Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fibroblast activation and heterogeneity in fibrotic disease

Abstract

Fibroblasts are a special type of interstitial cell that has an essential role in maintaining the structural framework of tissues and organs. In response to injury, fibroblasts are activated and produce large amounts of extracellular matrix proteins. Fibroblast activation has a crucial role in tissue repair and wound healing. However, uncontrolled and persistent activation of fibroblasts ultimately leads to fibrotic diseases of organs such as the kidney, liver, lung and heart. Activated fibroblasts predominantly originate from the local activation and expansion of resident fibroblasts and pericytes. A diverse array of extracellular cues, including soluble factors, extracellular vesicles, matricellular proteins and mechanical stiffness, induce fibroblast activation after tissue injury. Fibroblast activation primarily takes place in the fibrogenic niche, a unique tissue microenvironment in which fibroblasts interact with injured parenchymal cells, inflammatory cells and endothelial cells. The fates of activated fibroblasts, including apoptosis, senescence, dedifferentiation and lineage reprogramming, determine the outcome of tissue repair and organ fibrosis. Potential therapeutic strategies for fibrotic diseases include disrupting the formation of the fibrogenic niche, inhibiting fibroblast activation, promoting fibroblast depletion, accelerating fibrosis resolution or promoting tissue repair and regeneration.

Key points

  • Fibroblast activation is an evolutionarily conserved response to tissue injury. Dysregulated activation of fibroblasts results in excessive production of extracellular matrix (ECM) proteins, leading to tissue scarring in various organs.

  • A diverse array of extracellular stimuli, including soluble factors, extracellular vesicles, matricellular proteins and mechanical cues, induce fibroblast activation after tissue injury. The TWA cycle, consisting of TGFβ, Wnt and angiotensin II, constitutes the core signalling network that drives fibrosis in various organs.

  • Activation of fibroblasts primarily takes place in the fibrogenic niche, a specialized tissue microenvironment in which they interact with injured parenchymal cells, macrophages and endothelial cells via diverse mediators.

  • Following tissue injury, the size of the fibroblast population is controlled not only by fibroblast activation but also by the speed of resolution of fibrosis; the fates of activated fibroblasts include apoptosis, senescence, dedifferentiation and reprogramming.

  • Targeting fibroblasts could be an effective therapeutic strategy for organ fibrosis. Approaches that disrupt the formation of the fibrogenic niche, inhibit fibroblast activation or promote fibroblast depletion are promising strategies for ameliorating fibrotic lesions in various organs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The heterogeneity and dynamics of fibroblast activation in the kidney.
Fig. 2: The origins of activated fibroblasts in various organs.
Fig. 3: The mediators of fibroblast activation.
Fig. 4: The fibrogenic niche for fibroblast activation.
Fig. 5: The fate of activated fibroblasts.
Fig. 6: Potential therapeutic interventions for fibrotic diseases.

Similar content being viewed by others

References

  1. Rockey, D. C., Bell, P. D. & Hill, J. A. Fibrosis — a common pathway to organ injury and failure. N. Engl. J. Med. 372, 1138–1149 (2015).

    Article  PubMed  CAS  Google Scholar 

  2. Lurje, I., Gaisa, N. T., Weiskirchen, R. & Tacke, F. Mechanisms of organ fibrosis: emerging concepts and implications for novel treatment strategies. Mol. Asp. Med. 92, 101191 (2023).

    Article  CAS  Google Scholar 

  3. Wynn, T. A. Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Zhou, D. et al. Early activation of fibroblasts is required for kidney repair and regeneration after injury. FASEB J. 33, 12576–12587 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Gomes, R. N., Manuel, F. & Nascimento, D. S. The bright side of fibroblasts: molecular signature and regenerative cues in major organs. NPJ Regen. Med. 6, 43 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yuan, Q., Tan, R. J. & Liu, Y. Myofibroblast in kidney fibrosis: origin, activation, and regulation. Adv. Exp. Med. Biol. 1165, 253–283 (2019).

    Article  PubMed  CAS  Google Scholar 

  7. Huang, R., Fu, P. & Ma, L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal. Transduct. Target. Ther. 8, 129 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Liu, Y. Cellular and molecular mechanisms of renal fibrosis. Nat. Rev. Nephrol. 7, 684–696 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kisseleva, T. & Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 18, 151–166 (2021).

    Article  PubMed  Google Scholar 

  10. Fu, H. et al. Tenascin-C is a major component of the fibrogenic niche in kidney fibrosis. J. Am. Soc. Nephrol. 28, 785–801 (2017).

    Article  PubMed  CAS  Google Scholar 

  11. Liu, X. et al. Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis. Kidney Int. 97, 1181–1195 (2020).

    Article  PubMed  CAS  Google Scholar 

  12. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    Article  PubMed  CAS  Google Scholar 

  13. Biasin, V. et al. PDGFRα and αSMA mark two distinct mesenchymal cell populations involved in parenchymal and vascular remodeling in pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 318, L684–L697 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Mayr, C. H. et al. Sfrp1 inhibits lung fibroblast invasion during transition to injury-induced myofibroblasts. Eur. Respir. J. 63, 2301326 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Deng, C. C. et al. Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases. Nat. Commun. 12, 3709 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Pan, X. et al. Tumour vasculature at single-cell resolution. Nature 632, 429–436 (2024).

    Article  PubMed  CAS  Google Scholar 

  17. Alex, L. et al. Cardiac pericytes acquire a fibrogenic phenotype and contribute to vascular maturation after myocardial infarction. Circulation 148, 882–898 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tsukui, T. et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat. Commun. 11, 1920 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ke, D. et al. Macrophage and fibroblast trajectory inference and crosstalk analysis during myocardial infarction using integrated single-cell transcriptomic datasets. J. Transl. Med. 22, 560 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Abedini, A. et al. Single-cell multi-omic and spatial profiling of human kidneys implicates the fibrotic microenvironment in kidney disease progression. Nat. Genet. 56, 1712–1724 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Younesi, F. S., Miller, A. E., Barker, T. H., Rossi, F. M. V. & Hinz, B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat. Rev. Mol. Cell Biol. 25, 617–638 (2024).

    Article  PubMed  CAS  Google Scholar 

  22. Fang, Y. et al. RUNX2 promotes fibrosis via an alveolar-to-pathological fibroblast transition. Nature 640, 221–230 (2025).

    Article  PubMed  CAS  Google Scholar 

  23. Tsukui, T., Wolters, P. J. & Sheppard, D. Alveolar fibroblast lineage orchestrates lung inflammation and fibrosis. Nature 631, 627–634 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Mukhatayev, Z., Adilbayeva, A. & Kunz, J. CTHRC1: an emerging hallmark of pathogenic fibroblasts in lung fibrosis. Cells 13, 946 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gao, Y. et al. Cross-tissue human fibroblast atlas reveals myofibroblast subtypes with distinct roles in immune modulation. Cancer Cell 42, 1764–1783.e10 (2024).

    Article  PubMed  CAS  Google Scholar 

  26. Lei, L. et al. Portal fibroblasts with mesenchymal stem cell features form a reservoir of proliferative myofibroblasts in liver fibrosis. Hepatology 76, 1360–1375 (2022).

    Article  PubMed  CAS  Google Scholar 

  27. Peisker, F. et al. Mapping the cardiac vascular niche in heart failure. Nat. Commun. 13, 3027 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Suryawanshi, H. et al. Detection of infiltrating fibroblasts by single-cell transcriptomics in human kidney allografts. PLoS One 17, e0267704 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhong, Y. et al. Single cell RNA-sequencing identifies bone-marrow-derived progenitor cells as a main source of extracellular matrix-producing cells across multiple organ-based fibrotic diseases. Int. J. Biol. Sci. 20, 5027–5042 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cadinu, P. et al. Charting the cellular biogeography in colitis reveals fibroblast trajectories and coordinated spatial remodeling. Cell 187, 2010–2028.e30 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Werner, G. et al. Single-cell transcriptome analysis identifies subclusters with inflammatory fibroblast responses in localized scleroderma. Int. J. Mol. Sci. 24, 9796 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Meguro, S. et al. Preexisting senescent fibroblasts in the aged bladder create a tumor-permissive niche through CXCL12 secretion. Nat. Aging 4, 1582–1597 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hoare, M. & Narita, M. Transmitting senescence to the cell neighbourhood. Nat. Cell Biol. 15, 887–889 (2013).

    Article  PubMed  CAS  Google Scholar 

  35. Schuster, R., Younesi, F., Ezzo, M. & Hinz, B. The role of myofibroblasts in physiological and pathological tissue repair. Cold Spring Harb. Perspect. Biol. 15, a041231 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chung, J. J. et al. Single-cell transcriptome profiling of the kidney glomerulus identifies key cell types and reactions to injury. J. Am. Soc. Nephrol. 31, 2341–2354 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Plikus, M. V. et al. Fibroblasts: origins, definitions, and functions in health and disease. Cell 184, 3852–3872 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wohlfahrt, T. et al. PU.1 controls fibroblast polarization and tissue fibrosis. Nature 566, 344–349 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chou, Y. H., Pan, S. Y., Shih, H. M. & Lin, S. L. Update of pericytes function and their roles in kidney diseases. J. Formos. Med. Assoc. 123, 307–317 (2024).

    Article  PubMed  CAS  Google Scholar 

  40. Xu, C. et al. Regulation of pericyte metabolic reprogramming restricts the AKI to CKD transition. Metabolism 145, 155592 (2023).

    Article  PubMed  CAS  Google Scholar 

  41. Weiskirchen, R., Weiskirchen, S. & Tacke, F. Organ and tissue fibrosis: molecular signals, cellular mechanisms and translational implications. Mol. Asp. Med. 65, 2–15 (2019).

    Article  CAS  Google Scholar 

  42. hAinmhire, E. O. et al. A conditionally immortalized Gli1-positive kidney mesenchymal cell line models myofibroblast transition. Am. J. Physiol. Renal Physiol. 316, F63–F75 (2019).

    Article  CAS  Google Scholar 

  43. Chong, S. G., Sato, S., Kolb, M. & Gauldie, J. Fibrocytes and fibroblasts — where are we now. Int. J. Biochem. Cell Biol. 116, 105595 (2019).

    Article  PubMed  CAS  Google Scholar 

  44. Wada, T., Sakai, N., Matsushima, K. & Kaneko, S. Fibrocytes: a new insight into kidney fibrosis. Kidney Int. 72, 269–273 (2007).

    Article  PubMed  CAS  Google Scholar 

  45. Wu, X. et al. CXCL12/CXCR4: an amazing challenge and opportunity in the fight against fibrosis. Ageing Res. Rev. 83, 101809 (2023).

    Article  PubMed  CAS  Google Scholar 

  46. Li, L. et al. Tamibarotene inhibit the accumulation of fibrocyte and alleviate renal fibrosis by IL-17A. Ren. Fail. 42, 1173–1183 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kim, J. et al. Circulating and renal fibrocytes are associated with interstitial fibrosis in lupus nephritis. Rheumatology 62, 914–923 (2023).

    Article  PubMed  Google Scholar 

  48. Schuster, R., Rockel, J. S., Kapoor, M. & Hinz, B. The inflammatory speech of fibroblasts. Immunol. Rev. 302, 126–146 (2021).

    Article  PubMed  CAS  Google Scholar 

  49. Tang, P. M., Nikolic-Paterson, D. J. & Lan, H. Y. Macrophages: versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol. 15, 144–158 (2019).

    Article  PubMed  Google Scholar 

  50. Wei, J., Xu, Z. & Yan, X. The role of the macrophage-to-myofibroblast transition in renal fibrosis. Front. Immunol. 13, 934377 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kramann, R. et al. Parabiosis and single-cell RNA sequencing reveal a limited contribution of monocytes to myofibroblasts in kidney fibrosis. JCI Insight 3, e99561 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kurose, H. Cardiac fibrosis and fibroblasts. Cells 10, 1716 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Torimoto, K., Elliott, K., Nakayama, Y., Yanagisawa, H. & Eguchi, S. Cardiac and perivascular myofibroblasts, matrifibrocytes, and immune fibrocytes in hypertension; commonalities and differences with myocardial infarction and other cardiovascular diseases. Cardiovasc. Res. 120, 567–580 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Travers, J. G., Kamal, F. A., Robbins, J., Yutzey, K. E. & Blaxall, B. C. Cardiac fibrosis: the fibroblast awakens. Circ. Res. 118, 1021–1040 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Moore-Morris, T. et al. Infarct fibroblasts do not derive from bone marrow lineages. Circ. Res. 122, 583–590 (2018).

    Article  PubMed  CAS  Google Scholar 

  56. Chaffin, M. et al. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature 608, 174–180 (2022).

    Article  PubMed  CAS  Google Scholar 

  57. Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Tallquist, M. D. Cardiac fibroblast diversity. Annu. Rev. Physiol. 82, 63–78 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Soliman, H. & Rossi, F. M. V. Cardiac fibroblast diversity in health and disease. Matrix Biol. 91-92, 75–91 (2020).

    Article  PubMed  CAS  Google Scholar 

  60. Kisseleva, T. The origin of fibrogenic myofibroblasts in fibrotic liver. Hepatology 65, 1039–1043 (2017).

    Article  PubMed  Google Scholar 

  61. Yang, W. et al. Single-cell transcriptomic analysis reveals a hepatic stellate cell-activation roadmap and myofibroblast origin during liver fibrosis in mice. Hepatology 74, 2774–2790 (2021).

    Article  PubMed  CAS  Google Scholar 

  62. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kim, H. Y. et al. The origin and fate of liver myofibroblasts. Cell Mol. Gastroenterol. Hepatol. 17, 93–106 (2024).

    Article  PubMed  CAS  Google Scholar 

  64. Moss, B. J., Ryter, S. W. & Rosas, I. O. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu. Rev. Pathol. 17, 515–546 (2022).

    Article  PubMed  CAS  Google Scholar 

  65. Zepp, J. A. et al. Distinct mesenchymal lineages and niches promote epithelial self-renewal and myofibrogenesis in the lung. Cell 170, 1134–1148.e10 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ligresti, G. et al. Mesenchymal cells in the lung: evolving concepts and their role in fibrosis. Gene 859, 147142 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Savin, I. A., Zenkova, M. A. & Sen’kova, A. V. Pulmonary fibrosis as a result of acute lung inflammation: molecular mechanisms, relevant in vivo models, prognostic and therapeutic approaches. Int. J. Mol. Sci. 23, 14959 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. El Agha, E. et al. Two-way conversion between lipogenic and myogenic fibroblastic phenotypes marks the progression and resolution of lung fibrosis. Cell Stem Cell 20, 261–273.e263 (2017).

    Article  PubMed  CAS  Google Scholar 

  69. Adams, T. S. et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci. Adv. 6, eaba1983 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wang, Y. C. et al. Notch1 promotes the pericyte-myofibroblast transition in idiopathic pulmonary fibrosis through the PDGFR/ROCK1 signal pathway. Exp. Mol. Med. 51, 1–11 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yamaguchi, M. et al. Pericyte-myofibroblast transition in the human lung. Biochem. Biophys. Res. Commun. 528, 269–275 (2020).

    Article  PubMed  CAS  Google Scholar 

  72. Ortiz-Zapater, E., Signes-Costa, J., Montero, P. & Roger, I. Lung fibrosis and fibrosis in the lungs: is it all about myofibroblasts? Biomedicines 10, 1423 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Rock, J. R. et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc. Natl Acad. Sci. USA 108, E1475–E1483 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Dorrier, C. E. et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat. Neurosci. 24, 234–244 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Shook, B. A. et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 362, eaar2971 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wirka, R. C. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280–1289 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. He, M., Liu, Z., Li, L. & Liu, Y. Cell-cell communication in kidney fibrosis. Nephrol. Dial. Transpl. 39, 761–769 (2024).

    Article  CAS  Google Scholar 

  78. Shi, M. et al. Latent TGF-β structure and activation. Nature 474, 343–349 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Meng, X. M., Nikolic-Paterson, D. J. & Lan, H. Y. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325–338 (2016).

    Article  PubMed  CAS  Google Scholar 

  80. Gu, Y. Y., Liu, X. S., Huang, X. R., Yu, X. Q. & Lan, H. Y. Diverse role of TGF-β in kidney disease. Front. Cell Dev. Biol. 8, 123 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ma, T. T. & Meng, X. M. TGF-β/Smad and renal fibrosis. Adv. Exp. Med. Biol. 1165, 347–364 (2019).

    Article  PubMed  CAS  Google Scholar 

  82. Wang, P. et al. Long noncoding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway. Sci. Transl. Med. 10, eaat2039 (2018).

    Article  PubMed  Google Scholar 

  83. Finnson, K. W., Almadani, Y. & Philip, A. Non-canonical (non-SMAD2/3) TGF-β signaling in fibrosis: mechanisms and targets. Semin. Cell Dev. Biol. 101, 115–122 (2020).

    Article  PubMed  CAS  Google Scholar 

  84. Kefaloyianni, E. et al. Proximal tubule-derived amphiregulin amplifies and integrates profibrotic EGF receptor signals in kidney fibrosis. J. Am. Soc. Nephrol. 30, 2370–2383 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Livingston, M. J. et al. Autophagy activates EGR1 via MAPK/ERK to induce FGF2 in renal tubular cells for fibroblast activation and fibrosis during maladaptive kidney repair. Autophagy 20, 1032–1053 (2024).

    Article  PubMed  CAS  Google Scholar 

  86. Ruiz-Ortega, M., Rayego-Mateos, S., Lamas, S., Ortiz, A. & Rodrigues-Diez, R. R. Targeting the progression of chronic kidney disease. Nat. Rev. Nephrol. 16, 269–288 (2020).

    Article  PubMed  Google Scholar 

  87. Yuan, Q., Tang, B. & Zhang, C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal. Transduct. Target. Ther. 7, 182 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Edeling, M., Ragi, G., Huang, S., Pavenstädt, H. & Susztak, K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat. Rev. Nephrol. 12, 426–439 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Schunk, S. J., Floege, J., Fliser, D. & Speer, T. WNT-β-catenin signalling — a versatile player in kidney injury and repair. Nat. Rev. Nephrol. 17, 172–184 (2021).

    Article  PubMed  CAS  Google Scholar 

  90. Wang, Y., Zhou, C. J. & Liu, Y. Wnt signaling in kidney development and disease. Prog. Mol. Biol. Transl. Sci. 153, 181–207 (2018).

    Article  PubMed  CAS  Google Scholar 

  91. Zhou, S. et al. Cannabinoid receptor type 2 promotes kidney fibrosis through orchestrating β-catenin signaling. Kidney Int. 99, 364–381 (2021).

    Article  PubMed  CAS  Google Scholar 

  92. Xiao, L. et al. Wnt/β-catenin regulates blood pressure and kidney injury in rats. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1313–1322 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Liu, Z., Tan, R. J. & Liu, Y. The many faces of matrix metalloproteinase-7 in kidney diseases. Biomolecules 10, 960 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Zhou, L. et al. Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J. Am. Soc. Nephrol. 26, 107–120 (2015).

    Article  PubMed  CAS  Google Scholar 

  95. Miao, J. et al. Wnt/β-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell 18, e13004 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zuo, Y. & Liu, Y. New insights into the role and mechanism of Wnt/β-catenin signalling in kidney fibrosis. Nephrology 23, 38–43 (2018).

    Article  PubMed  CAS  Google Scholar 

  97. Zhou, D., Tan, R. J. & Liu, Y. Sonic hedgehog signaling in kidney fibrosis: a master communicator. Sci. China Life Sci. 59, 920–929 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Jiang, J. Hedgehog signaling mechanism and role in cancer. Semin. Cancer Biol. 85, 107–122 (2022).

    Article  PubMed  CAS  Google Scholar 

  99. Guan, Y. et al. Kaempferol inhibits renal fibrosis by suppression of the sonic hedgehog signaling pathway. Phytomedicine 108, 154246 (2023).

    Article  PubMed  CAS  Google Scholar 

  100. Ding, H. et al. Sonic hedgehog signaling mediates epithelial-mesenchymal communication and promotes renal fibrosis. J. Am. Soc. Nephrol. 23, 801–813 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Zhou, D. et al. Sonic hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury. J. Am. Soc. Nephrol. 25, 2187–2200 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Gui, Y. et al. Fibroblast expression of transmembrane protein smoothened governs microenvironment characteristics after acute kidney injury. J. Clin. Invest. 134, e165836 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. O’Sullivan, E. D. et al. Indian hedgehog release from TNF-activated renal epithelia drives local and remote organ fibrosis. Sci. Transl. Med. 15, eabn0736 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Huang, S. et al. Jagged1/Notch2 controls kidney fibrosis via Tfam-mediated metabolic reprogramming. PLoS Biol. 16, e2005233 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Xiao, X. et al. Hypermethylation leads to the loss of HOXA5, resulting in JAG1 expression and NOTCH signaling contributing to kidney fibrosis. Kidney Int. 106, 98–114 (2024).

    Article  PubMed  CAS  Google Scholar 

  106. AlQudah, M., Hale, T. M. & Czubryt, M. P. Targeting the renin-angiotensin-aldosterone system in fibrosis. Matrix Biol. 91-92, 92–108 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Zhang, W. et al. Combining experiments and bioinformatics to identify transforming growth factor-β1 as a key regulator in angiotensin II-induced trophoblast senescence. Placenta 152, 31–38 (2024).

    Article  PubMed  CAS  Google Scholar 

  108. Li, L. et al. Oxidatively stressed extracellular microenvironment drives fibroblast activation and kidney fibrosis. Redox Biol. 67, 102868 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Wang, D., Dai, C., Li, Y. & Liu, Y. Canonical Wnt/β-catenin signaling mediates transforming growth factor-beta1-driven podocyte injury and proteinuria. Kidney Int. 80, 1159–1169 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Zhou, L., Li, Y., Zhou, D., Tan, R. J. & Liu, Y. Loss of Klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling. J. Am. Soc. Nephrol. 24, 771–785 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Zhang, X. et al. Klotho-derived peptide 1 inhibits cellular senescence in the fibrotic kidney by restoring Klotho expression via posttranscriptional regulation. Theranostics 14, 420–435 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Fu, H. et al. Matrix metalloproteinase-7 protects against acute kidney injury by priming renal tubules for survival and regeneration. Kidney Int. 95, 1167–1180 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Mo, H. et al. CXCR4 induces podocyte injury and proteinuria by activating β-catenin signaling. Theranostics 12, 767–781 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Sun, X. et al. Matrix metalloproteinase-10 promotes kidney fibrosis by transactivating β-catenin signaling. Cell Death Discov. 11, 241 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Long, Y. et al. m6A RNA methylation drives kidney fibrosis by upregulating β-catenin signaling. Int. J. Biol. Sci. 20, 3185–3200 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Song, D. et al. Insulin-like growth factor 2 mRNA-binding protein 3 promotes kidney injury by regulating β-catenin signaling. JCI Insight 8, e162060 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Rosenkranz, S. TGF-β1 and angiotensin networking in cardiac remodeling. Cardiovasc. Res. 63, 423–432 (2004).

    Article  PubMed  CAS  Google Scholar 

  118. Liu, Y. Kidney fibrosis: fundamental questions, challenges and perspective. Integr. Med. Nephrol. Androl. 11, e24-00027 (2024).

    Article  Google Scholar 

  119. Tepus, M., Tonoli, E. & Verderio, E. A. M. Molecular profiling of urinary extracellular vesicles in chronic kidney disease and renal fibrosis. Front. Pharmacol. 13, 1041327 (2022).

    Article  PubMed  CAS  Google Scholar 

  120. Zhao, S. et al. Exosomal miR-21 from tubular cells contributes to renal fibrosis by activating fibroblasts via targeting PTEN in obstructed kidneys. Theranostics 11, 8660–8673 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Chen, S. et al. β-Catenin-controlled tubular cell-derived exosomes play a key role in fibroblast activation via the OPN-CD44 axis. J. Extracell. Vesicles 11, e12203 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Li, L., Huang, J. & Liu, Y. The extracellular matrix glycoprotein fibrillin-1 in health and disease. Front. Cell Dev. Biol. 11, 1302285 (2023).

    Article  PubMed  Google Scholar 

  123. Peng, Y. et al. Macrophage promotes fibroblast activation and kidney fibrosis by assembling a vitronectin-enriched microenvironment. Theranostics 13, 3897–3913 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Li, L., Fu, H. & Liu, Y. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat. Rev. Nephrol. 18, 545–557 (2022).

    Article  PubMed  CAS  Google Scholar 

  125. Midwood, K. S., Chiquet, M., Tucker, R. P. & Orend, G. Tenascin-C at a glance. J. Cell Sci. 129, 4321–4327 (2016).

    Article  PubMed  CAS  Google Scholar 

  126. Zhu, H. et al. Tenascin-C promotes acute kidney injury to chronic kidney disease progression by impairing tubular integrity via αvβ6 integrin signaling. Kidney Int. 97, 1017–1031 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Li, L. et al. Fibrillin-1-enriched microenvironment drives endothelial injury and vascular rarefaction in chronic kidney disease. Sci. Adv. 7, eabc7170 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Zuchtriegel, G. et al. Vitronectin stabilizes intravascular adhesion of neutrophils by coordinating β2 integrin clustering. Haematologica 106, 2641–2653 (2021).

    Article  PubMed  CAS  Google Scholar 

  129. Yamamura, Y. et al. Myocardin-related transcription factor contributes to renal fibrosis through the regulation of extracellular microenvironment surrounding fibroblasts. FASEB J. 37, e23005 (2023).

    Article  PubMed  CAS  Google Scholar 

  130. Chen, Z. et al. Connective tissue growth factor: from molecular understandings to drug discovery. Front. Cell Dev. Biol. 8, 593269 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Li, Z., Williams, H., Jackson, M. L., Johnson, J. L. & George, S. J. WISP-1 regulates cardiac fibrosis by promoting cardiac fibroblasts’ activation and collagen processing. Cells 13, 989 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Hinz, B. & Lagares, D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat. Rev. Rheumatol. 16, 11–31 (2020).

    Article  PubMed  CAS  Google Scholar 

  133. Zhao, X. et al. Mechanosensitive Piezo1 channels mediate renal fibrosis. JCI Insight 7, e152330 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Sun, Z., Costell, M. & Fässler, R. Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 21, 25–31 (2019).

    Article  PubMed  CAS  Google Scholar 

  135. Tschumperlin, D. J., Ligresti, G., Hilscher, M. B. & Shah, V. H. Mechanosensing and fibrosis. J. Clin. Invest. 128, 74–84 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Gupta, V., Gupta, I., Park, J., Bram, Y. & Schwartz, R. E. Hedgehog signaling demarcates a niche of fibrogenic peribiliary mesenchymal cells. Gastroenterology 159, 624–638 (2020).

    Article  PubMed  CAS  Google Scholar 

  137. Gonzalez-Sanchez, E. et al. The hepatocyte epidermal growth factor receptor (EGFR) pathway regulates the cellular interactome within the liver fibrotic niche. J. Pathol. 263, 482–495 (2024).

    Article  PubMed  Google Scholar 

  138. Königshoff, M. & Eickelberg, O. Listen to the WNT; it talks: WNT7A drives epithelial-mesenchymal cross-talk within the fibrotic niche in idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 68, 239–240 (2023).

    Article  PubMed  Google Scholar 

  139. Lausecker, F., Lennon, R. & Randles, M. J. The kidney matrisome in health, aging, and disease. Kidney Int. 102, 1000–1012 (2022).

    Article  PubMed  CAS  Google Scholar 

  140. Naba, A. Ten years of extracellular matrix proteomics: accomplishments, challenges, and future perspectives. Mol. Cell Proteom. 22, 100528 (2023).

    Article  CAS  Google Scholar 

  141. Herrera, J., Henke, C. A. & Bitterman, P. B. Extracellular matrix as a driver of progressive fibrosis. J. Clin. Invest. 128, 45–53 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Mathot, L. & Stenninger, J. Behavior of seeds and soil in the mechanism of metastasis: a deeper understanding. Cancer Sci. 103, 626–631 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Li, L. et al. Proteomic landscape of the extracellular matrix in the fibrotic kidney. Kidney Int. 103, 1063–1076 (2023).

    Article  PubMed  CAS  Google Scholar 

  144. Barker, H. E., Bird, D., Lang, G. & Erler, J. T. Tumor-secreted LOXL2 activates fibroblasts through FAK signaling. Mol. Cancer Res. 11, 1425–1436 (2013).

    Article  PubMed  CAS  Google Scholar 

  145. Tian, S. et al. SERPINH1 regulates EMT and gastric cancer metastasis via the Wnt/β-catenin signaling pathway. Aging 12, 3574–3593 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Vlad, M. L. et al. Therapeutic S100A8/A9 inhibition reduces NADPH oxidase expression, reactive oxygen species production and NLRP3 inflammasome priming in the ischemic myocardium. Eur. J. Pharmacol. 996, 177575 (2025).

    Article  PubMed  CAS  Google Scholar 

  147. Stasi, A. et al. Emerging role of lipopolysaccharide binding protein in sepsis-induced acute kidney injury. Nephrol. Dial. Transpl. 32, 24–31 (2017).

    CAS  Google Scholar 

  148. Chen, S. et al. Tenascin-C protects against acute kidney injury by recruiting Wnt ligands. Kidney Int. 95, 62–74 (2019).

    Article  PubMed  CAS  Google Scholar 

  149. Guo, C. et al. Crosstalk between proximal tubular epithelial cells and other interstitial cells in tubulointerstitial fibrosis after renal injury. Front. Endocrinol. 14, 1256375 (2023).

    Article  Google Scholar 

  150. Lan, R. et al. Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J. Am. Soc. Nephrol. 27, 3356–3367 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Zhou, D. et al. Fibroblast-specific β-Catenin signaling dictates the outcome of AKI. J. Am. Soc. Nephrol. 29, 1257–1271 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Nakamura, J. et al. Myofibroblasts acquire retinoic acid-producing ability during fibroblast-to-myofibroblast transition following kidney injury. Kidney Int. 95, 526–539 (2019).

    Article  PubMed  CAS  Google Scholar 

  153. Zhang, Y. et al. Advances in understanding the effects of erythropoietin on renal fibrosis. Front. Med. 7, 47 (2020).

    Article  Google Scholar 

  154. Pakshir, P. & Hinz, B. The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol. 68-69, 81–93 (2018).

    Article  PubMed  CAS  Google Scholar 

  155. Ramanujam, D. et al. MicroRNA-21-dependent macrophage-to-fibroblast signaling determines the cardiac response to pressure overload. Circulation 143, 1513–1525 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Venter, C., Myburgh, K. H. & Niesler, C. U. Co-culture of pro-inflammatory macrophages and myofibroblasts: evaluating morphological phenotypes and screening the effects of signaling pathway inhibitors. Physiol. Rep. 9, e14704 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Yang, F. et al. Crosstalk between hepatic stellate cells and surrounding cells in hepatic fibrosis. Int. Immunopharmacol. 99, 108051 (2021).

    Article  PubMed  CAS  Google Scholar 

  158. Cai, X. et al. Intercellular crosstalk of hepatic stellate cells in liver fibrosis: new insights into therapy. Pharmacol. Res. 155, 104720 (2020).

    Article  PubMed  CAS  Google Scholar 

  159. McDaniels, J. M. et al. Single nuclei transcriptomics delineates complex immune and kidney cell interactions contributing to kidney allograft fibrosis. Kidney Int. 103, 1077–1092 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Wei, K., Nguyen, H. N. & Brenner, M. B. Fibroblast pathology in inflammatory diseases. J. Clin. Invest. 131, e149538 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Chen, X., Wu, Y., Jia, S. & Zhao, M. Fibroblast: a novel target for autoimmune and inflammatory skin diseases therapeutics. Clin. Rev. Allergy Immunol. 66, 274–293 (2024).

    Article  PubMed  Google Scholar 

  162. Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med 3, 481–518.e414 (2022).

    Article  PubMed  CAS  Google Scholar 

  163. Davidson, S. et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 21, 704–717 (2021).

    Article  PubMed  CAS  Google Scholar 

  164. Sinha, S. et al. Fibroblast inflammatory priming determines regenerative versus fibrotic skin repair in reindeer. Cell 185, 4717–4736.e4725 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Wu, L. et al. Crosstalk between myofibroblasts and macrophages: a regulative factor of valvular fibrosis in calcific aortic valve disease. Cell Biol. Int. 47, 754–767 (2023).

    Article  PubMed  CAS  Google Scholar 

  166. Pakshir, P. et al. Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nat. Commun. 10, 1850 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Mincham, K. T., Bruno, N., Singanayagam, A. & Snelgrove, R. J. Our evolving view of neutrophils in defining the pathology of chronic lung disease. Immunology 164, 701–721 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Cao, C., Yao, Y. & Zeng, R. Lymphocytes: versatile participants in acute kidney injury and progression to chronic kidney disease. Front. Physiol. 12, 729084 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Zhang, M., Chen, H., Qian, H. & Wang, C. Characterization of the skin keloid microenvironment. Cell Commun. Signal. 21, 207 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Gewin, L., Zent, R. & Pozzi, A. Progression of chronic kidney disease: too much cellular talk causes damage. Kidney Int. 91, 552–560 (2017).

    Article  PubMed  CAS  Google Scholar 

  171. Tanaka, S., Portilla, D. & Okusa, M. D. Role of perivascular cells in kidney homeostasis, inflammation, repair and fibrosis. Nat. Rev. Nephrol. 19, 721–732 (2023).

    Article  PubMed  Google Scholar 

  172. Shim, J. et al. Integrated analysis of single-cell and spatial transcriptomics in keloids: highlights on fibrovascular interactions in keloid pathogenesis. J. Invest. Dermatol. 142, 2128–2139.e11 (2022).

    Article  PubMed  CAS  Google Scholar 

  173. Yazdani, S., Bansal, R. & Prakash, J. Drug targeting to myofibroblasts: implications for fibrosis and cancer. Adv. Drug. Deliv. Rev. 121, 101–116 (2017).

    Article  PubMed  CAS  Google Scholar 

  174. Chang, F. C. et al. Angiopoietin-2 inhibition attenuates kidney fibrosis by hindering chemokine C-C motif ligand 2 expression and apoptosis of endothelial cells. Kidney Int. 102, 780–797 (2022).

    Article  PubMed  CAS  Google Scholar 

  175. Huang, Z. et al. Key role for EphB2 receptor in kidney fibrosis. Clin. Sci. 135, 2127–2142 (2021).

    Article  CAS  Google Scholar 

  176. Jun, J. I. & Lau, L. F. Resolution of organ fibrosis. J. Clin. Invest. 128, 97–107 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kuehl, T. & Lagares, D. BH3 mimetics as anti-fibrotic therapy: unleashing the mitochondrial pathway of apoptosis in myofibroblasts. Matrix Biol. 68-69, 94–105 (2018).

    Article  PubMed  CAS  Google Scholar 

  178. Lagares, D. et al. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci. Transl. Med. 9, eaal3765 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Liu, X. et al. Kidney tubular epithelial cells control interstitial fibroblast fate by releasing TNFAIP8-encapsulated exosomes. Cell Death Dis. 14, 672 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    Article  PubMed  CAS  Google Scholar 

  182. Merkt, W., Zhou, Y., Han, H. & Lagares, D. Myofibroblast fate plasticity in tissue repair and fibrosis: deactivation, apoptosis, senescence and reprogramming. Wound Repair. Regen. 29, 678–691 (2021).

    Article  PubMed  Google Scholar 

  183. Rangarajan, S. et al. Mitochondrial uncoupling protein-2 reprograms metabolism to induce oxidative stress and myofibroblast senescence in age-associated lung fibrosis. Aging Cell 21, e13674 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Kato, K. et al. Impaired myofibroblast dedifferentiation contributes to nonresolving fibrosis in aging. Am. J. Respir. Cell Mol. Biol. 62, 633–644 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Caligiuri, A., Gentilini, A., Pastore, M., Gitto, S. & Marra, F. Cellular and molecular mechanisms underlying liver fibrosis regression. Cells 10, 2759 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Aguado, B. A. et al. Transcatheter aortic valve replacements alter circulating serum factors to mediate myofibroblast deactivation. Sci. Transl. Med. 11, eaav3233 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Plikus, M. V. et al. Regeneration of fat cells from myofibroblasts during wound healing. Science 355, 748–752 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Tani, H. et al. Direct reprogramming improves cardiac function and reverses fibrosis in chronic myocardial infarction. Circulation 147, 223–238 (2023).

    Article  PubMed  CAS  Google Scholar 

  189. Wu, J. et al. Improved factor combination for in vivo reprogramming of cardiac myofibroblast to cardiomyocyte-like cell with dual recombinase tracing. Circulation 148, 1728–1731 (2023).

    Article  PubMed  CAS  Google Scholar 

  190. Song, G. et al. Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell 18, 797–808 (2016).

    Article  PubMed  CAS  Google Scholar 

  191. Raghu, G. et al. Pamrevlumab for idiopathic pulmonary fibrosis: the ZEPHYRUS-1 randomized clinical trial. JAMA 332, 380–389 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Edmonston, D., Grabner, A. & Wolf, M. FGF23 and klotho at the intersection of kidney and cardiovascular disease. Nat. Rev. Cardiol. 21, 11–24 (2024).

    Article  PubMed  Google Scholar 

  193. Zhou, L. et al. Klotho ameliorates kidney injury and fibrosis and normalizes blood pressure by targeting the renin-angiotensin system. Am. J. Pathol. 185, 3211–3223 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Wang, Y. & Zhao, J. The protective function of ɑKlotho in chronic kidney disease: evidence and therapeutic implications. Integ Med. Nephrol. Androl. 11, e24-00021 (2024).

    Article  Google Scholar 

  195. Li, H. et al. Nanoparticle-mediated Klotho gene therapy prevents acute kidney injury to chronic kidney disease transition through regulating PPARα signaling in renal tubular epithelial cells. Biomaterials 315, 122926 (2025).

    Article  PubMed  CAS  Google Scholar 

  196. Yuan, Q. et al. A Klotho-derived peptide protects against kidney fibrosis by targeting TGF-β signaling. Nat. Commun. 13, 438 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Chen, X. et al. Klotho-derived peptide 6 ameliorates diabetic kidney disease by targeting Wnt/β-catenin signaling. Kidney Int. 102, 506–520 (2022).

    Article  PubMed  CAS  Google Scholar 

  198. Zhao, M. et al. Targeting fibrosis, mechanisms and clinical trials. Signal. Transduct. Target. Ther. 7, 206 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Hao, S. et al. Targeted inhibition of β-catenin/CBP signaling ameliorates renal interstitial fibrosis. J. Am. Soc. Nephrol. 22, 1642–1653 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Park, J. S. et al. Targeting of dermal myofibroblasts through death receptor 5 arrests fibrosis in mouse models of scleroderma. Nat. Commun. 10, 1128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Tan, R. J. & Liu, Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am. J. Physiol. Renal Physiol. 302, F1351–F1361 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Zuo, Y. et al. Identification of matrix metalloproteinase-10 as a key mediator of podocyte injury and proteinuria. Kidney Int. 100, 837–849 (2021).

    Article  PubMed  CAS  Google Scholar 

  203. Qin, L. et al. Mesenchymal stem cells in fibrotic diseases-the two sides of the same coin. Acta Pharmacol. Sin. 44, 268–287 (2023).

    Article  PubMed  CAS  Google Scholar 

  204. Nazarie Ignat, S. R., Gharbia, S., Hermenean, A., Dinescu, S. & Costache, M. Regenerative potential of mesenchymal stem cells’ (MSCs) secretome for liver fibrosis therapies. Int. J. Mol. Sci. 22, 13292 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Glassberg, M. K. et al. Allogeneic human mesenchymal stem cells in patients with idiopathic pulmonary fibrosis via intravenous delivery (AETHER): a phase I safety clinical trial. Chest 151, 971–981 (2017).

    Article  PubMed  Google Scholar 

  206. Han, M. M. et al. Nanoengineered mesenchymal stem cell therapy for pulmonary fibrosis in young and aged mice. Sci. Adv. 9, eadg5358 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Chen, L. et al. Exosomes derived from GDNF-modified human adipose mesenchymal stem cells ameliorate peritubular capillary loss in tubulointerstitial fibrosis by activating the SIRT1/eNOS signaling pathway. Theranostics 10, 9425–9442 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Huang, Y. & Yang, L. Mesenchymal stem cell-derived extracellular vesicles in therapy against fibrotic diseases. Stem Cell Res. Ther. 12, 435 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Ume, A. C. et al. Tacrolimus induces fibroblast-to-myofibroblast transition via a TGF-β-dependent mechanism to contribute to renal fibrosis. Am. J. Physiol. Renal Physiol. 324, F433–F445 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Qiang, P. et al. Esaxerenone inhibits the macrophage-to-myofibroblast transition through mineralocorticoid receptor/TGF-β1 pathway in mice induced with aldosterone. Front. Immunol. 13, 948658 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Cao, Y. et al. Integrin β8 prevents pericyte-myofibroblast transition and renal fibrosis through inhibiting the TGF-β1/TGFBR1/Smad3 pathway in diabetic kidney disease. Transl. Res. 265, 36–50 (2024).

    Article  PubMed  CAS  Google Scholar 

  212. Jacobs, M. E., de Vries, D. K., Engelse, M. A., Dumas, S. J. & Rabelink, T. J. Endothelial to mesenchymal transition in kidney fibrosis. Nephrol. Dial. Transpl. 39, 752–760 (2024).

    Article  CAS  Google Scholar 

  213. Livingston, M. J. et al. Tubular cells produce FGF2 via autophagy after acute kidney injury leading to fibroblast activation and renal fibrosis. Autophagy 19, 256–277 (2023).

    Article  PubMed  CAS  Google Scholar 

  214. Dolivo, D. M. Anti-fibrotic effects of pharmacologic FGF-2: a review of recent literature. J. Mol. Med. 100, 847–860 (2022).

    Article  PubMed  CAS  Google Scholar 

  215. Ai, J. Y., Liu, C. F., Zhang, W. & Rao, G. W. Current status of drugs targeting PDGF/PDGFR. Drug. Discov. Today 29, 103989 (2024).

    Article  PubMed  CAS  Google Scholar 

  216. Steele, H. et al. TNF superfamily control of tissue remodeling and fibrosis. Front. Immunol. 14, 1219907 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Evdokiou, A. et al. Characterization of burn eschar pericytes. J. Clin. Med. 9, 606 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Li, H. et al. A recombinant IL-1β vaccine attenuates bleomycin-induced pulmonary fibrosis in mice. Vaccine 42, 3774–3788 (2024).

    Article  PubMed  CAS  Google Scholar 

  219. Zhang, W. J., Chen, S. J., Zhou, S. C., Wu, S. Z. & Wang, H. Inflammasomes and fibrosis. Front. Immunol. 12, 643149 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Doke, T. et al. Single-cell analysis identifies the interaction of altered renal tubules with basophils orchestrating kidney fibrosis. Nat. Immunol. 23, 947–959 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Chen, Y., Zhou, J., Xu, S. & Nie, J. Role of interleukin-6 family cytokines in organ fibrosis. Kidney Dis. 9, 239–253 (2023).

    Article  Google Scholar 

  222. Takagaki, Y. et al. Endothelial autophagy deficiency induces IL6-dependent endothelial mesenchymal transition and organ fibrosis. Autophagy 16, 1905–1914 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. He, S., Yao, L. & Li, J. Role of MCP-1/CCR2 axis in renal fibrosis: mechanisms and therapeutic targeting. Medicine 102, e35613 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Chen, Y., Zou, H., Lu, H., Xiang, H. & Chen, S. Research progress of endothelial-mesenchymal transition in diabetic kidney disease. J. Cell Mol. Med. 26, 3313–3322 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  225. He, X. et al. Research progress of pericytes in pulmonary fibrosis. Front. Biosci. 29, 141 (2024).

    Article  CAS  Google Scholar 

  226. Zhou, D. et al. Non-canonical Wnt/calcium signaling is protective against podocyte injury and glomerulosclerosis. Kidney Int. 102, 96–107 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Luo, Y. et al. Inhibitory effects of rhein on renal interstitial fibrosis via the SHH-Gli1 signal pathway. Evid. Based Complement. Altern. Med. 2022, 4398265 (2022).

    Article  Google Scholar 

  228. Hong, W. et al. Epithelial and interstitial Notch1 activity contributes to the myofibroblastic phenotype and fibrosis. Cell Commun. Signal. 17, 145 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Yuan, C., Ni, L., Zhang, C. & Wu, X. The role of Notch3 signaling in kidney disease. Oxid. Med. Cell Longev. 2020, 1809408 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Panizo, S. et al. Fibrosis in chronic kidney disease: pathogenesis and consequences. Int. J. Mol. Sci. 22, 408 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Zhuang, T. et al. ALKBH5-mediated m6A modification of IL-11 drives macrophage-to-myofibroblast transition and pathological cardiac fibrosis in mice. Nat. Commun. 15, 1995 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Feng, X., Su, H., He, X., Chen, J. X. & Zeng, H. SIRT3 deficiency sensitizes angiotensin-II-induced renal fibrosis. Cells 9, 2510 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Salminen, A. The role of immunosuppressive myofibroblasts in the aging process and age-related diseases. J. Mol. Med. 101, 1169–1189 (2023).

    Article  PubMed  CAS  Google Scholar 

  234. Zhang, L. et al. Knockout RAGE alleviates cardiac fibrosis through repressing endothelial-to-mesenchymal transition (EndMT) mediated by autophagy. Cell Death Dis. 12, 470 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Liu, J. et al. RAGE pathways play an important role in regulation of organ fibrosis. Life Sci. 323, 121713 (2023).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Li Li and other members of the Liu laboratory for many stimulating discussions. The author’s work was supported by the National Natural Science Foundation of China (NSFC) grants 82230020 and 82430026, the Key Technologies R&D Program of Guangdong Province (2023B1111030004), the Postdoctoral Fellowship Program of CPSF (GZB20240301) and funds from the Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Key Laboratory of Organ Failure Research and Guangdong Provincial Institute of Nephrology.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. conceived the article and provided the outlines of the manuscript. X.Z. and Y.Z. researched literature for the article, wrote the manuscript and created the figures. Y.L. wrote and revised the manuscript. All authors made substantial contributions to discussions of the content and edited the manuscript before submission.

Corresponding author

Correspondence to Youhua Liu  (刘友华).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Rafael Kramann, David Lagares and Shougang Zhuang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, Y. & Liu, Y. Fibroblast activation and heterogeneity in fibrotic disease. Nat Rev Nephrol 21, 613–632 (2025). https://doi.org/10.1038/s41581-025-00969-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-025-00969-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing