen, J., Moerdijk-Poortvliet, T. C. W. & van der Leij, F. R. Molecular insights into human taste perception and umami tastants: a review. J. Food Sci. 87, 1449–1465 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Banik, D. D. & Medler, K. F. Bitter, sweet, and umami signaling in taste cells: it’s not as simple as we thought. Curr. Opin. Physiol. 20, 159–164 (2021).

    Article  Google Scholar 

  8. Adler, E. et al. A novel family of mammalian taste receptors. Cell 100, 693–702 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Matsunami, H., Montmayeur, J. P. & Buck, L. B. A family of candidate taste receptors in human and mouse. Nature 404, 601 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Meyerhof, W. et al. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem. Senses 35, 157–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Perez, C. A. et al. A transient receptor potential channel expressed in taste receptor cells. Nat. Neurosci. 5, 1169–1176 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Ruiz, C. J., Wray, K., Delay, E. R., Margolskee, R. F. & Kinnamon, S. C. Behavioral evidence for a role of alpha-gustducin in glutamate taste. Chem. Senses 28, 573–579 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, Z., Zhao, Z., Margolskee, R. & Liman, E. The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J. Neurosci. 27, 5777–5786 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Galindo, M. M. et al. G protein-coupled receptors in human fat taste perception. Chem. Senses 37, 123–139 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, Y. et al. Metal ions activate the human taste receptor TAS2R7. Chem. Senses 44, 339–347 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ramirez, M. D. et al. The last common ancestor of most bilaterian animals possessed at least nine opsins. Genome Biol. Evol. 8, 3640–3652 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Davies, W. I. L., Collin, S. P. & Hunt, D. M. Molecular ecology and adaptation of visual photopigments in craniates. Mol. Ecol. 21, 3121–3158 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Baldwin, M. W. & Ko, M. C. Functional evolution of vertebrate sensory receptors. Horm. Behav. 124, 104771 (2020).

  19. Shichida, Y. & Matsuyama, T. Evolution of opsins and phototransduction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 2881–2895 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Simon, C. J., Sahel, J. A., Duebel, J., Herlitze, S. & Dalkara, D. Opsins for vision restoration. Biochem. Biophys. Res. Commun. 527, 325–330 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Rajkumar, P. & Pluznick, J. L. Unsung renal receptors: orphan G-protein-coupled receptors play essential roles in renal development and homeostasis. Acta Physiol. 220, 189–200 (2017).

    Article  CAS  Google Scholar 

  22. Pronin, A. et al. Expression of olfactory signaling genes in the eye. PLoS ONE 9, e96435 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dalesio, N. M., Ortiz, S. F. B., Pluznick, J. L. & Berkowitz, D. E. Olfactory, taste, and photo sensory receptors in non-sensory organs: it just makes sense. Front. Physiol. 9, 1673 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ki, S. Y. & Jeong, Y. T. Taste receptors beyond taste buds. Int J. Mol. Sci. 23, 9677 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith, T. A. et al. Identification of novel bladder sensory GPCRs. Physiol. Rep. 9, e14840 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Haltaufderhyde, K., Ozdeslik, R. N., Wicks, N. L., Najera, J. A. & Oancea, E. Opsin expression in human epidermal skin. Photochem. Photobiol. 91, 117–123 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Ortiz, S. B. et al. Opsin 3 and 4 mediate light-induced pulmonary vasorelaxation that is potentiated by G protein-coupled receptor kinase 2 inhibition. Am. J. Physiol. Lung Cell. Mol. Physiol. 314, L93–L106 (2018).

    Article  Google Scholar 

  28. Ondrusova, K. et al. Subcutaneous white adipocytes express a light sensitive signaling pathway mediated via a melanopsin/TRPC channel axis. Sci. Rep. 7, 16332 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shepard, B. D. & Pluznick, J. L. How does your kidney smell? Emerging roles for olfactory receptors in renal function. Pediatr. Nephrol. 31, 715–723 (2016).

    Article  PubMed  Google Scholar 

  30. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sriram, K., Salmeron, C., Di Nardo, A. & Insel, P. A. Detection of GPCR mRNA expression in primary cells via qPCR, microarrays, and RNA-sequencing. Methods Mol. Biol. 2268, 21–42 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pluznick, J. L. et al. Functional expression of the olfactory signaling system in the kidney. Proc. Natl Acad. Sci. USA 106, 2059–2064 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kato, A. & Touhara, K. Mammalian olfactory receptors: pharmacology, G protein coupling and desensitization. Cell Mol. Life Sci. 66, 3743–3753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Spehr, M. & Munger, S. D. Olfactory receptors: G protein-coupled receptors and beyond. J. Neurochem. 109, 1570–1583 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Niimura, Y., Matsui, A. & Touhara, K. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res. 24, 1485–1496 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lane, R. P. et al. Genomic analysis of orthologous mouse and human olfactory receptor loci. Proc. Natl Acad. Sci. USA 98, 7390–7395 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Poll, B. G., Chen, L. H., Chou, C. L., Raghuram, V. & Knepper, M. A. Landscape of GPCR expression along the mouse nephron. Am. J. Physiol. Renal Physiol. 321, F50–F68 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhuang, H. & Matsunami, H. Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat. Protoc. 3, 1402–1413 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kajiya, K. et al. Molecular bases of odor discrimination: reconstitution of olfactory receptors that recognize overlapping sets of odorants. J. Neurosci. 21, 6018–6025 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Katada, S., Nakagawa, T., Kataoka, H. & Touhara, K. Odorant response assays for a heterologously expressed olfactory receptor. Biochem. Biophys. Res. Commun. 305, 964–969 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Lu, M., Echeverri, F. & Moyer, B. D. Endoplasmic reticulum retention, degradation, and aggregation of olfactory G-protein coupled receptors. Traffic 4, 416–433 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. McClintock, T. S. & Sammeta, N. Trafficking prerogatives of olfactory receptors. Neuroreport 14, 1547–1552 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Mombaerts, P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat. Rev. Neurosci. 5, 263–278 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Saito, H., Kubota, M., Roberts, R. W., Chi, Q. & Matsunami, H. RTP family members induce functional expression of mammalian odorant receptors. Cell 119, 679–691 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Zhuang, H. & Matsunami, H. Synergism of accessory factors in functional expression of mammalian odorant receptors. J. Biol. Chem. 282, 15284–15293 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Shepard, B. D., Natarajan, N., Protzko, R. J., Acres, O. W. & Pluznick, J. L. A cleavable N-terminal signal peptide promotes widespread olfactory receptor surface expression in HEK293T cells. PLoS ONE 8, e68758 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peterlin, Z., Firestein, S. & Rogers, M. E. The state of the art of odorant receptor deorphanization: a report from the orphanage. J. Gen. Physiol. 143, 527–542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Flegel, C., Manteniotis, S., Osthold, S., Hatt, H. & Gisselmann, G. Expression profile of ectopic olfactory receptors determined by deep sequencing. PLoS ONE 8, e55368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakanishi, S., Tsutsui, T., Itai, N. & Denda, M. Distinct sets of olfactory receptors highly expressed in different human tissues evaluated by meta-transcriptome analysis: association of OR10A6 in skin with keratinization. Front. Cell Dev. Biol. 11, 1102585 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Massberg, D. & Hatt, H. Human olfactory receptors: novel cellular functions outside of the nose. Physiol. Rev. 98, 1739–1763 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Oh, S. J. System-wide expression and function of olfactory receptors in mammals. Genomics Inform. 16, 2–9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fukuda, N., Yomogida, K., Okabe, M. & Touhara, K. Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility. J. Cell Sci. 117, 5835–5845 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Teveroni, E. et al. Short-chain fatty acids modulate sperm migration through olfactory receptor 51E2 Activity. Int. J. Mol. Sci. 23, 12726 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Spehr, M. et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299, 2054–2058 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, J. S. et al. OR2AT4, an ectopic olfactory receptor, suppresses oxidative stress-induced senescence in human keratinocytes. Antioxidants 11, 2180 (2022).

  56. Deshpande, D. A. et al. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat. Med. 16, 1299–1304 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nayak, G. et al. Adaptive thermogenesis in mice is enhanced by opsin 3-dependent adipocyte light sensing. Cell Rep. 30, 672–686 e678 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, S. J., Depoortere, I. & Hatt, H. Therapeutic potential of ectopic olfactory and taste receptors. Nat. Rev. Drug. Discov. 18, 116–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Jimenez, F. et al. Topical odorant application of the specific olfactory receptor OR2AT4 agonist, Sandalore®, improves telogen effluvium-associated parameters. J. Cosmet. Dermatol. 20, 784–791 (2021).

    Article  PubMed  Google Scholar 

  60. Spehr, M., Schwane, K., Riffell, J. A., Zimmer, R. K. & Hatt, H. Odorant receptors and olfactory-like signaling mechanisms in mammalian sperm. Mol. Cell Endocrinol. 250, 128–136 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Parmentier, M. et al. Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature 355, 453–455 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Flegel, C. et al. Characterization of the olfactory receptors expressed in human spermatozoa. Front. Mol. Biosci. 2, 73 (2015).

    PubMed  Google Scholar 

  63. Hartmann, C. et al. Sperm-activating odorous substances in human follicular fluid and vaginal secretion: identification by gas chromatography-olfactometry and Ca(2+) imaging. Chempluschem 78, 695–702 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Ottaviano, G. et al. Human olfactory sensitivity for bourgeonal and male infertility: a preliminary investigation. Eur. Arch. Otorhinolaryngol. 270, 3079–3086 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Orecchioni, M., Matsunami, H. & Ley, K. Olfactory receptors in macrophages and inflammation. Front. Immunol. 13, 1029244 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, J. J. et al. Activation of olfactory receptors on mouse pulmonary macrophages promotes monocyte chemotactic protein-1 production. PLoS ONE 8, e80148 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Orecchioni, M. et al. Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production. Science 375, 214–221 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vadevoo, S. M. P. et al. The macrophage odorant receptor Olfr78 mediates the lactate-induced M2 phenotype of tumor-associated macrophages. Proc. Natl Acad. Sci. USA 118, e2102434118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yunna, C., Mengru, H., Lei, W. & Weidong, C. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 877, 173090 (2020).

    Article  PubMed  Google Scholar 

  70. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Weidinger, D. et al. OR2AT4 and OR1A2 counterregulate molecular pathophysiological processes of steroid-resistant inflammatory lung diseases in human alveolar macrophages. Mol. Med. 28, 150 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhou, Y. W. et al. Tas2R activation relaxes airway smooth muscle by release of Gαt targeting on AChR signaling. Proc. Natl Acad. Sci. USA 119, e2121513119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Woo, J. A. et al. A par3/LIM kinase/cofilin pathway mediates human airway smooth muscle relaxation by TAS2R14. Am. J. Respir. Cell Mol. Biol. 68, 417–429 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aisenberg, W. H. et al. Defining an olfactory receptor function in airway smooth muscle cells. Sci. Rep. 6, 38231 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huang, J. et al. The odorant receptor OR2W3 on airway smooth muscle evokes bronchodilation via a cooperative chemosensory tradeoff between TMEM16A and CFTR. Proc. Natl Acad. Sci. USA 117, 28485–28495 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Turner, H. N. & Liman, E. R. The cellular and molecular basis of sour taste. Annu. Rev. Physiol. 84, 41–58 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Huang, A. L. et al. The cells and logic for mammalian sour taste detection. Nature 442, 934–938 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Horio, N. et al. Sour taste responses in mice lacking PKD channels. PLoS ONE 6, e20007 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jalalvand, E., Robertson, B., Wallen, P. & Grillner, S. Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3. Nat. Commun. 7, 10002 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sternberg, J. R. et al. Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature. Nat. Commun. 9, 3804 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Djenoune, L. et al. Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates. Front. Neuroanat. 8, 26 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Jurcic, N., Michelle, C., Trouslard, J., Wanaverbecq, N. & Kastner, A. Evidence for PKD2L1-positive neurons distant from the central canal in the ventromedial spinal cord and medulla of the adult mouse. Eur. J. Neurosci. 54, 4781–4803 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Andrabi, M., Upton, B., Lang, R. A. & Vemaraju, S. An expanding role for nonvisual opsins in extraocular light sensing physiology. Annu. Rev. Vis. Sci. 9, 245–267 (2023).

    Article  PubMed  Google Scholar 

  84. Moraes, M. N., de Assis, L. V. M., Provencio, I. & Castrucci, A. M. L. Opsins outside the eye and the skin: a more complex scenario than originally thought for a classical light sensor. Cell Tissue Res. 385, 519–538 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Diffey, B. L. Ultraviolet radiation physics and the skin. Phys. Med. Biol. 25, 405–426 (1980).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, K. X. et al. Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons. Nature 585, 420–425 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen, X. & Gillis, C. N. Methylene blue enhanced photorelaxation in aorta, pulmonary artery and corpus cavernosum. Biochem. Biophys. Res. Commun. 190, 559–563 (1993).

    Article  CAS  PubMed  Google Scholar 

  88. Furchgott, R. F., Ehrreich, S. J. & Greenblatt, E. The photoactivated relaxation of smooth muscle of rabbit aorta. J. Gen. Physiol. 44, 499–519, (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sikka, G. et al. Melanopsin mediates light-dependent relaxation in blood vessels. Proc. Natl Acad. Sci. USA 111, 17977–17982 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yim, P. D. et al. Airway smooth muscle photorelaxation via opsin receptor activation. Am. J. Physiol. Lung Cell Mol. Physiol. 316, L82–L93 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. White, J. H. et al. Identification of a novel asthma susceptibility gene on chromosome 1qter and its functional evaluation. Hum. Mol. Genet. 17, 1890–1903 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Taruno, A. & Gordon, M. D. Molecular and cellular mechanisms of salt taste. Annu. Rev. Physiol. 85, 25–45 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Pluznick, J. L. et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mermer, P., Strotmann, J., Kummer, W. & Paddenberg, R. Olfactory receptor Olfr78 (prostate-specific G protein-coupled receptor PSGR) expression in arterioles supplying skeletal and cardiac muscles and in arterioles feeding some murine organs. Histochem. Cell Biol. 156, 539–553 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chang, A. J., Ortega, F. E., Riegler, J., Adison, D. V. M. & Krasnow, M. A. Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature 527, 240 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dinsart, G. et al. The olfactory receptor Olfr78 promotes differentiation of enterochromaffin cells in the mouse colon. EMBO Rep. 25, 304–333 (2024).

    Article  PubMed  Google Scholar 

  97. Kotlo, K. et al. The olfactory G protein-coupled receptor (Olfr-78/OR51E2) modulates the intestinal response to colitis. Am. J. Physiol. Cell Physiol. 318, C502–C513 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Perry, R. J. et al. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534, 213–217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Poll, B. G., Xu, J., Gupta, K., Shubitowski, T. B. & Pluznick, J. L. Olfactory receptor 78 modulates renin but not baseline blood pressure. Physiol. Rep. 9, e15017 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Poll, B. G. et al. Acetate, a short-chain fatty acid, acutely lowers heart rate and cardiac contractility along with blood pressure. J. Pharmacol. Exp. Ther. 377, 39–50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xu, J. J. et al. An evolutionarily conserved olfactory receptor is required for sex differences in blood pressure. Sci. Adv. 10, eadk1487 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kalbe, B. et al. Olfactory signaling components and olfactory receptors are expressed in tubule cells of the human kidney. Arch. Biochem. Biophys. 610, 8–15 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Kuhns, V. L. H. et al. Characterizing novel olfactory receptors expressed in the murine renal cortex. Am. J. Physiol. Renal Physiol. 317, F172–F186 (2019).

    Article  CAS  Google Scholar 

  104. Xu, J. & Pluznick, J. L. Key amino acids alter activity and trafficking of a well-conserved olfactory receptor. Am. J. Physiol. Cell Physiol. 322, C1279–C1288 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Barsha, G., Denton, K. M. & Colafella, K. M. M. Sex- and age-related differences in arterial pressure and albuminuria in mice. Biol. Sex. Differ. 7, 57 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wiinberg, N. et al. 24-h ambulatory blood-pressure in 352 normal Danish subjects, related to age and gender. Am. J. Hypertens. 8, 978–986 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Reckelhoff, J. F. Gender differences in the regulation of blood pressure. Hypertension 37, 1199–1208 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Wills, A. K. et al. Life course trajectories of systolic blood pressure using longitudinal data from eight UK cohorts. PLoS Med 8, e1000440 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ji, H., Kim, A. J. & Ebinger, J. Sex differences in blood pressure trajectories over the life course (vol 5, pg 1, 2020). JAMA Cardiol. 5, 364–364 (2020).

    Article  Google Scholar 

  110. Ji, H. et al. Sex differences in blood pressure associations with cardiovascular outcomes. Circulation 143, 761–763 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shepard, B. D. et al. A renal olfactory receptor aids in kidney glucose handling. Sci. Rep. 6, 35215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Balen, D. et al. Revised immunolocalization of the Na+-D-glucose cotransporter SGLT1 in rat organs with an improved antibody. Am. J. Physiol. Cell Physiol. 295, C475–C489 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Vallon, V. et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J. Am. Soc. Nephrol. 22, 104–112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cinti, F. et al. Spotlight on ertugliflozin and its potential in the treatment of type 2 diabetes: evidence to date. Drug. Des. Devel. Ther. 11, 2905–2919 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Devineni, D. & Polidori, D. Clinical pharmacokinetic, pharmacodynamic, and drug-drug interaction profile of canagliflozin, a sodium-glucose co-transporter 2 inhibitor. Clin. Pharmacokinet. 54, 1027–1041 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Kasichayanula, S., Liu, X., Lacreta, F., Griffen, S. C. & Boulton, D. W. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin. Pharmacokinet. 53, 17–27 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Ndefo, U. A., Anidiobi, N. O., Basheer, E. & Eaton, A. T. Empagliflozin (Jardiance): a novel SGLT2 inhibitor for the treatment of type-2 diabetes. P T 40, 364–368 (2015).

    PubMed  PubMed Central  Google Scholar 

  119. Rieg, T. & Vallon, V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia 61, 2079–2086 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shepard, B. D. & Ecelbarger, C. M. Sodium glucose transporter, type 2 (SGLT2) inhibitors (SGLT2i) and glucagon-like peptide 1-receptor agonists: newer therapies in whole-body glucose stabilization. Semin. Nephrol. 41, 331–348 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Schiazza, A. R., Considine, E. G., Betcher, M. & Shepard, B. D. Loss of renal olfactory receptor 1393 leads to improved glucose homeostasis in a type 1 diabetic mouse model. Physiol. Rep. 9, e15007 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shepard, B. D., Koepsell, H. & Pluznick, J. L. Renal olfactory receptor 1393 contributes to the progression of type 2 diabetes in a diet-induced obesity model. Am. J. Physiol. Renal Physiol. 316, F372–F381 (2019).

    Article  PubMed  Google Scholar 

  123. Shepard, B. D. The sniffing kidney: roles for renal olfactory receptors in health and disease. Kidney360 2, 1056–1062 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Jahromi, M. Critical association study of olfactory receptor gene polymorphism in diabetic complications. Immunome Res. https://doi.org/10.4172/1745-7580.1000079 (2014).

  125. Liu, Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 69, 213–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Motahharynia, A. et al. Olfactory receptors contribute to progression of kidney fibrosis. NPJ Syst. Biol. Appl. 8, 8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gu, Y. P. et al. Activation of TAS2R4 signaling attenuates podocyte injury induced by high glucose. Biochem. Pharmacol. 226, 116392 (2024).

    Article  CAS  PubMed  Google Scholar 

  128. Olinski, L. E., Tsuda, A. C., Kauer, J. A. & Oancea, E. Endogenous opsin 3 (OPN3) protein expression in the adult brain using a novel OPN3-mcherry knock-in mouse model. Eneuro https://doi.org/10.1523/Eneuro.0107-20.2020 (2020).

  129. Sato, M. et al. Cell-autonomous light sensitivity via Opsin3 regulates fuel utilization in brown adipocytes. PLoS Biol. 18, e3000630 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ludwig, M. G. et al. Proton-sensing G-protein-coupled receptors. Nature 425, 93–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Sun, X. et al. Deletion of the pH sensor GPR4 decreases renal acid excretion. J. Am. Soc. Nephrol. 21, 1745–1755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Imenez Silva, P. H. et al. The proton-activated ovarian cancer G protein-coupled receptor 1 (OGR1) is responsible for renal calcium loss during acidosis. Kidney Int. 97, 920–933 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Yoshida, Y. et al. Inhibition of G protein-coupled receptor 68 using homoharringtonine attenuates chronic kidney disease-associated cardiac impairment. Transl. Res. 269, 31–46 (2024).

    Article  CAS  PubMed  Google Scholar 

  134. Xie, L. et al. Dietary fibre controls blood pressure and cardiovascular risk by lowering large intestinal pH and activating the proton-sensing receptor GPR65. Preprint at bioRxiv https://doi.org/10.1101/2022.11.17.516695 (2022).

  135. Chen, L. H., Chou, C. L. & Knepper, M. A. A comprehensive map of mRNAs and their isoforms across all 14 renal tubule segments of mouse. J. Am. Soc. Nephrol. 32, 897–912 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. He, W. et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429, 188–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Robben, J. H. et al. Localization of the succinate receptor in the distal nephron and its signaling in polarized MDCK cells. Kidney Int. 76, 1258–1267 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Toma, I. et al. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J. Clin. Invest. 118, 2526–2534 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Vargas, S. L., Toma, I., Kang, J. J., Meer, E. J. & Peti-Peterdi, J. Activation of the succinate receptor GPR91 in macula densa cells causes renin release. J. Am. Soc. Nephrol. 20, 1002–1011 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Diehl, J. et al. Expression and localization of GPR91 and GPR99 in murine organs. Cell Tissue Res. 364, 245–262 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Rexen Ulven, E. et al. Structure-activity investigations and optimisations of non-metabolite agonists for the succinate receptor 1. Sci. Rep. 8, 10010 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Tokonami, N. et al. α-Ketoglutarate regulates acid-base balance through an intrarenal paracrine mechanism. J. Clin. Invest. 123, 3166–3171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Natarajan, N. et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol. Genomics 48, 826–834 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Dinakis, E. et al. The gut microbiota and their metabolites in human arterial stiffness. Heart Lung Circ. 30, 1716–1725 (2021).

    Article  PubMed  Google Scholar 

  145. Kaye, D. M. et al. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease. Circulation 141, 1393–1403 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Felizardo, R. J. F. et al. Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms. FASEB J. 33, 11894–11908 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Huang, W. et al. Short-chain fatty acids inhibit oxidative stress and inflammation in mesangial cells induced by high glucose and lipopolysaccharide. Exp. Clin. Endocrinol. Diabetes 125, 98–105 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Wacker, D., Stevens, R. C. & Roth, B. L. How ligands illuminate GPCR molecular pharmacology. Cell 170, 414–427 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Rajkumar, P., Aisenberg, W. H., Acres, O. W., Protzko, R. J. & Pluznick, J. L. Identification and characterization of novel renal sensory receptors. PLoS ONE 9, e111053 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Liu, X., Gu, F., Jiang, L., Chen, F. X. & Li, F. Expression of bitter taste receptor Tas2r105 in mouse kidney. Biochem. Biophys. Res. Commun. 458, 733–738 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Fukutani, Y. et al. The N-terminal region of RTP1S plays important roles in dimer formation and odorant receptor-trafficking. J. Biol. Chem. 294, 14661–14673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Matsunami, H., Mainland, J. D. & Dey, S. Trafficking of mammalian chemosensory receptors by receptor-transporting proteins. Ann. N. Y. Acad. Sci. 1170, 153–156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Noe, F. et al. IL-6-HaloTag® enables live-cell plasma membrane staining, flow cytometry, functional expression, and de-orphaning of recombinant odorant receptors. J. Biol. Methods 4, e81 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wu, L., Pan, Y., Chen, G. Q., Matsunami, H. & Zhuang, H. Receptor-transporting protein 1 short (RTP1S) mediates translocation and activation of odorant receptors by acting through multiple steps. J. Biol. Chem. 287, 22287–22294 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Roberts, R. E., Yuvaraj, J. K. & Andersson, M. N. Codon optimization of insect odorant receptor genes may increase their stable expression for functional characterization in HEK293 cells. Front. Cell Neurosci. 15, 744401 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Baghaei, K. A. Deorphanization of human olfactory receptors by luciferase and Ca-imaging methods. Methods Mol. Biol. 1003, 229–238 (2013).

    Article  PubMed  Google Scholar 

  157. Zhang, Y., Pan, Y., Matsunami, H. & Zhuang, H. Live-cell measurement of odorant receptor activation using a real-time cAMP assay. J. Vis. Exp. https://doi.org/10.3791/55831 (2017).

  158. Krautwurst, D., Yau, K. W. & Reed, R. R. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95, 917–926 (1998).

    Article  CAS  PubMed  Google Scholar 

  159. Yasi, E. A. et al. Rapid deorphanization of human olfactory receptors in yeast. Biochemistry 58, 2160–2166 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. de March, C. A., Fukutani, Y., Vihani, A., Kida, H. & Matsunami, H. Real-time in vitro monitoring of odorant receptor activation by an odorant in the vapor phase. J .Vis. Exp. https://doi.org/10.3791/59446 (2019).

  161. Jiang, Y. et al. Molecular profiling of activated olfactory neurons identifies odorant receptors for odors in vivo. Nat. Neurosci. 18, 1446–1454 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Abaffy, T., Matsunami, H. & Luetje, C. W. Functional analysis of a mammalian odorant receptor subfamily. J. Neurochem. 97, 1506–1518 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Cong, X. et al. Large-scale G protein-coupled olfactory receptor-ligand pairing. ACS Cent. Sci. 8, 379–387 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Jabeen, A., de March, C. A., Matsunami, H. & Ranganathan, S. Machine learning assisted approach for finding novel high activity agonists of human ectopic olfactory receptors. Int. J. Mol. Sci. 22, 11546 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for support from the American Heart Association Career Development Award (23CDA1050485 to J.X.), the Dekkers Endowed Chair in Human Science (Georgetown University, to B.D.S.), R03TR004193 (NIH/NCATS to B.D.S.), American Heart Association Established Investigator Award (to J.L.P.), R21AG081683 (to J.L.P.), R01DK137762 (to J.L.P.), and R01DK139021 (to J.L.P.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jennifer L. Pluznick.

Ethics declarations

Competing interests

Under a licensing agreement between Firmenich and the Johns Hopkins University, the University, B.D.S., and J.L.P. are entitled to fees associated with an invention described in this article (the Lucy tag; patent US 9783585; BE 2893020; DE 2893020; CH 2893020). This arrangement has been reviewed and approved by the Johns Hopkins University and Georgetown University in accordance with its conflict of interest policies.

Peer review

Peer review information

Nature Reviews Nephrology thanks Pablo Ortiz, Alexander Staruschenko, Carsten Wagner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Shepard, B.D. & Pluznick, J.L. Roles of sensory receptors in non-sensory organs: the kidney and beyond. Nat Rev Nephrol 21, 253–263 (2025). https://doi.org/10.1038/s41581-024-00917-y

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-024-00917-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing