Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kidney stone disease: risk factors, pathophysiology and management

Abstract

Nephrolithiasis is the most common health condition affecting the kidney and urinary tract and constitutes a major global health-care problem. The prevalence of nephrolithiasis has increased substantially over the past five decades, irrespective of age, sex or ethnicity. Kidney stones cause substantial morbidity, reduced quality of life and enormous health-care expenditure, largely due to their frequent recurrence. Furthermore, nephrolithiasis is now recognized as a systemic condition associated with increased risks of chronic kidney disease, cardiovascular disease, metabolic syndrome and low bone mass. Nephrolithiasis exhibits marked pathophysiological heterogeneity. Dietary and environmental exposures interact with genetic predisposition to shape individual disease risk. Calcium oxalate stones are most prevalent, commonly driven by hypercalciuria, hyperoxaluria, hypocitraturia and low urine volume, whereas the formation of uric acid and calcium phosphate stones is commonly linked to urinary pH. A comprehensive clinical evaluation can uncover underlying metabolic abnormalities, distinguish idiopathic, secondary and Mendelian forms of nephrolithiasis, identify systemic disease associations and guide therapy. Recurrence prevention requires individualized strategies that combine dietary and pharmacological interventions. For established stones, surgical management is effective, with ureteroscopy and percutaneous nephrolithotomy achieving high stone-free rates. Despite its considerable clinical and societal burden, nephrolithiasis remains under-recognized, underserved and under-researched. Greater awareness and investments in research, innovation and education are urgently needed.

Key points

  • Adults and children with recurrent kidney stone disease (KSD) can benefit from a metabolic evaluation, which can be used to identify metabolic abnormalities, exclude secondary and monogenic KSD, and recognize systemic disease manifestations.

  • Dietary interventions and pharmacotherapy for prevention of kidney stone recurrence should be tailored to the underlying pathophysiology, disease activity, comorbidities and specific needs of the patient.

  • Disease activity should be monitored regularly and treatment adjusted accordingly. Careful patient education and follow-up are key to long-term treatment success.

  • Patients must be empowered and supported to understand their disease, implement self-selected lifestyle changes and make informed choices on pharmaceutical and surgical interventions.

  • Crucial KSD knowledge gaps persist and require further investigation. Future research priorities include the development of novel treatment options and the generation of randomized clinical trial evidence that can inform the management of KSD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physicochemistry of kidney stone formation.
Fig. 2: Histopathology and pathogenesis of kidney stone formation.
Fig. 3: Pathophysiology of hypercalciuria.

Similar content being viewed by others

References

  1. Hill, A. J. et al. Incidence of kidney stones in the United States: the continuous National Health and Nutrition Examination Survey. J. Urol. 207, 851–856 (2022).

    Article  PubMed  Google Scholar 

  2. Xu, J. Z. et al. Sex disparities and the risk of urolithiasis: a large cross-sectional study. Ann. Med. 54, 1627–1635 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Filler, G. et al. In focus: perplexing increase of urinary stone disease in children, adolescent and young adult women and its economic impact. Front. Med. 10, 1272900 (2023).

    Article  Google Scholar 

  4. Romero, V., Akpinar, H. & Assimos, D. G. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev. Urol. 12, e86–e96 (2010).

    PubMed  PubMed Central  Google Scholar 

  5. Chen, K. W. et al. Trends in kidney stone prevalence among US adults. Can. Urol. Assoc. J. 19, 58–60 (2025).

    PubMed  Google Scholar 

  6. Ward, J. B. et al. Pediatric urinary stone disease in the United States: the Urologic Diseases in America project. Urology 129, 180–187 (2019).

    Article  PubMed  Google Scholar 

  7. Scales, C. D. Jr., Smith, A. C., Hanley, J. M. & Saigal, C. S. Prevalence of kidney stones in the United States. Eur. Urol. 62, 160–165 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Scales, C. D. Jr. et al. Urinary stone disease: advancing knowledge, patient care, and population health. Clin. J. Am. Soc. Nephrol. 11, 1305–1312 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Malieckal, D. A. & Goldfarb, D. S. Occupational kidney stones. Curr. Opin. Nephrol. Hypertens. 29, 232–236 (2020).

    Article  PubMed  Google Scholar 

  10. New, F. & Somani, B. K. A complete world literature review of quality of life (QOL) in patients with kidney stone disease (KSD). Curr. Urol. Rep. 17, 88 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ferraro, P. M., Curhan, G. C., D’Addessi, A. & Gambaro, G. Risk of recurrence of idiopathic calcium kidney stones: analysis of data from the literature. J. Nephrol. 30, 227–233 (2017).

    Article  PubMed  Google Scholar 

  12. Saigal, C. S., Joyce, G. & Timilsina, A. R. Direct and indirect costs of nephrolithiasis in an employed population: opportunity for disease management? Kidney Int. 68, 1808–1814 (2005).

    Article  PubMed  Google Scholar 

  13. Lotan, Y., Cadeddu, J. A., Roerhborn, C. G., Pak, C. Y. & Pearle, M. S. Cost-effectiveness of medical management strategies for nephrolithiasis. J. Urol. 172, 2275–2281 (2004).

    Article  PubMed  Google Scholar 

  14. Bargagli, M. et al. Urinary metabolic profile and stone composition in kidney stone formers with and without heart disease. J. Nephrol. 35, 851–857 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Shavit, L. et al. Effect of being overweight on urinary metabolic risk factors for kidney stone formation. Nephrol. Dial. Transpl. 30, 607–613 (2015).

    Article  CAS  Google Scholar 

  16. Shoag, J., Halpern, J., Goldfarb, D. S. & Eisner, B. H. Risk of chronic and end stage kidney disease in patients with nephrolithiasis. J. Urol. 192, 1440–1445 (2014).

    Article  PubMed  Google Scholar 

  17. Sakhaee, K., Maalouf, N. M., Kumar, R., Pasch, A. & Moe, O. W. Nephrolithiasis-associated bone disease: pathogenesis and treatment options. Kidney Int. 79, 393–403 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Taylor, E. N., Feskanich, D., Paik, J. M. & Curhan, G. C. Nephrolithiasis and risk of incident bone fracture. J. Urol. 195, 1482–1486 (2016).

    Article  PubMed  Google Scholar 

  19. Coe, F. L., Evan, A. & Worcester, E. in Seldin and Giebisch’s The Kidney (eds Alpern, R. J. et al.) 2311–2349 (Elsevier, 2013).

  20. Werness, P. G., Brown, C. M., Smith, L. H. & Finlayson, B. EQUIL2: a BASIC computer program for the calculation of urinary saturation. J. Urol. 134, 1242–1244 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Parks, J. H., Coward, M. & Coe, F. L. Correspondence between stone composition and urine supersaturation in nephrolithiasis. Kidney Int. 51, 894–900 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Siener, R., Glatz, S., Nicolay, C. & Hesse, A. Prospective study on the efficacy of a selective treatment and risk factors for relapse in recurrent calcium oxalate stone patients. Eur. Urol. 44, 467–474 (2003).

    Article  PubMed  Google Scholar 

  23. Borghi, L. et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N. Engl. J. Med. 346, 77–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Borghi, L. et al. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J. Urol. 155, 839–843 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Ferraro, P. M. et al. Short-term changes in urinary relative supersaturation predict recurrence of kidney stones: a tool to guide preventive measures in urolithiasis. J. Urol. 200, 1082–1087 (2018).

    Article  PubMed  Google Scholar 

  26. Prochaska, M., Taylor, E., Ferraro, P. M. & Curhan, G. Relative supersaturation of 24-hour urine and likelihood of kidney stones. J. Urol. 199, 1262–1266 (2018).

    Article  PubMed  Google Scholar 

  27. Pak, C. Y. Citrate and renal calculi. Min. Electrolyte Metab. 13, 257–266 (1987).

    CAS  Google Scholar 

  28. Hallson, P. C., Rose, G. A. & Sulaiman, S. Magnesium reduces calcium oxalate crystal formation in human whole urine. Clin. Sci. 62, 17–19 (1982).

    Article  CAS  Google Scholar 

  29. Pak, C. Y. & Arnold, L. H. Heterogeneous nucleation of calcium oxalate by seeds of monosodium urate. Proc. Soc. Exp. Biol. Med. 149, 930–932 (1975).

    Article  CAS  PubMed  Google Scholar 

  30. Coe, F. L., Lawton, R. L., Goldstein, R. B. & Tembe, V. Sodium urate accelerates precipitation of calcium oxalate in vitro. Proc. Soc. Exp. Biol. Med. 149, 926–929 (1975).

    Article  CAS  PubMed  Google Scholar 

  31. Pak, C. Y. et al. Mechanism for calcium urolithiasis among patients with hyperuricosuria: supersaturation of urine with respect to monosodium urate. J. Clin. Invest. 59, 426–431 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Coe, F. L. Hyperuricosuric calcium oxalate nephrolithiasis. Kidney Int. 13, 418–426 (1978).

    Article  CAS  PubMed  Google Scholar 

  33. Coe, F. L. Uric acid and calcium oxalate nephrolithiasis. Kidney Int. 24, 392–403 (1983).

    Article  CAS  PubMed  Google Scholar 

  34. Meyer, J. L., Bergert, J. H. & Smith, L. H. Epitaxial relationships in urolithiasis: the brushite-whewellite system. Clin. Sci. Mol. Med. 52, 143–148 (1977).

    CAS  PubMed  Google Scholar 

  35. Khan, S. R. & Canales, B. K. Unified theory on the pathogenesis of Randall’s plaques and plugs. Urolithiasis 43, 109–123 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Sethmann, I. et al. Microstructures of Randall’s plaques and their interfaces with calcium oxalate monohydrate kidney stones reflect underlying mineral precipitation mechanisms. Urolithiasis 45, 235–248 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Khan, S. R., Rodriguez, D. E., Gower, L. B. & Monga, M. Association of Randall plaque with collagen fibers and membrane vesicles. J. Urol. 187, 1094–1100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Verrier, C. et al. Topography, composition and structure of incipient randall plaque at the nanoscale level. J. Urol. 196, 1566–1574 (2016).

    Article  PubMed  Google Scholar 

  39. Bourg, S. et al. Confining calcium oxalate crystal growth in a carbonated apatite-coated microfluidic channel to better understand the role of Randall’s plaque in kidney stone formation. Lab. Chip 24, 2017–2024 (2024).

    Article  CAS  PubMed  Google Scholar 

  40. Robertson, W. G., Peacock, M. & Nordin, B. E. Inhibitors of the growth and aggregation of calcium oxalate crystals in vitro. Clin. Chim. Acta 43, 31–37 (1973).

    Article  CAS  PubMed  Google Scholar 

  41. Borofsky, M. S. et al. Integration and utilization of modern technologies in nephrolithiasis research. Nat. Rev. Urol. 13, 549–557 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Evan, A. P., Worcester, E. M., Coe, F. L., Williams, J. Jr. & Lingeman, J. E. Mechanisms of human kidney stone formation. Urolithiasis 43, 19–32 (2015).

    Article  PubMed  Google Scholar 

  43. Randall, A. The origin and growth of renal calculi. Ann. Surg. 105, 1009 (1937).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Coe, F. L., Evan, A. P., Worcester, E. M. & Lingeman, J. E. Three pathways for human kidney stone formation. Urol. Res. 38, 147–160 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Evan, A. P. et al. Renal crystal deposits and histopathology in patients with cystine stones. Kidney Int. 69, 2227–2235 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Evan, A. P. et al. Renal histopathology of stone-forming patients with distal renal tubular acidosis. Kidney Int. 71, 795–801 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Evan, A. P. et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J. Clin. Invest. 111, 607–616 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Evan, A. P. et al. Renal intratubular crystals and hyaluronan staining occur in stone formers with bypass surgery but not with idiopathic calcium oxalate stones. Anat. Rec. 291, 325–334 (2008).

    Article  Google Scholar 

  49. Evan, A. E. et al. Histopathology and surgical anatomy of patients with primary hyperparathyroidism and calcium phosphate stones. Kidney Int. 74, 223–229 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Mandel, N., Mandel, I., Fryjoff, K., Rejniak, T. & Mandel, G. Conversion of calcium oxalate to calcium phosphate with recurrent stone episodes. J. Urol. 169, 2026–2029 (2003).

    Article  PubMed  Google Scholar 

  51. Evan, A. P. et al. Mechanism by which shock wave lithotripsy can promote formation of human calcium phosphate stones. Am. J. Physiol. Ren. Physiol. 308, F938–F949 (2015).

    Article  CAS  Google Scholar 

  52. Parks, J. H., Coe, F. L., Evan, A. P. & Worcester, E. M. Urine pH in renal calcium stone formers who do and do not increase stone phosphate content with time. Nephrol. Dial. Transpl. 24, 130–136 (2009).

    Article  CAS  Google Scholar 

  53. Stoller, M. L., Low, R. K., Shami, G. S., McCormick, V. D. & Kerschmann, R. L. High resolution radiography of cadaveric kidneys: unraveling the mystery of Randall’s plaque formation. J. Urol. 156, 1263–1266 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Kim, S. C. et al. Stone formation is proportional to papillary surface coverage by Randall’s plaque. J. Urol. 173, 117–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Evan, A. P., Coe, F. L., Lingeman, J., Bledsoe, S. & Worcester, E. M. Randall’s plaque in stone formers originates in ascending thin limbs. Am. J. Physiol. Ren. Physiol. 315, F1236–F1242 (2018).

    Article  CAS  Google Scholar 

  56. Daudon, M., Dore, J. C., Jungers, P. & Lacour, B. Changes in stone composition according to age and gender of patients: a multivariate epidemiological approach. Urol. Res. 32, 241–247 (2004).

    Article  PubMed  Google Scholar 

  57. Anderegg, M. A. et al. Prevalence and characteristics of genetic disease in adult kidney stone formers. Nephrol. Dial. Transpl. 39, 1426–1441 (2024).

    Article  CAS  Google Scholar 

  58. Prot-Bertoye, C. et al. CKD and its risk factors among patients with cystinuria. Clin. J. Am. Soc. Nephrol. 10, 842–851 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Alexander, R. T., Fuster, D. G. & Dimke, H. Mechanisms underlying calcium nephrolithiasis. Annu. Rev. Physiol. 84, 559–583 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Dasgupta, D. et al. Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis. J. Am. Soc. Nephrol. 25, 2366–2375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dhayat, N. A. et al. The vitamin D metabolite diagnostic ratio associates with phenotypic traits of idiopathic hypercalciuria. Kidney Int. Rep. 9, 1072–1082 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Vezzoli, G. et al. Influence of calcium-sensing receptor gene on urinary calcium excretion in stone-forming patients. J. Am. Soc. Nephrol. 13, 2517–2523 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Worcester, E. M., Bergsland, K. J., Gillen, D. L. & Coe, F. L. Evidence for increased renal tubule and parathyroid gland sensitivity to serum calcium in human idiopathic hypercalciuria. Am. J. Physiol. Ren. Physiol. 305, F853–F860 (2013).

    Article  CAS  Google Scholar 

  64. Fuster, D. G. & Moe, O. W. Incomplete distal renal tubular acidosis and kidney stones. Adv. Chronic Kidney Dis. 25, 366–374 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Moe, O. W. & Preisig, P. A. Dual role of citrate in mammalian urine. Curr. Opin. Nephrol. Hypertens. 15, 419–424 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Baggio, B., Gambaro, G., Favaro, S. & Borsatti, A. Prevalence of hyperoxaluria in idiopathic calcium oxalate kidney stone disease. Nephron 35, 11–14 (1983).

    Article  CAS  PubMed  Google Scholar 

  67. Laminski, N. A., Meyers, A. M., Kruger, M., Sonnekus, M. I. & Margolius, L. P. Hyperoxaluria in patients with recurrent calcium oxalate calculi: dietary and other risk factors. Br. J. Urol. 68, 454–458 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Pak, C. Y. et al. Rapid communication: relative effect of urinary calcium and oxalate on saturation of calcium oxalate. Kidney Int. 66, 2032–2037 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Bazin, D. et al. Hyperoxaluria is related to whewellite and hypercalciuria to weddellite: what happens when crystalline conversion occurs? Comptes Rendus Chim. 19, 1492–1503 (2016).

    Article  CAS  Google Scholar 

  70. Bargagli, M., Tio, M. C., Waikar, S. S. & Ferraro, P. M. Dietary oxalate intake and kidney outcomes. Nutrients 12, 2673 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Israr, B., Frazier, R. A. & Gordon, M. H. Effects of phytate and minerals on the bioavailability of oxalate from food. Food Chem. 141, 1690–1693 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Holmes, R. P., Goodman, H. O. & Assimos, D. G. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 59, 270–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Baxmann, A. C., De, O. G. M. C. & Heilberg, I. P. Effect of vitamin C supplements on urinary oxalate and pH in calcium stone-forming patients. Kidney Int. 63, 1066–1071 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Ferraz, R. R., Tiselius, H. G. & Heilberg, I. P. Fat malabsorption induced by gastrointestinal lipase inhibitor leads to an increase in urinary oxalate excretion. Kidney Int. 66, 676–682 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Froeder, L., Arasaki, C. H., Malheiros, C. A., Baxmann, A. C. & Heilberg, I. P. Response to dietary oxalate after bariatric surgery. Clin. J. Am. Soc. Nephrol. 7, 2033–2040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Groothoff, J. W. et al. Clinical practice recommendations for primary hyperoxaluria: an expert consensus statement from ERKNet and OxalEurope. Nat. Rev. Nephrol. 19, 194–211 (2023).

    Article  PubMed  Google Scholar 

  77. Moe, O. W. & Xu, L. H. R. Hyperuricosuric calcium urolithiasis. J. Nephrol. 31, 189–196 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Bargagli, M. et al. Urinary lithogenic profile of patients with non-alcoholic fatty liver disease. Nephrol. Dial. Transpl. 38, 2652–2654 (2023).

    Article  CAS  Google Scholar 

  79. Sakhaee, K., Adams-Huet, B., Moe, O. W. & Pak, C. Y. Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. Kidney Int. 62, 971–979 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Kunlayawutipong, T. et al. Prevalence and risk factors for hyperuricemia and hyperuricosuria in patients with hematologic malignancies. Front. Med. 11, 1343000 (2024).

    Article  Google Scholar 

  81. Rodman, J. S. Struvite stones. Nephron 81, 50–59 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Flannigan, R., Choy, W. H., Chew, B. & Lange, D. Renal struvite stones — pathogenesis, microbiology, and management strategies. Nat. Rev. Urol. 11, 333–341 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Leaf, D. E., Bukberg, P. R. & Goldfarb, D. S. Laxative abuse, eating disorders, and kidney stones: a case report and review of the literature. Am. J. Kidney Dis. 60, 295–298 (2012).

    Article  PubMed  Google Scholar 

  84. Daudon, M., Frochot, V., Bazin, D. & Jungers, P. Drug-induced kidney stones and crystalline nephropathy: pathophysiology, prevention and treatment. Drugs 78, 163–201 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Maalouf, N. M., Langston, J. P., Van Ness, P. C., Moe, O. W. & Sakhaee, K. Nephrolithiasis in topiramate users. Urol. Res. 39, 303–307 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Colliou, E., Mari, A., Delas, A., Delarche, A. & Faguer, S. Oxalate nephropathy following vitamin C intake within intensive care unit. Clin. Nephrol. 88, 354–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Howles, S. A. & Thakker, R. V. Genetics of kidney stone disease. Nat. Rev. Urol. 17, 407–421 (2020).

    Article  PubMed  Google Scholar 

  88. Daga, A. et al. Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int. 93, 204–213 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Font-Llitjos, M. et al. New insights into cystinuria: 40 new mutations, genotype-phenotype correlation, and digenic inheritance causing partial phenotype. J. Med. Genet. 42, 58–68 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thomas, K., Wong, K., Withington, J., Bultitude, M. & Doherty, A. Cystinuria — a urologist’s perspective. Nat. Rev. Urol. 11, 270–277 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Wu, C. W. et al. Population genetics analysis of SLC3A1 and SLC7A9 revealed the etiology of cystine stone may be more than what our current genetic knowledge can explain. Urolithiasis 51, 101 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Crawhall, J. C., Scowen, E. F. & Watts, R. W. Effect of penicillamine on cystinuria. Br. Med. J. 1, 588–590 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chow, G. K. & Streem, S. B. Medical treatment of cystinuria: results of contemporary clinical practice. J. Urol. 156, 1576–1578 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Barbey, F. et al. Medical treatment of cystinuria: critical reappraisal of long-term results. J. Urol. 163, 1419–1423 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Pak, C. Y., Fuller, C., Sakhaee, K., Zerwekh, J. E. & Adams, B. V. Management of cystine nephrolithiasis with α-mercaptopropionylglycine. J. Urol. 136, 1003–1008 (1986).

    Article  CAS  PubMed  Google Scholar 

  96. Howles, S. A. et al. Genetic variants of calcium and vitamin D metabolism in kidney stone disease. Nat. Commun. 10, 5175 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Molin, A. et al. CYP24A1 mutations in a cohort of hypercalcemic patients: evidence for a recessive trait. J. Clin. Endocrinol. Metab. 100, E1343–E1352 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Ball, N. et al. 3’ Untranslated region structural elements in CYP24A1 are associated with infantile hypercalcemia type 1. J. Bone Min. Res. 38, 414–426 (2023).

    Article  CAS  Google Scholar 

  99. Davidson Peiris, E. & Wusirika, R. A case report of compound heterozygous CYP24A1 mutations leading to nephrolithiasis successfully treated with ketoconazole. Case Rep. Nephrol. Dial. 7, 167–171 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sayers, J. et al. Successful treatment of hypercalcaemia associated with a CYP24A1 mutation with fluconazole. Clin. Kidney J. 8, 453–455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schlingmann, K. P. et al. Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J. Am. Soc. Nephrol. 27, 604–614 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Gordon, R. J., Li, D., Doyle, D., Zaritsky, J. & Levine, M. A. Digenic heterozygous mutations in SLC34A3 and SLC34A1 cause dominant hypophosphatemic rickets with hypercalciuria. J. Clin. Endocrinol. Metab. 105, 2392–2400 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Tieder, M. et al. Hereditary hypophosphatemic rickets with hypercalciuria. N. Engl. J. Med. 312, 611–617 (1985).

    Article  CAS  PubMed  Google Scholar 

  104. Bergwitz, C. et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am. J. Hum. Genet. 78, 179–192 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Colazo, J. M., Reasoner, S. A., Holt, G., Faugere, M. C. M. & Dahir, K. M. Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) presenting with genu valgum deformity: treatment with phosphate supplementation and surgical correction. Case Rep. Endocrinol. 2020, 1047327 (2020).

    PubMed  PubMed Central  Google Scholar 

  106. Rungroj, N. et al. Distal renal tubular acidosis caused by tryptophan-aspartate repeat domain 72 (WDR72) mutations. Clin. Genet. 94, 409–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Enerback, S. et al. Acidosis and deafness in patients with recessive mutations in FOXI1. J. Am. Soc. Nephrol. 29, 1041–1048 (2018).

    Article  PubMed  Google Scholar 

  108. Hopp, K. et al. Phenotype-genotype correlations and estimated carrier frequencies of primary hyperoxaluria. J. Am. Soc. Nephrol. 26, 2559–2570 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Garrelfs, S. F. et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N. Engl. J. Med. 384, 1216–1226 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Baum, M. A. et al. PHYOX2: a pivotal randomized study of nedosiran in primary hyperoxaluria type 1 or 2. Kidney Int. 103, 207–217 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Goldfarb, D. S., Avery, A. R., Beara-Lasic, L., Duncan, G. E. & Goldberg, J. A twin study of genetic influences on nephrolithiasis in women and men. Kidney Int. Rep. 4, 535–540 (2019).

    Article  PubMed  Google Scholar 

  112. Hemminki, K. et al. Familial risks in urolithiasis in the population of Sweden. BJU Int. 121, 479–485 (2018).

    Article  PubMed  Google Scholar 

  113. Hao, X. et al. Integrative genome-wide analyses identify novel loci associated with kidney stones and provide insights into its genetic architecture. Nat. Commun. 14, 7498 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lovegrove, C. E. et al. Central adiposity increases risk of kidney stone disease through effects on serum calcium concentrations. J. Am. Soc. Nephrol. 34, 1991–2011 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Thorleifsson, G. et al. Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat. Genet. 41, 926–930 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Oddsson, A. et al. Common and rare variants associated with kidney stones and biochemical traits. Nat. Commun. 6, 7975 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Breiderhoff, T. et al. Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis. Proc. Natl Acad. Sci. USA 109, 14241–14246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Paranjpe, I. et al. Derivation and validation of genome-wide polygenic score for urinary tract stone diagnosis. Kidney Int. 98, 1323–1330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, W. et al. Prospective analysis of incident disease among individuals of diverse ancestries using genetic and conventional risk factors. Preprint at medRxiv https://doi.org/10.1101/2023.10.23.23297414 (2023).

  120. Pearle, M. S. et al. Medical management of kidney stones: AUA guideline. J. Urol. 192, 316–324 (2014).

    Article  PubMed  Google Scholar 

  121. Ljungberg, B. et al. EAU Guidelines, Presented at the EAU Annual Congress Milan 2021 (EAU Guidelines Office, 2021).

  122. Gambaro, G. et al. Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J. Nephrol. 29, 715–734 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Williams, J. C. Jr. et al. Urine and stone analysis for the investigation of the renal stone former: a consensus conference. Urolithiasis 49, 1–16 (2021).

    Article  PubMed  Google Scholar 

  124. Norman, R. W., Bath, S. S., Robertson, W. G. & Peacock, M. When should patients with symptomatic urinary stone disease be evaluated metabolically? J. Urol. 132, 1137–1139 (1984).

    Article  CAS  PubMed  Google Scholar 

  125. Edwards, O. M., Bayliss, R. I. & Millen, S. Urinary creatinine excretion as an index of the copleteness of 24-hour urine collections. Lancet 2, 1165–1166 (1969).

    Article  CAS  PubMed  Google Scholar 

  126. Pak, C. Y., Poindexter, J. R., Adams-Huet, B. & Pearle, M. S. Predictive value of kidney stone composition in the detection of metabolic abnormalities. Am. J. Med. 115, 26–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Daudon, M. & Jungers, P. Drug-induced renal calculi: epidemiology, prevention and management. Drugs 64, 245–275 (2004).

    Article  PubMed  Google Scholar 

  128. Ferraro, P. M., Taylor, E. N., Gambaro, G. & Curhan, G. C. Dietary and lifestyle risk factors associated with incident kidney stones in men and women. J. Urol. 198, 858–863 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Curhan, G. C., Willett, W. C., Rimm, E. B. & Stampfer, M. J. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N. Engl. J. Med. 328, 833–838 (1993).

    Article  CAS  PubMed  Google Scholar 

  130. Curhan, G. C., Willett, W. C., Speizer, F. E., Spiegelman, D. & Stampfer, M. J. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann. Intern. Med. 126, 497–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Taylor, E. N., Stampfer, M. J. & Curhan, G. C. Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. J. Am. Soc. Nephrol. 15, 3225–3232 (2004).

    Article  PubMed  Google Scholar 

  132. Parks, J. H. & Coe, F. L. Evidence for durable kidney stone prevention over several decades. BJU Int. 103, 1238–1246 (2009).

    Article  PubMed  Google Scholar 

  133. Ferraro, P. M., Taylor, E. N., Gambaro, G. & Curhan, G. C. Soda and other beverages and the risk of kidney stones. Clin. J. Am. Soc. Nephrol. 8, 1389–1395 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Phillips, M. J. & Cooke, J. N. Relation between urinary calcium and sodium in patients with idiopathic hypercalciuria. Lancet 1, 1354–1357 (1967).

    Article  CAS  PubMed  Google Scholar 

  135. Sakhaee, K., Harvey, J. A., Padalino, P. K., Whitson, P. & Pak, C. Y. The potential role of salt abuse on the risk for kidney stone formation. J. Urol. 150, 310–312 (1993).

    Article  CAS  PubMed  Google Scholar 

  136. Kleeman, C. R., Bohannan, J., Bernstein, D., Ling, S. & Maxwell, M. H. Effect of variations in sodium intake on calcium excretion in normal humans. Proc. Soc. Exp. Biol. Med. 115, 29–32 (1964).

    Article  CAS  PubMed  Google Scholar 

  137. Nouvenne, A. et al. Effects of a low-salt diet on idiopathic hypercalciuria in calcium-oxalate stone formers: a 3-mo randomized controlled trial. Am. J. Clin. Nutr. 91, 565–570 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Hess, B., Jost, C., Zipperle, L., Takkinen, R. & Jaeger, P. High-calcium intake abolishes hyperoxaluria and reduces urinary crystallization during a 20-fold normal oxalate load in humans. Nephrol. Dial. Transpl. 13, 2241–2247 (1998).

    Article  CAS  Google Scholar 

  139. Taylor, E. N. & Curhan, G. C. Oxalate intake and the risk for nephrolithiasis. J. Am. Soc. Nephrol. 18, 2198–2204 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Melton, L. J. 3rd, Crowson, C. S., Khosla, S., Wilson, D. M. & O’Fallon, W. M. Fracture risk among patients with urolithiasis: a population-based cohort study. Kidney Int. 53, 459–464 (1998).

    Article  PubMed  Google Scholar 

  141. Worcester, E. M. Stones from bowel disease. Endocrinol. Metab. Clin. North Am. 31, 979–999 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Hylander, E., Jarnum, S. & Nielsen, K. Calcium treatment of enteric hyperoxaluria after jejunoileal bypass for morbid obesity. Scand. J. Gastroenterol. 15, 349–352 (1980).

    Article  CAS  PubMed  Google Scholar 

  143. Taylor, E. N., Fung, T. T. & Curhan, G. C. DASH-style diet associates with reduced risk for kidney stones. J. Am. Soc. Nephrol. 20, 2253–2259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rodriguez, A., Curhan, G. C., Gambaro, G., Taylor, E. N. & Ferraro, P. M. Mediterranean diet adherence and risk of incident kidney stones. Am. J. Clin. Nutr. 111, 1100–1106 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ferraro, P. M., Mandel, E. I., Curhan, G. C., Gambaro, G. & Taylor, E. N. Dietary protein and potassium, diet–dependent net acid load, and risk of incident kidney stones. Clin. J. Am. Soc. Nephrol. 11, 1834–1844 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Brikowski, T. H., Lotan, Y. & Pearle, M. S. Climate-related increase in the prevalence of urolithiasis in the United States. Proc. Natl Acad. Sci. USA 105, 9841–9846 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sasai, F. et al. Climate change and nephrology. Nephrol. Dial. Transpl. 38, 41–48 (2023).

    Article  Google Scholar 

  148. Stamatelou, K. & Goldfarb, D. S. Epidemiology of kidney stones. Healthcare 11, 424 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Linder, B. J., Rangel, L. J. & Krambeck, A. E. The effect of work location on urolithiasis in health care professionals. Urolithiasis 41, 327–331 (2013).

    Article  PubMed  Google Scholar 

  150. Barcelo, P., Wuhl, O., Servitge, E., Rousaud, A. & Pak, C. Y. Randomized double-blind study of potassium citrate in idiopathic hypocitraturic calcium nephrolithiasis. J. Urol. 150, 1761–1764 (1993).

    Article  CAS  PubMed  Google Scholar 

  151. Ettinger, B. et al. Potassium–magnesium citrate is an effective prophylaxis against recurrent calcium oxalate nephrolithiasis. J. Urol. 158, 2069–2073 (1997).

    Article  CAS  PubMed  Google Scholar 

  152. Fink, H. A. et al. Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American College of Physicians Clinical Guideline. Ann. Intern. Med. 158, 535–543 (2013).

    Article  PubMed  Google Scholar 

  153. Phillips, R. et al. Citrate salts for preventing and treating calcium containing kidney stones in adults. Cochrane Database Syst. Rev. 2015, CD010057 (2015).

    PubMed  PubMed Central  Google Scholar 

  154. Forciea, M. A. & Starkey, M. Prevention of repeated episodes of kidney stones in adults: a clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 161, P14-9038 (2014).

    Google Scholar 

  155. Hofbauer, J., Hobarth, K., Szabo, N. & Marberger, M. Alkali citrate prophylaxis in idiopathic recurrent calcium oxalate urolithiasis-a prospective randomized study. Br. J. Urol. 73, 362–365 (1994).

    Article  CAS  PubMed  Google Scholar 

  156. Pak, C. Y. et al. Comparison of semi-empirical and computer derived methods for estimating urinary saturation of brushite. J. Urol. 181, 1423–1428 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Dhayat, N. A. et al. Efficacy of standard and low dose hydrochlorothiazide in the recurrence prevention of calcium nephrolithiasis (NOSTONE trial): protocol for a randomized double-blind placebo-controlled trial. BMC Nephrol. 19, 349 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dhayat, N. A. et al. Hydrochlorothiazide and prevention of kidney-stone recurrence. N. Engl. J. Med. 388, 781–791 (2023).

    Article  CAS  PubMed  Google Scholar 

  159. Bargagli, M., Anderegg, M. A. & Fuster, D. G. Effects of thiazides and new findings on kidney stones and dysglycemic side effects. Acta Physiol. 240, e14155 (2024).

    Article  CAS  Google Scholar 

  160. Christe, A. et al. Hydrochlorothiazide and bone mineral density in patients with kidney stones: a post-hoc analysis of the NOSTONE trial. Clin. J. Am. Soc. Nephrol. 20, 706–718 (2025).

    Article  PubMed  Google Scholar 

  161. Pottegard, A. et al. Hydrochlorothiazide use is strongly associated with risk of lip cancer. J. Intern. Med. 282, 322–331 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Pedersen, S. A. et al. Hydrochlorothiazide use and risk of nonmelanoma skin cancer: a nationwide case-control study from Denmark. J. Am. Acad. Dermatol. 78, 673–681 e679 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Haisma, M. S. et al. Chronic use of hydrochlorothiazide and risk of skin cancer in Caucasian adults: a PharmLines initiative inception cohort study. Acta Derm. Venereol. 103, adv3933 (2023).

    Article  CAS  PubMed  Google Scholar 

  164. Borghi, L., Meschi, T., Guerra, A. & Novarini, A. Randomized prospective study of a nonthiazide diuretic, indapamide, in preventing calcium stone recurrences. J. Cardiovasc. Pharmacol. 22, S78–S86 (1993).

    Article  PubMed  Google Scholar 

  165. Ettinger, B., Citron, J. T., Livermore, B. & Dolman, L. I. Chlorthalidone reduces calcium oxalate calculous recurrence but magnesium hydroxide does not. J. Urol. 139, 679–684 (1988).

    Article  CAS  PubMed  Google Scholar 

  166. Bargagli, M., Trelle, S., Bonny, O. & Fuster, D. G. Thiazides for kidney stone recurrence prevention. Curr. Opin. Nephrol. Hypertens. 33, 427–432 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Scoglio, M. et al. Indapamide or chlorthalidone to reduce urine supersaturation for secondary prevention of kidney stones: protocol for a randomised, double-blind, cross-over trial (INDAPACHLOR). BMJ Open 15, e101594 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Coe, F. L. Treated and untreated recurrent calcium nephrolithiasis in patients with idiopathic hypercalciuria, hyperuricosuria, or no metabolic disorder. Ann. Intern. Med. 87, 404–410 (1977).

    Article  CAS  PubMed  Google Scholar 

  169. Ettinger, B., Tang, A., Citron, J. T., Livermore, B. & Williams, T. Randomized trial of allopurinol in the prevention of calcium oxalate calculi. N. Engl. J. Med. 315, 1386–1389 (1986).

    Article  CAS  PubMed  Google Scholar 

  170. Coe, F. L. & Raisen, L. Allopurinol treatment of uric-acid disorders in calcium-stone formers. Lancet 1, 129–131 (1973).

    Article  CAS  PubMed  Google Scholar 

  171. Curhan, G. C. & Taylor, E. N. 24-h uric acid excretion and the risk of kidney stones. Kidney Int. 73, 489–496 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Pak, C. Y., Sakhaee, K. & Fuller, C. Successful management of uric acid nephrolithiasis with potassium citrate. Kidney Int. 30, 422–428 (1986).

    Article  CAS  PubMed  Google Scholar 

  173. Kursh, E. D. & Resnick, M. I. Dissolution of uric acid calculi with systemic alkalization. J. Urol. 132, 286–287 (1984).

    Article  CAS  PubMed  Google Scholar 

  174. Tsaturyan, A. et al. Oral chemolysis is an effective, non-invasive therapy for urinary stones suspected of uric acid content. Urolithiasis 48, 501–507 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Assimos, D. et al. Surgical management of stones: American urological association/endourological society guideline, part I. J. Urol. 196, 1153–1160 (2016).

    Article  PubMed  Google Scholar 

  176. Geraghty, R. M. et al. Best practice in interventional management of urolithiasis: an update from the European association of urology guidelines panel for urolithiasis 2022. Eur. Urol. Focus 9, 199–208 (2023).

    Article  PubMed  Google Scholar 

  177. Sant, G. R., Blaivas, J. G. & Meares, E. M. Jr. Hemiacidrin irrigation in the management of struvite calculi: long-term results. J. Urol. 130, 1048–1050 (1983).

    Article  CAS  PubMed  Google Scholar 

  178. Griffith, D. P. et al. Randomized, double-blind trial of Lithostat (acetohydroxamic acid) in the palliative treatment of infection-induced urinary calculi. Eur. Urol. 20, 243–247 (1991).

    Article  CAS  PubMed  Google Scholar 

  179. Jacobs, D., Heimbach, D. & Hesse, A. Chemolysis of struvite stones by acidification of artificial urine – an in vitro study. Scand. J. Urol. Nephrol. 35, 345–349 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Poletti, P. A. et al. Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am. J. Roentgenol. 188, 927–933 (2007).

    Article  PubMed  Google Scholar 

  181. Pathan, S. A., Mitra, B. & Cameron, P. A. A systematic review and meta-analysis comparing the efficacy of nonsteroidal anti-inflammatory drugs, opioids, and paracetamol in the treatment of acute renal colic. Eur. Urol. 73, 583–595 (2018).

    Article  CAS  PubMed  Google Scholar 

  182. Schmidt, M., Sorensen, H. T. & Pedersen, L. Diclofenac use and cardiovascular risks: series of nationwide cohort studies. BMJ 362, k3426 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Pickard, R. et al. Medical expulsive therapy in adults with ureteric colic: a multicentre, randomised, placebo-controlled trial. Lancet 386, 341–349 (2015).

    Article  PubMed  Google Scholar 

  184. Furyk, J. S. et al. Distal ureteric stones and tamsulosin: a double-blind, placebo-controlled, randomized, multicenter trial. Ann. Emerg. Med. 67, 86–95.e82 (2016).

    Article  PubMed  Google Scholar 

  185. Sur, R. L. et al. Silodosin to facilitate passage of ureteral stones: a multi-institutional, randomized, double-blinded, placebo-controlled trial. Eur. Urol. 67, 959–964 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Turk, C. et al. Medical expulsive therapy for ureterolithiasis: the EAU recommendations in 2016. Eur. Urol. 71, 504–507 (2017).

    Article  PubMed  Google Scholar 

  187. Ye, Z. et al. Efficacy and safety of tamsulosin in medical expulsive therapy for distal ureteral stones with renal colic: a multicenter, randomized, double-blind, placebo-controlled trial. Eur. Urol. 73, 385–391 (2018).

    Article  CAS  PubMed  Google Scholar 

  188. Hollingsworth, J. M. et al. Alpha blockers for treatment of ureteric stones: systematic review and meta-analysis. BMJ 355, i6112 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Lovegrove, C. E. et al. Natural history of small asymptomatic kidney and residual stones over a long-term follow-up: systematic review over 25 years. BJU Int. 129, 442–456 (2022).

    Article  PubMed  Google Scholar 

  190. Stritt, K. et al. Risk factors of asymptomatic kidney stone passage in adults with recurrent kidney stones. Clin. J. Am. Soc. Nephrol. 19, 1130–1137 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Inci, K. et al. Prospective long-term followup of patients with asymptomatic lower pole caliceal stones. J. Urol. 177, 2189–2192 (2007).

    Article  PubMed  Google Scholar 

  192. Ong, A. et al. Selection and outcomes for dissolution therapy in uric acid stones: a systematic review of literature. Curr. Urol. Rep. 24, 355–363 (2023).

    Article  PubMed  Google Scholar 

  193. EAU Guidelines. Edn. Presented at the EAU Annual Congress, Paris 2024 (EAU Guidelines Office, 2024).

  194. Deng, T. et al. Systematic review and cumulative analysis of the managements for proximal impacted ureteral stones. World J. Urol. 37, 1687–1701 (2019).

    Article  PubMed  Google Scholar 

  195. Geraghty, R. et al. Evidence for ureterorenoscopy and laser fragmentation (URSL) for large renal stones in the modern era. Curr. Urol. Rep. 16, 54 (2015).

    Article  PubMed  Google Scholar 

  196. Sorensen, M. D. et al. Removal of small, asymptomatic kidney stones and incidence of relapse. N. Engl. J. Med. 387, 506–513 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Smith, D. et al. PD47-02 pure RCT 2: clinical and cost-effectiveness of furs and percutaneous nephrolithotomy for lower pole stones 10-25mm. J. Urol. 211, e980 (2024).

    Article  Google Scholar 

  198. Seitz, C. et al. Incidence, prevention, and management of complications following percutaneous nephrolitholapaxy. Eur. Urol. 61, 146–158 (2012).

    Article  PubMed  Google Scholar 

  199. Evan, A. P. Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr. Nephrol. 25, 831–841 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

S.A.H. is a Wellcome Trust Clinical Career Development Fellow.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussion of the content and wrote, reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Daniel G. Fuster.

Ethics declarations

Competing interests

D.G.F. served as a consultant for Otsuka, Alnylam, Boehringer Ingelheim and Kyowa Kirin, and received unrestricted research grants from Otsuka, Boehringer Ingelheim and CSL Vifor. S.A.H. has received payment from CJ Medical and Boston Scientific for educational activities. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks John Lieske, Kristina Penniston and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov

MIMIC Calculator for predicting spontaneous stone passage: https://bursturologycollaborative.github.io/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bargagli, M., Scoglio, M., Howles, S.A. et al. Kidney stone disease: risk factors, pathophysiology and management. Nat Rev Nephrol 21, 794–808 (2025). https://doi.org/10.1038/s41581-025-00990-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-025-00990-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing