Abstract
Nephrolithiasis is the most common health condition affecting the kidney and urinary tract and constitutes a major global health-care problem. The prevalence of nephrolithiasis has increased substantially over the past five decades, irrespective of age, sex or ethnicity. Kidney stones cause substantial morbidity, reduced quality of life and enormous health-care expenditure, largely due to their frequent recurrence. Furthermore, nephrolithiasis is now recognized as a systemic condition associated with increased risks of chronic kidney disease, cardiovascular disease, metabolic syndrome and low bone mass. Nephrolithiasis exhibits marked pathophysiological heterogeneity. Dietary and environmental exposures interact with genetic predisposition to shape individual disease risk. Calcium oxalate stones are most prevalent, commonly driven by hypercalciuria, hyperoxaluria, hypocitraturia and low urine volume, whereas the formation of uric acid and calcium phosphate stones is commonly linked to urinary pH. A comprehensive clinical evaluation can uncover underlying metabolic abnormalities, distinguish idiopathic, secondary and Mendelian forms of nephrolithiasis, identify systemic disease associations and guide therapy. Recurrence prevention requires individualized strategies that combine dietary and pharmacological interventions. For established stones, surgical management is effective, with ureteroscopy and percutaneous nephrolithotomy achieving high stone-free rates. Despite its considerable clinical and societal burden, nephrolithiasis remains under-recognized, underserved and under-researched. Greater awareness and investments in research, innovation and education are urgently needed.
Key points
-
Adults and children with recurrent kidney stone disease (KSD) can benefit from a metabolic evaluation, which can be used to identify metabolic abnormalities, exclude secondary and monogenic KSD, and recognize systemic disease manifestations.
-
Dietary interventions and pharmacotherapy for prevention of kidney stone recurrence should be tailored to the underlying pathophysiology, disease activity, comorbidities and specific needs of the patient.
-
Disease activity should be monitored regularly and treatment adjusted accordingly. Careful patient education and follow-up are key to long-term treatment success.
-
Patients must be empowered and supported to understand their disease, implement self-selected lifestyle changes and make informed choices on pharmaceutical and surgical interventions.
-
Crucial KSD knowledge gaps persist and require further investigation. Future research priorities include the development of novel treatment options and the generation of randomized clinical trial evidence that can inform the management of KSD.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Hill, A. J. et al. Incidence of kidney stones in the United States: the continuous National Health and Nutrition Examination Survey. J. Urol. 207, 851–856 (2022).
Xu, J. Z. et al. Sex disparities and the risk of urolithiasis: a large cross-sectional study. Ann. Med. 54, 1627–1635 (2022).
Filler, G. et al. In focus: perplexing increase of urinary stone disease in children, adolescent and young adult women and its economic impact. Front. Med. 10, 1272900 (2023).
Romero, V., Akpinar, H. & Assimos, D. G. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev. Urol. 12, e86–e96 (2010).
Chen, K. W. et al. Trends in kidney stone prevalence among US adults. Can. Urol. Assoc. J. 19, 58–60 (2025).
Ward, J. B. et al. Pediatric urinary stone disease in the United States: the Urologic Diseases in America project. Urology 129, 180–187 (2019).
Scales, C. D. Jr., Smith, A. C., Hanley, J. M. & Saigal, C. S. Prevalence of kidney stones in the United States. Eur. Urol. 62, 160–165 (2012).
Scales, C. D. Jr. et al. Urinary stone disease: advancing knowledge, patient care, and population health. Clin. J. Am. Soc. Nephrol. 11, 1305–1312 (2016).
Malieckal, D. A. & Goldfarb, D. S. Occupational kidney stones. Curr. Opin. Nephrol. Hypertens. 29, 232–236 (2020).
New, F. & Somani, B. K. A complete world literature review of quality of life (QOL) in patients with kidney stone disease (KSD). Curr. Urol. Rep. 17, 88 (2016).
Ferraro, P. M., Curhan, G. C., D’Addessi, A. & Gambaro, G. Risk of recurrence of idiopathic calcium kidney stones: analysis of data from the literature. J. Nephrol. 30, 227–233 (2017).
Saigal, C. S., Joyce, G. & Timilsina, A. R. Direct and indirect costs of nephrolithiasis in an employed population: opportunity for disease management? Kidney Int. 68, 1808–1814 (2005).
Lotan, Y., Cadeddu, J. A., Roerhborn, C. G., Pak, C. Y. & Pearle, M. S. Cost-effectiveness of medical management strategies for nephrolithiasis. J. Urol. 172, 2275–2281 (2004).
Bargagli, M. et al. Urinary metabolic profile and stone composition in kidney stone formers with and without heart disease. J. Nephrol. 35, 851–857 (2022).
Shavit, L. et al. Effect of being overweight on urinary metabolic risk factors for kidney stone formation. Nephrol. Dial. Transpl. 30, 607–613 (2015).
Shoag, J., Halpern, J., Goldfarb, D. S. & Eisner, B. H. Risk of chronic and end stage kidney disease in patients with nephrolithiasis. J. Urol. 192, 1440–1445 (2014).
Sakhaee, K., Maalouf, N. M., Kumar, R., Pasch, A. & Moe, O. W. Nephrolithiasis-associated bone disease: pathogenesis and treatment options. Kidney Int. 79, 393–403 (2011).
Taylor, E. N., Feskanich, D., Paik, J. M. & Curhan, G. C. Nephrolithiasis and risk of incident bone fracture. J. Urol. 195, 1482–1486 (2016).
Coe, F. L., Evan, A. & Worcester, E. in Seldin and Giebisch’s The Kidney (eds Alpern, R. J. et al.) 2311–2349 (Elsevier, 2013).
Werness, P. G., Brown, C. M., Smith, L. H. & Finlayson, B. EQUIL2: a BASIC computer program for the calculation of urinary saturation. J. Urol. 134, 1242–1244 (1985).
Parks, J. H., Coward, M. & Coe, F. L. Correspondence between stone composition and urine supersaturation in nephrolithiasis. Kidney Int. 51, 894–900 (1997).
Siener, R., Glatz, S., Nicolay, C. & Hesse, A. Prospective study on the efficacy of a selective treatment and risk factors for relapse in recurrent calcium oxalate stone patients. Eur. Urol. 44, 467–474 (2003).
Borghi, L. et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N. Engl. J. Med. 346, 77–84 (2002).
Borghi, L. et al. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J. Urol. 155, 839–843 (1996).
Ferraro, P. M. et al. Short-term changes in urinary relative supersaturation predict recurrence of kidney stones: a tool to guide preventive measures in urolithiasis. J. Urol. 200, 1082–1087 (2018).
Prochaska, M., Taylor, E., Ferraro, P. M. & Curhan, G. Relative supersaturation of 24-hour urine and likelihood of kidney stones. J. Urol. 199, 1262–1266 (2018).
Pak, C. Y. Citrate and renal calculi. Min. Electrolyte Metab. 13, 257–266 (1987).
Hallson, P. C., Rose, G. A. & Sulaiman, S. Magnesium reduces calcium oxalate crystal formation in human whole urine. Clin. Sci. 62, 17–19 (1982).
Pak, C. Y. & Arnold, L. H. Heterogeneous nucleation of calcium oxalate by seeds of monosodium urate. Proc. Soc. Exp. Biol. Med. 149, 930–932 (1975).
Coe, F. L., Lawton, R. L., Goldstein, R. B. & Tembe, V. Sodium urate accelerates precipitation of calcium oxalate in vitro. Proc. Soc. Exp. Biol. Med. 149, 926–929 (1975).
Pak, C. Y. et al. Mechanism for calcium urolithiasis among patients with hyperuricosuria: supersaturation of urine with respect to monosodium urate. J. Clin. Invest. 59, 426–431 (1977).
Coe, F. L. Hyperuricosuric calcium oxalate nephrolithiasis. Kidney Int. 13, 418–426 (1978).
Coe, F. L. Uric acid and calcium oxalate nephrolithiasis. Kidney Int. 24, 392–403 (1983).
Meyer, J. L., Bergert, J. H. & Smith, L. H. Epitaxial relationships in urolithiasis: the brushite-whewellite system. Clin. Sci. Mol. Med. 52, 143–148 (1977).
Khan, S. R. & Canales, B. K. Unified theory on the pathogenesis of Randall’s plaques and plugs. Urolithiasis 43, 109–123 (2015).
Sethmann, I. et al. Microstructures of Randall’s plaques and their interfaces with calcium oxalate monohydrate kidney stones reflect underlying mineral precipitation mechanisms. Urolithiasis 45, 235–248 (2017).
Khan, S. R., Rodriguez, D. E., Gower, L. B. & Monga, M. Association of Randall plaque with collagen fibers and membrane vesicles. J. Urol. 187, 1094–1100 (2012).
Verrier, C. et al. Topography, composition and structure of incipient randall plaque at the nanoscale level. J. Urol. 196, 1566–1574 (2016).
Bourg, S. et al. Confining calcium oxalate crystal growth in a carbonated apatite-coated microfluidic channel to better understand the role of Randall’s plaque in kidney stone formation. Lab. Chip 24, 2017–2024 (2024).
Robertson, W. G., Peacock, M. & Nordin, B. E. Inhibitors of the growth and aggregation of calcium oxalate crystals in vitro. Clin. Chim. Acta 43, 31–37 (1973).
Borofsky, M. S. et al. Integration and utilization of modern technologies in nephrolithiasis research. Nat. Rev. Urol. 13, 549–557 (2016).
Evan, A. P., Worcester, E. M., Coe, F. L., Williams, J. Jr. & Lingeman, J. E. Mechanisms of human kidney stone formation. Urolithiasis 43, 19–32 (2015).
Randall, A. The origin and growth of renal calculi. Ann. Surg. 105, 1009 (1937).
Coe, F. L., Evan, A. P., Worcester, E. M. & Lingeman, J. E. Three pathways for human kidney stone formation. Urol. Res. 38, 147–160 (2010).
Evan, A. P. et al. Renal crystal deposits and histopathology in patients with cystine stones. Kidney Int. 69, 2227–2235 (2006).
Evan, A. P. et al. Renal histopathology of stone-forming patients with distal renal tubular acidosis. Kidney Int. 71, 795–801 (2007).
Evan, A. P. et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J. Clin. Invest. 111, 607–616 (2003).
Evan, A. P. et al. Renal intratubular crystals and hyaluronan staining occur in stone formers with bypass surgery but not with idiopathic calcium oxalate stones. Anat. Rec. 291, 325–334 (2008).
Evan, A. E. et al. Histopathology and surgical anatomy of patients with primary hyperparathyroidism and calcium phosphate stones. Kidney Int. 74, 223–229 (2008).
Mandel, N., Mandel, I., Fryjoff, K., Rejniak, T. & Mandel, G. Conversion of calcium oxalate to calcium phosphate with recurrent stone episodes. J. Urol. 169, 2026–2029 (2003).
Evan, A. P. et al. Mechanism by which shock wave lithotripsy can promote formation of human calcium phosphate stones. Am. J. Physiol. Ren. Physiol. 308, F938–F949 (2015).
Parks, J. H., Coe, F. L., Evan, A. P. & Worcester, E. M. Urine pH in renal calcium stone formers who do and do not increase stone phosphate content with time. Nephrol. Dial. Transpl. 24, 130–136 (2009).
Stoller, M. L., Low, R. K., Shami, G. S., McCormick, V. D. & Kerschmann, R. L. High resolution radiography of cadaveric kidneys: unraveling the mystery of Randall’s plaque formation. J. Urol. 156, 1263–1266 (1996).
Kim, S. C. et al. Stone formation is proportional to papillary surface coverage by Randall’s plaque. J. Urol. 173, 117–119 (2005).
Evan, A. P., Coe, F. L., Lingeman, J., Bledsoe, S. & Worcester, E. M. Randall’s plaque in stone formers originates in ascending thin limbs. Am. J. Physiol. Ren. Physiol. 315, F1236–F1242 (2018).
Daudon, M., Dore, J. C., Jungers, P. & Lacour, B. Changes in stone composition according to age and gender of patients: a multivariate epidemiological approach. Urol. Res. 32, 241–247 (2004).
Anderegg, M. A. et al. Prevalence and characteristics of genetic disease in adult kidney stone formers. Nephrol. Dial. Transpl. 39, 1426–1441 (2024).
Prot-Bertoye, C. et al. CKD and its risk factors among patients with cystinuria. Clin. J. Am. Soc. Nephrol. 10, 842–851 (2015).
Alexander, R. T., Fuster, D. G. & Dimke, H. Mechanisms underlying calcium nephrolithiasis. Annu. Rev. Physiol. 84, 559–583 (2022).
Dasgupta, D. et al. Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis. J. Am. Soc. Nephrol. 25, 2366–2375 (2014).
Dhayat, N. A. et al. The vitamin D metabolite diagnostic ratio associates with phenotypic traits of idiopathic hypercalciuria. Kidney Int. Rep. 9, 1072–1082 (2024).
Vezzoli, G. et al. Influence of calcium-sensing receptor gene on urinary calcium excretion in stone-forming patients. J. Am. Soc. Nephrol. 13, 2517–2523 (2002).
Worcester, E. M., Bergsland, K. J., Gillen, D. L. & Coe, F. L. Evidence for increased renal tubule and parathyroid gland sensitivity to serum calcium in human idiopathic hypercalciuria. Am. J. Physiol. Ren. Physiol. 305, F853–F860 (2013).
Fuster, D. G. & Moe, O. W. Incomplete distal renal tubular acidosis and kidney stones. Adv. Chronic Kidney Dis. 25, 366–374 (2018).
Moe, O. W. & Preisig, P. A. Dual role of citrate in mammalian urine. Curr. Opin. Nephrol. Hypertens. 15, 419–424 (2006).
Baggio, B., Gambaro, G., Favaro, S. & Borsatti, A. Prevalence of hyperoxaluria in idiopathic calcium oxalate kidney stone disease. Nephron 35, 11–14 (1983).
Laminski, N. A., Meyers, A. M., Kruger, M., Sonnekus, M. I. & Margolius, L. P. Hyperoxaluria in patients with recurrent calcium oxalate calculi: dietary and other risk factors. Br. J. Urol. 68, 454–458 (1991).
Pak, C. Y. et al. Rapid communication: relative effect of urinary calcium and oxalate on saturation of calcium oxalate. Kidney Int. 66, 2032–2037 (2004).
Bazin, D. et al. Hyperoxaluria is related to whewellite and hypercalciuria to weddellite: what happens when crystalline conversion occurs? Comptes Rendus Chim. 19, 1492–1503 (2016).
Bargagli, M., Tio, M. C., Waikar, S. S. & Ferraro, P. M. Dietary oxalate intake and kidney outcomes. Nutrients 12, 2673 (2020).
Israr, B., Frazier, R. A. & Gordon, M. H. Effects of phytate and minerals on the bioavailability of oxalate from food. Food Chem. 141, 1690–1693 (2013).
Holmes, R. P., Goodman, H. O. & Assimos, D. G. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 59, 270–276 (2001).
Baxmann, A. C., De, O. G. M. C. & Heilberg, I. P. Effect of vitamin C supplements on urinary oxalate and pH in calcium stone-forming patients. Kidney Int. 63, 1066–1071 (2003).
Ferraz, R. R., Tiselius, H. G. & Heilberg, I. P. Fat malabsorption induced by gastrointestinal lipase inhibitor leads to an increase in urinary oxalate excretion. Kidney Int. 66, 676–682 (2004).
Froeder, L., Arasaki, C. H., Malheiros, C. A., Baxmann, A. C. & Heilberg, I. P. Response to dietary oxalate after bariatric surgery. Clin. J. Am. Soc. Nephrol. 7, 2033–2040 (2012).
Groothoff, J. W. et al. Clinical practice recommendations for primary hyperoxaluria: an expert consensus statement from ERKNet and OxalEurope. Nat. Rev. Nephrol. 19, 194–211 (2023).
Moe, O. W. & Xu, L. H. R. Hyperuricosuric calcium urolithiasis. J. Nephrol. 31, 189–196 (2018).
Bargagli, M. et al. Urinary lithogenic profile of patients with non-alcoholic fatty liver disease. Nephrol. Dial. Transpl. 38, 2652–2654 (2023).
Sakhaee, K., Adams-Huet, B., Moe, O. W. & Pak, C. Y. Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. Kidney Int. 62, 971–979 (2002).
Kunlayawutipong, T. et al. Prevalence and risk factors for hyperuricemia and hyperuricosuria in patients with hematologic malignancies. Front. Med. 11, 1343000 (2024).
Rodman, J. S. Struvite stones. Nephron 81, 50–59 (1999).
Flannigan, R., Choy, W. H., Chew, B. & Lange, D. Renal struvite stones — pathogenesis, microbiology, and management strategies. Nat. Rev. Urol. 11, 333–341 (2014).
Leaf, D. E., Bukberg, P. R. & Goldfarb, D. S. Laxative abuse, eating disorders, and kidney stones: a case report and review of the literature. Am. J. Kidney Dis. 60, 295–298 (2012).
Daudon, M., Frochot, V., Bazin, D. & Jungers, P. Drug-induced kidney stones and crystalline nephropathy: pathophysiology, prevention and treatment. Drugs 78, 163–201 (2018).
Maalouf, N. M., Langston, J. P., Van Ness, P. C., Moe, O. W. & Sakhaee, K. Nephrolithiasis in topiramate users. Urol. Res. 39, 303–307 (2011).
Colliou, E., Mari, A., Delas, A., Delarche, A. & Faguer, S. Oxalate nephropathy following vitamin C intake within intensive care unit. Clin. Nephrol. 88, 354–358 (2017).
Howles, S. A. & Thakker, R. V. Genetics of kidney stone disease. Nat. Rev. Urol. 17, 407–421 (2020).
Daga, A. et al. Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int. 93, 204–213 (2018).
Font-Llitjos, M. et al. New insights into cystinuria: 40 new mutations, genotype-phenotype correlation, and digenic inheritance causing partial phenotype. J. Med. Genet. 42, 58–68 (2005).
Thomas, K., Wong, K., Withington, J., Bultitude, M. & Doherty, A. Cystinuria — a urologist’s perspective. Nat. Rev. Urol. 11, 270–277 (2014).
Wu, C. W. et al. Population genetics analysis of SLC3A1 and SLC7A9 revealed the etiology of cystine stone may be more than what our current genetic knowledge can explain. Urolithiasis 51, 101 (2023).
Crawhall, J. C., Scowen, E. F. & Watts, R. W. Effect of penicillamine on cystinuria. Br. Med. J. 1, 588–590 (1963).
Chow, G. K. & Streem, S. B. Medical treatment of cystinuria: results of contemporary clinical practice. J. Urol. 156, 1576–1578 (1996).
Barbey, F. et al. Medical treatment of cystinuria: critical reappraisal of long-term results. J. Urol. 163, 1419–1423 (2000).
Pak, C. Y., Fuller, C., Sakhaee, K., Zerwekh, J. E. & Adams, B. V. Management of cystine nephrolithiasis with α-mercaptopropionylglycine. J. Urol. 136, 1003–1008 (1986).
Howles, S. A. et al. Genetic variants of calcium and vitamin D metabolism in kidney stone disease. Nat. Commun. 10, 5175 (2019).
Molin, A. et al. CYP24A1 mutations in a cohort of hypercalcemic patients: evidence for a recessive trait. J. Clin. Endocrinol. Metab. 100, E1343–E1352 (2015).
Ball, N. et al. 3’ Untranslated region structural elements in CYP24A1 are associated with infantile hypercalcemia type 1. J. Bone Min. Res. 38, 414–426 (2023).
Davidson Peiris, E. & Wusirika, R. A case report of compound heterozygous CYP24A1 mutations leading to nephrolithiasis successfully treated with ketoconazole. Case Rep. Nephrol. Dial. 7, 167–171 (2017).
Sayers, J. et al. Successful treatment of hypercalcaemia associated with a CYP24A1 mutation with fluconazole. Clin. Kidney J. 8, 453–455 (2015).
Schlingmann, K. P. et al. Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J. Am. Soc. Nephrol. 27, 604–614 (2016).
Gordon, R. J., Li, D., Doyle, D., Zaritsky, J. & Levine, M. A. Digenic heterozygous mutations in SLC34A3 and SLC34A1 cause dominant hypophosphatemic rickets with hypercalciuria. J. Clin. Endocrinol. Metab. 105, 2392–2400 (2020).
Tieder, M. et al. Hereditary hypophosphatemic rickets with hypercalciuria. N. Engl. J. Med. 312, 611–617 (1985).
Bergwitz, C. et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am. J. Hum. Genet. 78, 179–192 (2006).
Colazo, J. M., Reasoner, S. A., Holt, G., Faugere, M. C. M. & Dahir, K. M. Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) presenting with genu valgum deformity: treatment with phosphate supplementation and surgical correction. Case Rep. Endocrinol. 2020, 1047327 (2020).
Rungroj, N. et al. Distal renal tubular acidosis caused by tryptophan-aspartate repeat domain 72 (WDR72) mutations. Clin. Genet. 94, 409–418 (2018).
Enerback, S. et al. Acidosis and deafness in patients with recessive mutations in FOXI1. J. Am. Soc. Nephrol. 29, 1041–1048 (2018).
Hopp, K. et al. Phenotype-genotype correlations and estimated carrier frequencies of primary hyperoxaluria. J. Am. Soc. Nephrol. 26, 2559–2570 (2015).
Garrelfs, S. F. et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N. Engl. J. Med. 384, 1216–1226 (2021).
Baum, M. A. et al. PHYOX2: a pivotal randomized study of nedosiran in primary hyperoxaluria type 1 or 2. Kidney Int. 103, 207–217 (2023).
Goldfarb, D. S., Avery, A. R., Beara-Lasic, L., Duncan, G. E. & Goldberg, J. A twin study of genetic influences on nephrolithiasis in women and men. Kidney Int. Rep. 4, 535–540 (2019).
Hemminki, K. et al. Familial risks in urolithiasis in the population of Sweden. BJU Int. 121, 479–485 (2018).
Hao, X. et al. Integrative genome-wide analyses identify novel loci associated with kidney stones and provide insights into its genetic architecture. Nat. Commun. 14, 7498 (2023).
Lovegrove, C. E. et al. Central adiposity increases risk of kidney stone disease through effects on serum calcium concentrations. J. Am. Soc. Nephrol. 34, 1991–2011 (2023).
Thorleifsson, G. et al. Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat. Genet. 41, 926–930 (2009).
Oddsson, A. et al. Common and rare variants associated with kidney stones and biochemical traits. Nat. Commun. 6, 7975 (2015).
Breiderhoff, T. et al. Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis. Proc. Natl Acad. Sci. USA 109, 14241–14246 (2012).
Paranjpe, I. et al. Derivation and validation of genome-wide polygenic score for urinary tract stone diagnosis. Kidney Int. 98, 1323–1330 (2020).
Wang, W. et al. Prospective analysis of incident disease among individuals of diverse ancestries using genetic and conventional risk factors. Preprint at medRxiv https://doi.org/10.1101/2023.10.23.23297414 (2023).
Pearle, M. S. et al. Medical management of kidney stones: AUA guideline. J. Urol. 192, 316–324 (2014).
Ljungberg, B. et al. EAU Guidelines, Presented at the EAU Annual Congress Milan 2021 (EAU Guidelines Office, 2021).
Gambaro, G. et al. Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J. Nephrol. 29, 715–734 (2016).
Williams, J. C. Jr. et al. Urine and stone analysis for the investigation of the renal stone former: a consensus conference. Urolithiasis 49, 1–16 (2021).
Norman, R. W., Bath, S. S., Robertson, W. G. & Peacock, M. When should patients with symptomatic urinary stone disease be evaluated metabolically? J. Urol. 132, 1137–1139 (1984).
Edwards, O. M., Bayliss, R. I. & Millen, S. Urinary creatinine excretion as an index of the copleteness of 24-hour urine collections. Lancet 2, 1165–1166 (1969).
Pak, C. Y., Poindexter, J. R., Adams-Huet, B. & Pearle, M. S. Predictive value of kidney stone composition in the detection of metabolic abnormalities. Am. J. Med. 115, 26–32 (2003).
Daudon, M. & Jungers, P. Drug-induced renal calculi: epidemiology, prevention and management. Drugs 64, 245–275 (2004).
Ferraro, P. M., Taylor, E. N., Gambaro, G. & Curhan, G. C. Dietary and lifestyle risk factors associated with incident kidney stones in men and women. J. Urol. 198, 858–863 (2017).
Curhan, G. C., Willett, W. C., Rimm, E. B. & Stampfer, M. J. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N. Engl. J. Med. 328, 833–838 (1993).
Curhan, G. C., Willett, W. C., Speizer, F. E., Spiegelman, D. & Stampfer, M. J. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann. Intern. Med. 126, 497–504 (1997).
Taylor, E. N., Stampfer, M. J. & Curhan, G. C. Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. J. Am. Soc. Nephrol. 15, 3225–3232 (2004).
Parks, J. H. & Coe, F. L. Evidence for durable kidney stone prevention over several decades. BJU Int. 103, 1238–1246 (2009).
Ferraro, P. M., Taylor, E. N., Gambaro, G. & Curhan, G. C. Soda and other beverages and the risk of kidney stones. Clin. J. Am. Soc. Nephrol. 8, 1389–1395 (2013).
Phillips, M. J. & Cooke, J. N. Relation between urinary calcium and sodium in patients with idiopathic hypercalciuria. Lancet 1, 1354–1357 (1967).
Sakhaee, K., Harvey, J. A., Padalino, P. K., Whitson, P. & Pak, C. Y. The potential role of salt abuse on the risk for kidney stone formation. J. Urol. 150, 310–312 (1993).
Kleeman, C. R., Bohannan, J., Bernstein, D., Ling, S. & Maxwell, M. H. Effect of variations in sodium intake on calcium excretion in normal humans. Proc. Soc. Exp. Biol. Med. 115, 29–32 (1964).
Nouvenne, A. et al. Effects of a low-salt diet on idiopathic hypercalciuria in calcium-oxalate stone formers: a 3-mo randomized controlled trial. Am. J. Clin. Nutr. 91, 565–570 (2010).
Hess, B., Jost, C., Zipperle, L., Takkinen, R. & Jaeger, P. High-calcium intake abolishes hyperoxaluria and reduces urinary crystallization during a 20-fold normal oxalate load in humans. Nephrol. Dial. Transpl. 13, 2241–2247 (1998).
Taylor, E. N. & Curhan, G. C. Oxalate intake and the risk for nephrolithiasis. J. Am. Soc. Nephrol. 18, 2198–2204 (2007).
Melton, L. J. 3rd, Crowson, C. S., Khosla, S., Wilson, D. M. & O’Fallon, W. M. Fracture risk among patients with urolithiasis: a population-based cohort study. Kidney Int. 53, 459–464 (1998).
Worcester, E. M. Stones from bowel disease. Endocrinol. Metab. Clin. North Am. 31, 979–999 (2002).
Hylander, E., Jarnum, S. & Nielsen, K. Calcium treatment of enteric hyperoxaluria after jejunoileal bypass for morbid obesity. Scand. J. Gastroenterol. 15, 349–352 (1980).
Taylor, E. N., Fung, T. T. & Curhan, G. C. DASH-style diet associates with reduced risk for kidney stones. J. Am. Soc. Nephrol. 20, 2253–2259 (2009).
Rodriguez, A., Curhan, G. C., Gambaro, G., Taylor, E. N. & Ferraro, P. M. Mediterranean diet adherence and risk of incident kidney stones. Am. J. Clin. Nutr. 111, 1100–1106 (2020).
Ferraro, P. M., Mandel, E. I., Curhan, G. C., Gambaro, G. & Taylor, E. N. Dietary protein and potassium, diet–dependent net acid load, and risk of incident kidney stones. Clin. J. Am. Soc. Nephrol. 11, 1834–1844 (2016).
Brikowski, T. H., Lotan, Y. & Pearle, M. S. Climate-related increase in the prevalence of urolithiasis in the United States. Proc. Natl Acad. Sci. USA 105, 9841–9846 (2008).
Sasai, F. et al. Climate change and nephrology. Nephrol. Dial. Transpl. 38, 41–48 (2023).
Stamatelou, K. & Goldfarb, D. S. Epidemiology of kidney stones. Healthcare 11, 424 (2023).
Linder, B. J., Rangel, L. J. & Krambeck, A. E. The effect of work location on urolithiasis in health care professionals. Urolithiasis 41, 327–331 (2013).
Barcelo, P., Wuhl, O., Servitge, E., Rousaud, A. & Pak, C. Y. Randomized double-blind study of potassium citrate in idiopathic hypocitraturic calcium nephrolithiasis. J. Urol. 150, 1761–1764 (1993).
Ettinger, B. et al. Potassium–magnesium citrate is an effective prophylaxis against recurrent calcium oxalate nephrolithiasis. J. Urol. 158, 2069–2073 (1997).
Fink, H. A. et al. Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American College of Physicians Clinical Guideline. Ann. Intern. Med. 158, 535–543 (2013).
Phillips, R. et al. Citrate salts for preventing and treating calcium containing kidney stones in adults. Cochrane Database Syst. Rev. 2015, CD010057 (2015).
Forciea, M. A. & Starkey, M. Prevention of repeated episodes of kidney stones in adults: a clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 161, P14-9038 (2014).
Hofbauer, J., Hobarth, K., Szabo, N. & Marberger, M. Alkali citrate prophylaxis in idiopathic recurrent calcium oxalate urolithiasis-a prospective randomized study. Br. J. Urol. 73, 362–365 (1994).
Pak, C. Y. et al. Comparison of semi-empirical and computer derived methods for estimating urinary saturation of brushite. J. Urol. 181, 1423–1428 (2009).
Dhayat, N. A. et al. Efficacy of standard and low dose hydrochlorothiazide in the recurrence prevention of calcium nephrolithiasis (NOSTONE trial): protocol for a randomized double-blind placebo-controlled trial. BMC Nephrol. 19, 349 (2018).
Dhayat, N. A. et al. Hydrochlorothiazide and prevention of kidney-stone recurrence. N. Engl. J. Med. 388, 781–791 (2023).
Bargagli, M., Anderegg, M. A. & Fuster, D. G. Effects of thiazides and new findings on kidney stones and dysglycemic side effects. Acta Physiol. 240, e14155 (2024).
Christe, A. et al. Hydrochlorothiazide and bone mineral density in patients with kidney stones: a post-hoc analysis of the NOSTONE trial. Clin. J. Am. Soc. Nephrol. 20, 706–718 (2025).
Pottegard, A. et al. Hydrochlorothiazide use is strongly associated with risk of lip cancer. J. Intern. Med. 282, 322–331 (2017).
Pedersen, S. A. et al. Hydrochlorothiazide use and risk of nonmelanoma skin cancer: a nationwide case-control study from Denmark. J. Am. Acad. Dermatol. 78, 673–681 e679 (2018).
Haisma, M. S. et al. Chronic use of hydrochlorothiazide and risk of skin cancer in Caucasian adults: a PharmLines initiative inception cohort study. Acta Derm. Venereol. 103, adv3933 (2023).
Borghi, L., Meschi, T., Guerra, A. & Novarini, A. Randomized prospective study of a nonthiazide diuretic, indapamide, in preventing calcium stone recurrences. J. Cardiovasc. Pharmacol. 22, S78–S86 (1993).
Ettinger, B., Citron, J. T., Livermore, B. & Dolman, L. I. Chlorthalidone reduces calcium oxalate calculous recurrence but magnesium hydroxide does not. J. Urol. 139, 679–684 (1988).
Bargagli, M., Trelle, S., Bonny, O. & Fuster, D. G. Thiazides for kidney stone recurrence prevention. Curr. Opin. Nephrol. Hypertens. 33, 427–432 (2024).
Scoglio, M. et al. Indapamide or chlorthalidone to reduce urine supersaturation for secondary prevention of kidney stones: protocol for a randomised, double-blind, cross-over trial (INDAPACHLOR). BMJ Open 15, e101594 (2025).
Coe, F. L. Treated and untreated recurrent calcium nephrolithiasis in patients with idiopathic hypercalciuria, hyperuricosuria, or no metabolic disorder. Ann. Intern. Med. 87, 404–410 (1977).
Ettinger, B., Tang, A., Citron, J. T., Livermore, B. & Williams, T. Randomized trial of allopurinol in the prevention of calcium oxalate calculi. N. Engl. J. Med. 315, 1386–1389 (1986).
Coe, F. L. & Raisen, L. Allopurinol treatment of uric-acid disorders in calcium-stone formers. Lancet 1, 129–131 (1973).
Curhan, G. C. & Taylor, E. N. 24-h uric acid excretion and the risk of kidney stones. Kidney Int. 73, 489–496 (2008).
Pak, C. Y., Sakhaee, K. & Fuller, C. Successful management of uric acid nephrolithiasis with potassium citrate. Kidney Int. 30, 422–428 (1986).
Kursh, E. D. & Resnick, M. I. Dissolution of uric acid calculi with systemic alkalization. J. Urol. 132, 286–287 (1984).
Tsaturyan, A. et al. Oral chemolysis is an effective, non-invasive therapy for urinary stones suspected of uric acid content. Urolithiasis 48, 501–507 (2020).
Assimos, D. et al. Surgical management of stones: American urological association/endourological society guideline, part I. J. Urol. 196, 1153–1160 (2016).
Geraghty, R. M. et al. Best practice in interventional management of urolithiasis: an update from the European association of urology guidelines panel for urolithiasis 2022. Eur. Urol. Focus 9, 199–208 (2023).
Sant, G. R., Blaivas, J. G. & Meares, E. M. Jr. Hemiacidrin irrigation in the management of struvite calculi: long-term results. J. Urol. 130, 1048–1050 (1983).
Griffith, D. P. et al. Randomized, double-blind trial of Lithostat (acetohydroxamic acid) in the palliative treatment of infection-induced urinary calculi. Eur. Urol. 20, 243–247 (1991).
Jacobs, D., Heimbach, D. & Hesse, A. Chemolysis of struvite stones by acidification of artificial urine – an in vitro study. Scand. J. Urol. Nephrol. 35, 345–349 (2001).
Poletti, P. A. et al. Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am. J. Roentgenol. 188, 927–933 (2007).
Pathan, S. A., Mitra, B. & Cameron, P. A. A systematic review and meta-analysis comparing the efficacy of nonsteroidal anti-inflammatory drugs, opioids, and paracetamol in the treatment of acute renal colic. Eur. Urol. 73, 583–595 (2018).
Schmidt, M., Sorensen, H. T. & Pedersen, L. Diclofenac use and cardiovascular risks: series of nationwide cohort studies. BMJ 362, k3426 (2018).
Pickard, R. et al. Medical expulsive therapy in adults with ureteric colic: a multicentre, randomised, placebo-controlled trial. Lancet 386, 341–349 (2015).
Furyk, J. S. et al. Distal ureteric stones and tamsulosin: a double-blind, placebo-controlled, randomized, multicenter trial. Ann. Emerg. Med. 67, 86–95.e82 (2016).
Sur, R. L. et al. Silodosin to facilitate passage of ureteral stones: a multi-institutional, randomized, double-blinded, placebo-controlled trial. Eur. Urol. 67, 959–964 (2015).
Turk, C. et al. Medical expulsive therapy for ureterolithiasis: the EAU recommendations in 2016. Eur. Urol. 71, 504–507 (2017).
Ye, Z. et al. Efficacy and safety of tamsulosin in medical expulsive therapy for distal ureteral stones with renal colic: a multicenter, randomized, double-blind, placebo-controlled trial. Eur. Urol. 73, 385–391 (2018).
Hollingsworth, J. M. et al. Alpha blockers for treatment of ureteric stones: systematic review and meta-analysis. BMJ 355, i6112 (2016).
Lovegrove, C. E. et al. Natural history of small asymptomatic kidney and residual stones over a long-term follow-up: systematic review over 25 years. BJU Int. 129, 442–456 (2022).
Stritt, K. et al. Risk factors of asymptomatic kidney stone passage in adults with recurrent kidney stones. Clin. J. Am. Soc. Nephrol. 19, 1130–1137 (2024).
Inci, K. et al. Prospective long-term followup of patients with asymptomatic lower pole caliceal stones. J. Urol. 177, 2189–2192 (2007).
Ong, A. et al. Selection and outcomes for dissolution therapy in uric acid stones: a systematic review of literature. Curr. Urol. Rep. 24, 355–363 (2023).
EAU Guidelines. Edn. Presented at the EAU Annual Congress, Paris 2024 (EAU Guidelines Office, 2024).
Deng, T. et al. Systematic review and cumulative analysis of the managements for proximal impacted ureteral stones. World J. Urol. 37, 1687–1701 (2019).
Geraghty, R. et al. Evidence for ureterorenoscopy and laser fragmentation (URSL) for large renal stones in the modern era. Curr. Urol. Rep. 16, 54 (2015).
Sorensen, M. D. et al. Removal of small, asymptomatic kidney stones and incidence of relapse. N. Engl. J. Med. 387, 506–513 (2022).
Smith, D. et al. PD47-02 pure RCT 2: clinical and cost-effectiveness of furs and percutaneous nephrolithotomy for lower pole stones 10-25mm. J. Urol. 211, e980 (2024).
Seitz, C. et al. Incidence, prevention, and management of complications following percutaneous nephrolitholapaxy. Eur. Urol. 61, 146–158 (2012).
Evan, A. P. Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr. Nephrol. 25, 831–841 (2010).
Acknowledgements
S.A.H. is a Wellcome Trust Clinical Career Development Fellow.
Author information
Authors and Affiliations
Contributions
All authors researched data for the article, made substantial contributions to discussion of the content and wrote, reviewed or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
D.G.F. served as a consultant for Otsuka, Alnylam, Boehringer Ingelheim and Kyowa Kirin, and received unrestricted research grants from Otsuka, Boehringer Ingelheim and CSL Vifor. S.A.H. has received payment from CJ Medical and Boston Scientific for educational activities. The other authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Nephrology thanks John Lieske, Kristina Penniston and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
ClinicalTrials.gov: https://clinicaltrials.gov
MIMIC Calculator for predicting spontaneous stone passage: https://bursturologycollaborative.github.io/
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bargagli, M., Scoglio, M., Howles, S.A. et al. Kidney stone disease: risk factors, pathophysiology and management. Nat Rev Nephrol 21, 794–808 (2025). https://doi.org/10.1038/s41581-025-00990-x
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41581-025-00990-x
This article is cited by
-
Renal metabolic defects in patients with recurrent unilateral Nephro- and ureterolithiasis: insights from individual renal unit sampling
Urolithiasis (2026)
-
ER stress induced extracellular vesicles secretion from macrophages promotes calcium oxalate crystals formation in kidney
Molecular Biomedicine (2025)


