Abstract
Olfactory receptors (ORs), taste receptors and opsins are well-known for their pivotal roles in mediating the senses of smell, taste and sight, respectively. However, in the past two decades, research has shown that these sensory receptors also regulate physiological processes in a variety of non-sensory tissues. Although ORs, taste receptors and opsins have all been shown to have physiological roles beyond their traditional locations, most work in the kidney has focused on ORs. To date, renal ORs have been shown to have roles in blood pressure regulation (OLFR78 and OLFR558) and glucose homeostasis (OLFR1393). However, sensory receptors remain drastically understudied outside of traditional sensory systems, in part because of inherent challenges in studying these receptors. Increased knowledge of the physiological and pathophysiological roles of sensory receptors has the potential to substantially improve understanding of the function of numerous organs and systems, including the kidney. In addition, most sensory receptors are G protein-coupled receptors, which are considered to be the most druggable class of proteins, and thus could potentially be exploited as future therapeutic targets.
Key points
-
Olfactory receptors (ORs), taste receptors and opsins have functional roles in non-sensory organs and tissues, including in the kidney, lungs, testis, spinal cord, adipose tissue, vasculature and immune system.
-
Studies of ORs are challenging but use of best practices in the field enable these important receptors to be interrogated in a rigorous fashion.
-
ORs have roles in sperm chemotaxis, macrophage chemosensation and migration, and lung vasodilation; taste receptors modulate lung vasodilation and sense pH changes in cerebrospinal fluid; and opsins have been reported to have roles in adipose tissue function and thermogenesis.
-
In the kidney, Olfr78 is expressed in blood vessels; activation of this OR in the renal afferent arteriole increases renin release.
-
Olfr558 localizes to blood vessels, including the renal afferent arteriole, and is required for sex differences in blood pressure.
-
Olfr1393 is expressed in the renal proximal tubule, where it modulates sodium–glucose cotransporters, resulting in effects on glucose tolerance.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Oteiza, P. & Baldwin, M. W. Evolution of sensory systems. Curr. Opin. Neurobiol. 71, 52–59 (2021).
Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).
Malnic, B., Godfrey, P. A. & Buck, L. B. The human olfactory receptor gene family. Proc. Natl Acad. Sci. USA 101, 7205–7205 (2004).
Belluscio, L., Gold, G. H., Nemes, A. & Axel, R. Mice deficient in Golf are anosmic. Neuron 20, 69–81 (1998).
Wong, S. T. et al. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27, 487–497 (2000).
Diepeveen, J., Moerdijk-Poortvliet, T. C. W. & van der Leij, F. R. Molecular insights into human taste perception and umami tastants: a review. J. Food Sci. 87, 1449–1465 (2022).
Banik, D. D. & Medler, K. F. Bitter, sweet, and umami signaling in taste cells: it’s not as simple as we thought. Curr. Opin. Physiol. 20, 159–164 (2021).
Adler, E. et al. A novel family of mammalian taste receptors. Cell 100, 693–702 (2000).
Matsunami, H., Montmayeur, J. P. & Buck, L. B. A family of candidate taste receptors in human and mouse. Nature 404, 601 (2000).
Meyerhof, W. et al. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem. Senses 35, 157–170 (2010).
Perez, C. A. et al. A transient receptor potential channel expressed in taste receptor cells. Nat. Neurosci. 5, 1169–1176 (2002).
Ruiz, C. J., Wray, K., Delay, E. R., Margolskee, R. F. & Kinnamon, S. C. Behavioral evidence for a role of alpha-gustducin in glutamate taste. Chem. Senses 28, 573–579 (2003).
Zhang, Z., Zhao, Z., Margolskee, R. & Liman, E. The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J. Neurosci. 27, 5777–5786 (2007).
Galindo, M. M. et al. G protein-coupled receptors in human fat taste perception. Chem. Senses 37, 123–139 (2012).
Wang, Y. et al. Metal ions activate the human taste receptor TAS2R7. Chem. Senses 44, 339–347 (2019).
Ramirez, M. D. et al. The last common ancestor of most bilaterian animals possessed at least nine opsins. Genome Biol. Evol. 8, 3640–3652 (2016).
Davies, W. I. L., Collin, S. P. & Hunt, D. M. Molecular ecology and adaptation of visual photopigments in craniates. Mol. Ecol. 21, 3121–3158 (2012).
Baldwin, M. W. & Ko, M. C. Functional evolution of vertebrate sensory receptors. Horm. Behav. 124, 104771 (2020).
Shichida, Y. & Matsuyama, T. Evolution of opsins and phototransduction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 2881–2895 (2009).
Simon, C. J., Sahel, J. A., Duebel, J., Herlitze, S. & Dalkara, D. Opsins for vision restoration. Biochem. Biophys. Res. Commun. 527, 325–330 (2020).
Rajkumar, P. & Pluznick, J. L. Unsung renal receptors: orphan G-protein-coupled receptors play essential roles in renal development and homeostasis. Acta Physiol. 220, 189–200 (2017).
Pronin, A. et al. Expression of olfactory signaling genes in the eye. PLoS ONE 9, e96435 (2014).
Dalesio, N. M., Ortiz, S. F. B., Pluznick, J. L. & Berkowitz, D. E. Olfactory, taste, and photo sensory receptors in non-sensory organs: it just makes sense. Front. Physiol. 9, 1673 (2018).
Ki, S. Y. & Jeong, Y. T. Taste receptors beyond taste buds. Int J. Mol. Sci. 23, 9677 (2022).
Smith, T. A. et al. Identification of novel bladder sensory GPCRs. Physiol. Rep. 9, e14840 (2021).
Haltaufderhyde, K., Ozdeslik, R. N., Wicks, N. L., Najera, J. A. & Oancea, E. Opsin expression in human epidermal skin. Photochem. Photobiol. 91, 117–123 (2015).
Ortiz, S. B. et al. Opsin 3 and 4 mediate light-induced pulmonary vasorelaxation that is potentiated by G protein-coupled receptor kinase 2 inhibition. Am. J. Physiol. Lung Cell. Mol. Physiol. 314, L93–L106 (2018).
Ondrusova, K. et al. Subcutaneous white adipocytes express a light sensitive signaling pathway mediated via a melanopsin/TRPC channel axis. Sci. Rep. 7, 16332 (2017).
Shepard, B. D. & Pluznick, J. L. How does your kidney smell? Emerging roles for olfactory receptors in renal function. Pediatr. Nephrol. 31, 715–723 (2016).
Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).
Sriram, K., Salmeron, C., Di Nardo, A. & Insel, P. A. Detection of GPCR mRNA expression in primary cells via qPCR, microarrays, and RNA-sequencing. Methods Mol. Biol. 2268, 21–42 (2021).
Pluznick, J. L. et al. Functional expression of the olfactory signaling system in the kidney. Proc. Natl Acad. Sci. USA 106, 2059–2064 (2009).
Kato, A. & Touhara, K. Mammalian olfactory receptors: pharmacology, G protein coupling and desensitization. Cell Mol. Life Sci. 66, 3743–3753 (2009).
Spehr, M. & Munger, S. D. Olfactory receptors: G protein-coupled receptors and beyond. J. Neurochem. 109, 1570–1583 (2009).
Niimura, Y., Matsui, A. & Touhara, K. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res. 24, 1485–1496 (2014).
Lane, R. P. et al. Genomic analysis of orthologous mouse and human olfactory receptor loci. Proc. Natl Acad. Sci. USA 98, 7390–7395 (2001).
Poll, B. G., Chen, L. H., Chou, C. L., Raghuram, V. & Knepper, M. A. Landscape of GPCR expression along the mouse nephron. Am. J. Physiol. Renal Physiol. 321, F50–F68 (2021).
Zhuang, H. & Matsunami, H. Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat. Protoc. 3, 1402–1413 (2008).
Kajiya, K. et al. Molecular bases of odor discrimination: reconstitution of olfactory receptors that recognize overlapping sets of odorants. J. Neurosci. 21, 6018–6025 (2001).
Katada, S., Nakagawa, T., Kataoka, H. & Touhara, K. Odorant response assays for a heterologously expressed olfactory receptor. Biochem. Biophys. Res. Commun. 305, 964–969 (2003).
Lu, M., Echeverri, F. & Moyer, B. D. Endoplasmic reticulum retention, degradation, and aggregation of olfactory G-protein coupled receptors. Traffic 4, 416–433 (2003).
McClintock, T. S. & Sammeta, N. Trafficking prerogatives of olfactory receptors. Neuroreport 14, 1547–1552 (2003).
Mombaerts, P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat. Rev. Neurosci. 5, 263–278 (2004).
Saito, H., Kubota, M., Roberts, R. W., Chi, Q. & Matsunami, H. RTP family members induce functional expression of mammalian odorant receptors. Cell 119, 679–691 (2004).
Zhuang, H. & Matsunami, H. Synergism of accessory factors in functional expression of mammalian odorant receptors. J. Biol. Chem. 282, 15284–15293 (2007).
Shepard, B. D., Natarajan, N., Protzko, R. J., Acres, O. W. & Pluznick, J. L. A cleavable N-terminal signal peptide promotes widespread olfactory receptor surface expression in HEK293T cells. PLoS ONE 8, e68758 (2013).
Peterlin, Z., Firestein, S. & Rogers, M. E. The state of the art of odorant receptor deorphanization: a report from the orphanage. J. Gen. Physiol. 143, 527–542 (2014).
Flegel, C., Manteniotis, S., Osthold, S., Hatt, H. & Gisselmann, G. Expression profile of ectopic olfactory receptors determined by deep sequencing. PLoS ONE 8, e55368 (2013).
Nakanishi, S., Tsutsui, T., Itai, N. & Denda, M. Distinct sets of olfactory receptors highly expressed in different human tissues evaluated by meta-transcriptome analysis: association of OR10A6 in skin with keratinization. Front. Cell Dev. Biol. 11, 1102585 (2023).
Massberg, D. & Hatt, H. Human olfactory receptors: novel cellular functions outside of the nose. Physiol. Rev. 98, 1739–1763 (2018).
Oh, S. J. System-wide expression and function of olfactory receptors in mammals. Genomics Inform. 16, 2–9 (2018).
Fukuda, N., Yomogida, K., Okabe, M. & Touhara, K. Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility. J. Cell Sci. 117, 5835–5845 (2004).
Teveroni, E. et al. Short-chain fatty acids modulate sperm migration through olfactory receptor 51E2 Activity. Int. J. Mol. Sci. 23, 12726 (2022).
Spehr, M. et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299, 2054–2058 (2003).
Kim, J. S. et al. OR2AT4, an ectopic olfactory receptor, suppresses oxidative stress-induced senescence in human keratinocytes. Antioxidants 11, 2180 (2022).
Deshpande, D. A. et al. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat. Med. 16, 1299–1304 (2010).
Nayak, G. et al. Adaptive thermogenesis in mice is enhanced by opsin 3-dependent adipocyte light sensing. Cell Rep. 30, 672–686 e678 (2020).
Lee, S. J., Depoortere, I. & Hatt, H. Therapeutic potential of ectopic olfactory and taste receptors. Nat. Rev. Drug. Discov. 18, 116–138 (2019).
Jimenez, F. et al. Topical odorant application of the specific olfactory receptor OR2AT4 agonist, Sandalore®, improves telogen effluvium-associated parameters. J. Cosmet. Dermatol. 20, 784–791 (2021).
Spehr, M., Schwane, K., Riffell, J. A., Zimmer, R. K. & Hatt, H. Odorant receptors and olfactory-like signaling mechanisms in mammalian sperm. Mol. Cell Endocrinol. 250, 128–136 (2006).
Parmentier, M. et al. Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature 355, 453–455 (1992).
Flegel, C. et al. Characterization of the olfactory receptors expressed in human spermatozoa. Front. Mol. Biosci. 2, 73 (2015).
Hartmann, C. et al. Sperm-activating odorous substances in human follicular fluid and vaginal secretion: identification by gas chromatography-olfactometry and Ca(2+) imaging. Chempluschem 78, 695–702 (2013).
Ottaviano, G. et al. Human olfactory sensitivity for bourgeonal and male infertility: a preliminary investigation. Eur. Arch. Otorhinolaryngol. 270, 3079–3086 (2013).
Orecchioni, M., Matsunami, H. & Ley, K. Olfactory receptors in macrophages and inflammation. Front. Immunol. 13, 1029244 (2022).
Li, J. J. et al. Activation of olfactory receptors on mouse pulmonary macrophages promotes monocyte chemotactic protein-1 production. PLoS ONE 8, e80148 (2013).
Orecchioni, M. et al. Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production. Science 375, 214–221 (2022).
Vadevoo, S. M. P. et al. The macrophage odorant receptor Olfr78 mediates the lactate-induced M2 phenotype of tumor-associated macrophages. Proc. Natl Acad. Sci. USA 118, e2102434118 (2021).
Yunna, C., Mengru, H., Lei, W. & Weidong, C. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 877, 173090 (2020).
Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).
Weidinger, D. et al. OR2AT4 and OR1A2 counterregulate molecular pathophysiological processes of steroid-resistant inflammatory lung diseases in human alveolar macrophages. Mol. Med. 28, 150 (2022).
Zhou, Y. W. et al. Tas2R activation relaxes airway smooth muscle by release of Gαt targeting on AChR signaling. Proc. Natl Acad. Sci. USA 119, e2121513119 (2022).
Woo, J. A. et al. A par3/LIM kinase/cofilin pathway mediates human airway smooth muscle relaxation by TAS2R14. Am. J. Respir. Cell Mol. Biol. 68, 417–429 (2023).
Aisenberg, W. H. et al. Defining an olfactory receptor function in airway smooth muscle cells. Sci. Rep. 6, 38231 (2016).
Huang, J. et al. The odorant receptor OR2W3 on airway smooth muscle evokes bronchodilation via a cooperative chemosensory tradeoff between TMEM16A and CFTR. Proc. Natl Acad. Sci. USA 117, 28485–28495 (2020).
Turner, H. N. & Liman, E. R. The cellular and molecular basis of sour taste. Annu. Rev. Physiol. 84, 41–58 (2022).
Huang, A. L. et al. The cells and logic for mammalian sour taste detection. Nature 442, 934–938 (2006).
Horio, N. et al. Sour taste responses in mice lacking PKD channels. PLoS ONE 6, e20007 (2011).
Jalalvand, E., Robertson, B., Wallen, P. & Grillner, S. Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3. Nat. Commun. 7, 10002 (2016).
Sternberg, J. R. et al. Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature. Nat. Commun. 9, 3804 (2018).
Djenoune, L. et al. Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates. Front. Neuroanat. 8, 26 (2014).
Jurcic, N., Michelle, C., Trouslard, J., Wanaverbecq, N. & Kastner, A. Evidence for PKD2L1-positive neurons distant from the central canal in the ventromedial spinal cord and medulla of the adult mouse. Eur. J. Neurosci. 54, 4781–4803 (2021).
Andrabi, M., Upton, B., Lang, R. A. & Vemaraju, S. An expanding role for nonvisual opsins in extraocular light sensing physiology. Annu. Rev. Vis. Sci. 9, 245–267 (2023).
Moraes, M. N., de Assis, L. V. M., Provencio, I. & Castrucci, A. M. L. Opsins outside the eye and the skin: a more complex scenario than originally thought for a classical light sensor. Cell Tissue Res. 385, 519–538 (2021).
Diffey, B. L. Ultraviolet radiation physics and the skin. Phys. Med. Biol. 25, 405–426 (1980).
Zhang, K. X. et al. Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons. Nature 585, 420–425 (2020).
Chen, X. & Gillis, C. N. Methylene blue enhanced photorelaxation in aorta, pulmonary artery and corpus cavernosum. Biochem. Biophys. Res. Commun. 190, 559–563 (1993).
Furchgott, R. F., Ehrreich, S. J. & Greenblatt, E. The photoactivated relaxation of smooth muscle of rabbit aorta. J. Gen. Physiol. 44, 499–519, (1961).
Sikka, G. et al. Melanopsin mediates light-dependent relaxation in blood vessels. Proc. Natl Acad. Sci. USA 111, 17977–17982 (2014).
Yim, P. D. et al. Airway smooth muscle photorelaxation via opsin receptor activation. Am. J. Physiol. Lung Cell Mol. Physiol. 316, L82–L93 (2019).
White, J. H. et al. Identification of a novel asthma susceptibility gene on chromosome 1qter and its functional evaluation. Hum. Mol. Genet. 17, 1890–1903 (2008).
Taruno, A. & Gordon, M. D. Molecular and cellular mechanisms of salt taste. Annu. Rev. Physiol. 85, 25–45 (2023).
Pluznick, J. L. et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).
Mermer, P., Strotmann, J., Kummer, W. & Paddenberg, R. Olfactory receptor Olfr78 (prostate-specific G protein-coupled receptor PSGR) expression in arterioles supplying skeletal and cardiac muscles and in arterioles feeding some murine organs. Histochem. Cell Biol. 156, 539–553 (2021).
Chang, A. J., Ortega, F. E., Riegler, J., Adison, D. V. M. & Krasnow, M. A. Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature 527, 240 (2015).
Dinsart, G. et al. The olfactory receptor Olfr78 promotes differentiation of enterochromaffin cells in the mouse colon. EMBO Rep. 25, 304–333 (2024).
Kotlo, K. et al. The olfactory G protein-coupled receptor (Olfr-78/OR51E2) modulates the intestinal response to colitis. Am. J. Physiol. Cell Physiol. 318, C502–C513 (2020).
Perry, R. J. et al. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534, 213–217 (2016).
Poll, B. G., Xu, J., Gupta, K., Shubitowski, T. B. & Pluznick, J. L. Olfactory receptor 78 modulates renin but not baseline blood pressure. Physiol. Rep. 9, e15017 (2021).
Poll, B. G. et al. Acetate, a short-chain fatty acid, acutely lowers heart rate and cardiac contractility along with blood pressure. J. Pharmacol. Exp. Ther. 377, 39–50 (2021).
Xu, J. J. et al. An evolutionarily conserved olfactory receptor is required for sex differences in blood pressure. Sci. Adv. 10, eadk1487 (2024).
Kalbe, B. et al. Olfactory signaling components and olfactory receptors are expressed in tubule cells of the human kidney. Arch. Biochem. Biophys. 610, 8–15 (2016).
Kuhns, V. L. H. et al. Characterizing novel olfactory receptors expressed in the murine renal cortex. Am. J. Physiol. Renal Physiol. 317, F172–F186 (2019).
Xu, J. & Pluznick, J. L. Key amino acids alter activity and trafficking of a well-conserved olfactory receptor. Am. J. Physiol. Cell Physiol. 322, C1279–C1288 (2022).
Barsha, G., Denton, K. M. & Colafella, K. M. M. Sex- and age-related differences in arterial pressure and albuminuria in mice. Biol. Sex. Differ. 7, 57 (2016).
Wiinberg, N. et al. 24-h ambulatory blood-pressure in 352 normal Danish subjects, related to age and gender. Am. J. Hypertens. 8, 978–986 (1995).
Reckelhoff, J. F. Gender differences in the regulation of blood pressure. Hypertension 37, 1199–1208 (2001).
Wills, A. K. et al. Life course trajectories of systolic blood pressure using longitudinal data from eight UK cohorts. PLoS Med 8, e1000440 (2011).
Ji, H., Kim, A. J. & Ebinger, J. Sex differences in blood pressure trajectories over the life course (vol 5, pg 1, 2020). JAMA Cardiol. 5, 364–364 (2020).
Ji, H. et al. Sex differences in blood pressure associations with cardiovascular outcomes. Circulation 143, 761–763 (2021).
Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).
Shepard, B. D. et al. A renal olfactory receptor aids in kidney glucose handling. Sci. Rep. 6, 35215 (2016).
Balen, D. et al. Revised immunolocalization of the Na+-D-glucose cotransporter SGLT1 in rat organs with an improved antibody. Am. J. Physiol. Cell Physiol. 295, C475–C489 (2008).
Vallon, V. et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J. Am. Soc. Nephrol. 22, 104–112 (2011).
Cinti, F. et al. Spotlight on ertugliflozin and its potential in the treatment of type 2 diabetes: evidence to date. Drug. Des. Devel. Ther. 11, 2905–2919 (2017).
Devineni, D. & Polidori, D. Clinical pharmacokinetic, pharmacodynamic, and drug-drug interaction profile of canagliflozin, a sodium-glucose co-transporter 2 inhibitor. Clin. Pharmacokinet. 54, 1027–1041 (2015).
Kasichayanula, S., Liu, X., Lacreta, F., Griffen, S. C. & Boulton, D. W. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin. Pharmacokinet. 53, 17–27 (2014).
Ndefo, U. A., Anidiobi, N. O., Basheer, E. & Eaton, A. T. Empagliflozin (Jardiance): a novel SGLT2 inhibitor for the treatment of type-2 diabetes. P T 40, 364–368 (2015).
Rieg, T. & Vallon, V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia 61, 2079–2086 (2018).
Shepard, B. D. & Ecelbarger, C. M. Sodium glucose transporter, type 2 (SGLT2) inhibitors (SGLT2i) and glucagon-like peptide 1-receptor agonists: newer therapies in whole-body glucose stabilization. Semin. Nephrol. 41, 331–348 (2021).
Schiazza, A. R., Considine, E. G., Betcher, M. & Shepard, B. D. Loss of renal olfactory receptor 1393 leads to improved glucose homeostasis in a type 1 diabetic mouse model. Physiol. Rep. 9, e15007 (2021).
Shepard, B. D., Koepsell, H. & Pluznick, J. L. Renal olfactory receptor 1393 contributes to the progression of type 2 diabetes in a diet-induced obesity model. Am. J. Physiol. Renal Physiol. 316, F372–F381 (2019).
Shepard, B. D. The sniffing kidney: roles for renal olfactory receptors in health and disease. Kidney360 2, 1056–1062 (2021).
Jahromi, M. Critical association study of olfactory receptor gene polymorphism in diabetic complications. Immunome Res. https://doi.org/10.4172/1745-7580.1000079 (2014).
Liu, Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 69, 213–217 (2006).
Motahharynia, A. et al. Olfactory receptors contribute to progression of kidney fibrosis. NPJ Syst. Biol. Appl. 8, 8 (2022).
Gu, Y. P. et al. Activation of TAS2R4 signaling attenuates podocyte injury induced by high glucose. Biochem. Pharmacol. 226, 116392 (2024).
Olinski, L. E., Tsuda, A. C., Kauer, J. A. & Oancea, E. Endogenous opsin 3 (OPN3) protein expression in the adult brain using a novel OPN3-mcherry knock-in mouse model. Eneuro https://doi.org/10.1523/Eneuro.0107-20.2020 (2020).
Sato, M. et al. Cell-autonomous light sensitivity via Opsin3 regulates fuel utilization in brown adipocytes. PLoS Biol. 18, e3000630 (2020).
Ludwig, M. G. et al. Proton-sensing G-protein-coupled receptors. Nature 425, 93–98 (2003).
Sun, X. et al. Deletion of the pH sensor GPR4 decreases renal acid excretion. J. Am. Soc. Nephrol. 21, 1745–1755 (2010).
Imenez Silva, P. H. et al. The proton-activated ovarian cancer G protein-coupled receptor 1 (OGR1) is responsible for renal calcium loss during acidosis. Kidney Int. 97, 920–933 (2020).
Yoshida, Y. et al. Inhibition of G protein-coupled receptor 68 using homoharringtonine attenuates chronic kidney disease-associated cardiac impairment. Transl. Res. 269, 31–46 (2024).
Xie, L. et al. Dietary fibre controls blood pressure and cardiovascular risk by lowering large intestinal pH and activating the proton-sensing receptor GPR65. Preprint at bioRxiv https://doi.org/10.1101/2022.11.17.516695 (2022).
Chen, L. H., Chou, C. L. & Knepper, M. A. A comprehensive map of mRNAs and their isoforms across all 14 renal tubule segments of mouse. J. Am. Soc. Nephrol. 32, 897–912 (2021).
He, W. et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429, 188–193 (2004).
Robben, J. H. et al. Localization of the succinate receptor in the distal nephron and its signaling in polarized MDCK cells. Kidney Int. 76, 1258–1267 (2009).
Toma, I. et al. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J. Clin. Invest. 118, 2526–2534 (2008).
Vargas, S. L., Toma, I., Kang, J. J., Meer, E. J. & Peti-Peterdi, J. Activation of the succinate receptor GPR91 in macula densa cells causes renin release. J. Am. Soc. Nephrol. 20, 1002–1011 (2009).
Diehl, J. et al. Expression and localization of GPR91 and GPR99 in murine organs. Cell Tissue Res. 364, 245–262 (2016).
Rexen Ulven, E. et al. Structure-activity investigations and optimisations of non-metabolite agonists for the succinate receptor 1. Sci. Rep. 8, 10010 (2018).
Tokonami, N. et al. α-Ketoglutarate regulates acid-base balance through an intrarenal paracrine mechanism. J. Clin. Invest. 123, 3166–3171 (2013).
Natarajan, N. et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol. Genomics 48, 826–834 (2016).
Dinakis, E. et al. The gut microbiota and their metabolites in human arterial stiffness. Heart Lung Circ. 30, 1716–1725 (2021).
Kaye, D. M. et al. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease. Circulation 141, 1393–1403 (2020).
Felizardo, R. J. F. et al. Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms. FASEB J. 33, 11894–11908 (2019).
Huang, W. et al. Short-chain fatty acids inhibit oxidative stress and inflammation in mesangial cells induced by high glucose and lipopolysaccharide. Exp. Clin. Endocrinol. Diabetes 125, 98–105 (2017).
Wacker, D., Stevens, R. C. & Roth, B. L. How ligands illuminate GPCR molecular pharmacology. Cell 170, 414–427 (2017).
Rajkumar, P., Aisenberg, W. H., Acres, O. W., Protzko, R. J. & Pluznick, J. L. Identification and characterization of novel renal sensory receptors. PLoS ONE 9, e111053 (2014).
Liu, X., Gu, F., Jiang, L., Chen, F. X. & Li, F. Expression of bitter taste receptor Tas2r105 in mouse kidney. Biochem. Biophys. Res. Commun. 458, 733–738 (2015).
Fukutani, Y. et al. The N-terminal region of RTP1S plays important roles in dimer formation and odorant receptor-trafficking. J. Biol. Chem. 294, 14661–14673 (2019).
Matsunami, H., Mainland, J. D. & Dey, S. Trafficking of mammalian chemosensory receptors by receptor-transporting proteins. Ann. N. Y. Acad. Sci. 1170, 153–156 (2009).
Noe, F. et al. IL-6-HaloTag® enables live-cell plasma membrane staining, flow cytometry, functional expression, and de-orphaning of recombinant odorant receptors. J. Biol. Methods 4, e81 (2017).
Wu, L., Pan, Y., Chen, G. Q., Matsunami, H. & Zhuang, H. Receptor-transporting protein 1 short (RTP1S) mediates translocation and activation of odorant receptors by acting through multiple steps. J. Biol. Chem. 287, 22287–22294 (2012).
Roberts, R. E., Yuvaraj, J. K. & Andersson, M. N. Codon optimization of insect odorant receptor genes may increase their stable expression for functional characterization in HEK293 cells. Front. Cell Neurosci. 15, 744401 (2021).
Baghaei, K. A. Deorphanization of human olfactory receptors by luciferase and Ca-imaging methods. Methods Mol. Biol. 1003, 229–238 (2013).
Zhang, Y., Pan, Y., Matsunami, H. & Zhuang, H. Live-cell measurement of odorant receptor activation using a real-time cAMP assay. J. Vis. Exp. https://doi.org/10.3791/55831 (2017).
Krautwurst, D., Yau, K. W. & Reed, R. R. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95, 917–926 (1998).
Yasi, E. A. et al. Rapid deorphanization of human olfactory receptors in yeast. Biochemistry 58, 2160–2166 (2019).
de March, C. A., Fukutani, Y., Vihani, A., Kida, H. & Matsunami, H. Real-time in vitro monitoring of odorant receptor activation by an odorant in the vapor phase. J .Vis. Exp. https://doi.org/10.3791/59446 (2019).
Jiang, Y. et al. Molecular profiling of activated olfactory neurons identifies odorant receptors for odors in vivo. Nat. Neurosci. 18, 1446–1454 (2015).
Abaffy, T., Matsunami, H. & Luetje, C. W. Functional analysis of a mammalian odorant receptor subfamily. J. Neurochem. 97, 1506–1518 (2006).
Cong, X. et al. Large-scale G protein-coupled olfactory receptor-ligand pairing. ACS Cent. Sci. 8, 379–387 (2022).
Jabeen, A., de March, C. A., Matsunami, H. & Ranganathan, S. Machine learning assisted approach for finding novel high activity agonists of human ectopic olfactory receptors. Int. J. Mol. Sci. 22, 11546 (2021).
Acknowledgements
We are grateful for support from the American Heart Association Career Development Award (23CDA1050485 to J.X.), the Dekkers Endowed Chair in Human Science (Georgetown University, to B.D.S.), R03TR004193 (NIH/NCATS to B.D.S.), American Heart Association Established Investigator Award (to J.L.P.), R21AG081683 (to J.L.P.), R01DK137762 (to J.L.P.), and R01DK139021 (to J.L.P.).
Author information
Authors and Affiliations
Contributions
All authors researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
Under a licensing agreement between Firmenich and the Johns Hopkins University, the University, B.D.S., and J.L.P. are entitled to fees associated with an invention described in this article (the Lucy tag; patent US 9783585; BE 2893020; DE 2893020; CH 2893020). This arrangement has been reviewed and approved by the Johns Hopkins University and Georgetown University in accordance with its conflict of interest policies.
Peer review
Peer review information
Nature Reviews Nephrology thanks Pablo Ortiz, Alexander Staruschenko, Carsten Wagner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xu, J., Shepard, B.D. & Pluznick, J.L. Roles of sensory receptors in non-sensory organs: the kidney and beyond. Nat Rev Nephrol 21, 253–263 (2025). https://doi.org/10.1038/s41581-024-00917-y
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41581-024-00917-y


