Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Natural killer cells in kidney immune surveillance, injury and fibrosis

Abstract

Natural killer (NK) cells are cytotoxic lymphocytes of the innate immune system with essential roles in immune surveillance, tissue homeostasis and inflammation. In the kidney, NK cells comprise a heterogeneous population that includes both circulating and tissue-resident subsets, each shaped by environmental cues and genetic factors through interactions with major histocompatibility complex class I molecules. The latest research data highlight multifaceted NK cell contributions to kidney physiology and pathology. In steady state, NK cells support kidney immune surveillance and crosstalk with epithelial, myeloid and lymphoid cells. In disease, NK cells can promote injury through direct cytotoxicity and pro-inflammatory cytokine release. Experimental models demonstrate pathogenic roles for NK cells in ischaemia–reperfusion injury and chronic kidney disease, with emerging evidence implicating NK cell-derived mediators in fibrogenesis. In kidney transplantation, NK cells are effectors of antibody-dependent and antibody-independent allograft injury. Educated NK cells expressing CD16a (also known as FcγRIIIa) mediate antibody-dependent cellular cytotoxicity, whereas loss of inhibitory receptor–ligand interactions (for example, due to killer immunoglobulin-like receptor–HLA mismatch) can trigger NK cell activation independently of donor-specific antibodies. Advances in high-resolution profiling have deepened mechanistic insights and uncovered novel therapeutic targets. Here, we provide a comprehensive overview of NK cell biology in the kidney, highlighting roles in health, disease and transplantation, and we consider its translational implications for diagnosis and therapy.

Key points

  • Natural killer (NK) cells are integral to kidney immune surveillance, maintaining homeostasis through cytokine production, interactions with epithelial cells and crosstalk with other immune cells, including macrophages and dendritic cells.

  • Tissue-resident NK cells adapt to the kidney microenvironment, acquiring unique phenotypes and non-cytolytic functions, such as the expression of integrins and chemokines, that distinguish them from circulating NK cell subsets.

  • In acute kidney injury, NK cells initiate inflammation and promote epithelial damage via direct cytotoxicity and recruitment of pro-inflammatory myeloid cells.

  • In chronic kidney disease, NK cell-derived IFNγ, granzymes and 37 kDa killer-specific secretory protein can contribute to fibrosis through fibroblast activation and maladaptive tissue remodelling.

  • In transplantation, NK cells mediate both antibody-dependent and antibody-independent allograft injury, shaped by NK cell education, host genetics and history of viral exposure.

  • Targeting NK cells and their effector pathways (for example, by targeting IL-15, mechanistic target of rapamycin, CD38 and NKG2D) represents a promising therapeutic strategy to improve transplantation outcomes and ameliorate other forms of kidney disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NK cell education and pathways of activation and inhibition.
Fig. 2: Development, maturation and education of human NK cells.
Fig. 3: Pathogenic roles of NK cells in antibody-dependent and antibody-independent kidney injury.
Fig. 4: NK cell-targeted immunotherapies in kidney injury and in transplantation.

Similar content being viewed by others

References

  1. Lanier, L. L. Five decades of natural killer cell discovery. J. Exp. Med. 221, e20231222 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cerwenka, A. & Lanier, L. L. Natural killer cell memory in infection, inflammation and cancer. Nat. Rev. Immunol. 16, 112–123 (2016).

    Article  PubMed  Google Scholar 

  4. Carrega, P. et al. CD56brightperforinlow noncytotoxic human NK cells are abundant in both healthy and neoplastic solid tissues and recirculate to secondary lymphoid organs via afferent lymph. J. Immunol. 192, 3805–3815 (2014).

    Article  PubMed  Google Scholar 

  5. Raulet, D. H., Marcus, A. & Coscoy, L. Dysregulated cellular functions and cell stress pathways provide critical cues for activating and targeting natural killer cells to transformed and infected cells. Immunol. Rev. 280, 93–101 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Horowitz, A. et al. Class I HLA haplotypes form two schools that educate NK cells in different ways. Sci. Immunol. 1, eaag1672 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Strauss-Albee, D. M., Horowitz, A., Parham, P. & Blish, C. A. Coordinated regulation of NK receptor expression in the maturing human immune system. J. Immunol. 193, 4871–4879 (2014).

    Article  PubMed  Google Scholar 

  8. Horowitz, A. et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci. Transl. Med. 5, 208ra145 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hegewisch-Solloa, E. et al. Mapping human natural killer cell development in pediatric tonsil by imaging mass cytometry and high-resolution microscopy. Preprint at bioRxiv https://doi.org/10.1101/2023.09.05.556371 (2023).

  10. Freud, A. G. & Caligiuri, M. A. Human natural killer cell development. Immunol. Rev. 214, 56–72 (2006).

    Article  PubMed  Google Scholar 

  11. Freud, A. G. et al. Evidence for discrete stages of human natural killer cell differentiation in vivo. J. Exp. Med. 203, 1033–1043 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bjorkstrom, N. K., Ljunggren, H. G. & Michaelsson, J. Emerging insights into natural killer cells in human peripheral tissues. Nat. Rev. Immunol. 16, 310–320 (2016).

    Article  PubMed  Google Scholar 

  13. Netskar, H. et al. Pan-cancer profiling of tumor-infiltrating natural killer cells through transcriptional reference mapping. Nat. Immunol. 25, 1445–1459 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rebuffet, L. et al. High-dimensional single-cell analysis of human natural killer cell heterogeneity. Nat. Immunol. 25, 1474–1488 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Anfossi, N. et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 25, 331–342 (2006).

    Article  PubMed  Google Scholar 

  16. Yokoyama, W. M. & Kim, S. Licensing of natural killer cells by self-major histocompatibility complex class I. Immunol. Rev. 214, 143–154 (2006).

    Article  PubMed  Google Scholar 

  17. Hoglund, P. et al. Recognition of beta 2-microglobulin-negative (beta 2m-) T-cell blasts by natural killer cells from normal but not from beta 2m- mice: nonresponsiveness controlled by beta 2m- bone marrow in chimeric mice. Proc. Natl Acad. Sci. USA 88, 10332–10336 (1991).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brodin, P., Lakshmikanth, T., Johansson, S., Karre, K. & Hoglund, P. The strength of inhibitory input during education quantitatively tunes the functional responsiveness of individual natural killer cells. Blood 113, 2434–2441 (2009).

    Article  PubMed  Google Scholar 

  19. Held, W. & Raulet, D. H. Ly49A transgenic mice provide evidence for a major histocompatibility complex-dependent education process in natural killer cell development. J. Exp. Med. 185, 2079–2088 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Parham, P. & Guethlein, L. A. Genetics of natural killer cells in human health, disease, and survival. Annu. Rev. Immunol. 36, 519–548 (2018).

    Article  PubMed  Google Scholar 

  21. Parham, P. & Moffett, A. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat. Rev. Immunol. 13, 133–144 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Parham, P. MHC class I molecules and KIRs in human history, health and survival. Nat. Rev. Immunol. 5, 201–214 (2005).

    Article  PubMed  Google Scholar 

  23. Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713 (2005).

    Article  PubMed  Google Scholar 

  24. Migdal, M., Ruan, D. F., Forrest, W. F., Horowitz, A. & Hammer, C. MiDAS-meaningful immunogenetic data at scale. PLoS Comput. Biol. 17, e1009131 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Petersdorf, E. W. et al. HLA-B leader and survivorship after HLA-mismatched unrelated donor transplantation. Blood 136, 362–369 (2020).

    PubMed  PubMed Central  Google Scholar 

  26. Cooley, S., Parham, P. & Miller, J. S. Strategies to activate NK cells to prevent relapse and induce remission following hematopoietic stem cell transplantation. Blood 131, 1053–1062 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Martin, M. P. et al. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat. Genet. 39, 733–740 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Alter, G. et al. HIV-1 adaptation to NK-cell-mediated immune pressure. Nature 476, 96–100 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Khakoo, S. I. et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305, 872–874 (2004).

    Article  PubMed  Google Scholar 

  30. Ramsuran, V. et al. Elevated HLA-A expression impairs HIV control through inhibition of NKG2A-expressing cells. Science 359, 86–90 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Smith, S. L. et al. Diversity of peripheral blood human NK cells identified by single-cell RNA sequencing. Blood Adv. 4, 1388–1406 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Moretta, L. Dissecting CD56dim human NK cells. Blood 116, 3689–3691 (2010).

    Article  PubMed  Google Scholar 

  33. Michel, T. et al. Human CD56bright NK cells: an update. J. Immunol. 196, 2923–2931 (2016).

    Article  PubMed  Google Scholar 

  34. Poli, A. et al. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 126, 458–465 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nielsen, C. M., White, M. J., Goodier, M. R. & Riley, E. M. Functional significance of CD57 expression on human NK cells and relevance to disease. Front. Immunol. 4, 422 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kared, H., Martelli, S., Ng, T. P., Pender, S. L. & Larbi, A. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol. Immunother. 65, 441–452 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Crinier, A., Narni-Mancinelli, E., Ugolini, S. & Vivier, E. SnapShot: natural killer cells. Cell 180, 1280–1280.e1 (2020).

    Article  PubMed  Google Scholar 

  38. Carlyle, J. R. et al. Molecular and genetic basis for strain-dependent NK1.1 alloreactivity of mouse NK cells. J. Immunol. 176, 7511–7524 (2006).

    Article  PubMed  Google Scholar 

  39. Melsen, J. E., Lugthart, G., Lankester, A. C. & Schilham, M. W. Human circulating and tissue-resident CD56bright natural killer cell populations. Front. Immunol. 7, 262 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sun, K., Li, Y. Y. & Jin, J. A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair. Signal Transduct. Target. Ther. 6, 79 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fasbender, F., Widera, A., Hengstler, J. G. & Watzl, C. Natural killer cells and liver fibrosis. Front. Immunol. 7, 19 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zaiatz-Bittencourt, V., Finlay, D. K. & Gardiner, C. M. Canonical TGF-β signaling pathway represses human NK cell metabolism. J. Immunol. 200, 3934–3941 (2018).

    Article  PubMed  Google Scholar 

  44. Assmann, N. et al. Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat. Immunol. 18, 1197–1206 (2017).

    Article  PubMed  Google Scholar 

  45. Loftus, R. M. et al. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nat. Commun. 9, 2341 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lozada, J. R., Zhang, B., Miller, J. S. & Cichocki, F. NK cells from human cytomegalovirus-seropositive individuals have a distinct metabolic profile that correlates with elevated mTOR signaling. J. Immunol. 211, 539–550 (2023).

    Article  PubMed  Google Scholar 

  47. Tang, F. et al. A pan-cancer single-cell panorama of human natural killer cells. Cell 186, 4235–4251.e20 (2023).

    Article  PubMed  Google Scholar 

  48. Sohn, H. & Cooper, M. A. Metabolic regulation of NK cell function: implications for immunotherapy. Immunometabolism 5, e00020 (2023).

    Article  PubMed  Google Scholar 

  49. Moretta, A. Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat. Rev. Immunol. 2, 957–964 (2002).

    Article  PubMed  Google Scholar 

  50. Jabri, B. & Abadie, V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat. Rev. Immunol. 15, 771–783 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Newman, K. C. & Riley, E. M. Whatever turns you on: accessory-cell-dependent activation of NK cells by pathogens. Nat. Rev. Immunol. 7, 279–291 (2007).

    Article  PubMed  Google Scholar 

  52. Cooper, M. A. et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood 97, 3146–3151 (2001).

    Article  PubMed  Google Scholar 

  53. Cooper, M. A., Fehniger, T. A. & Caligiuri, M. A. The biology of human natural killer-cell subsets. Trends Immunol. 22, 633–640 (2001).

    Article  PubMed  Google Scholar 

  54. Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Waldmann, T. A. & Tagaya, Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu. Rev. Immunol. 17, 19–49 (1999).

    Article  PubMed  Google Scholar 

  56. Huntington, N. D., Vosshenrich, C. A. & Di Santo, J. P. Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat. Rev. Immunol. 7, 703–714 (2007).

    Article  PubMed  Google Scholar 

  57. Ma, S., Caligiuri, M. A. & Yu, J. Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol. 43, 833–847 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ataya, M. et al. Long-term evolution of the adaptive NKG2C+ NK cell response to cytomegalovirus infection in kidney transplantation: an insight on the diversity of host–pathogen interaction. J. Immunol. 207, 1882–1890 (2021).

    Article  PubMed  Google Scholar 

  59. Lopez-Botet, M. et al. Development of the adaptive NK cell response to human cytomegalovirus in the context of aging. Mech. Ageing Dev. 158, 23–26 (2016).

    Article  PubMed  Google Scholar 

  60. Guma, M. et al. Expansion of CD94/NKG2C+ NK cells in response to human cytomegalovirus-infected fibroblasts. Blood 107, 3624–3631 (2006).

    Article  PubMed  Google Scholar 

  61. Guma, M., Angulo, A. & Lopez-Botet, M. NK cell receptors involved in the response to human cytomegalovirus infection. Curr. Top. Microbiol. Immunol. 298, 207–223 (2006).

    PubMed  Google Scholar 

  62. Beziat, V. et al. NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood 121, 2678–2688 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Djaoud, Z. et al. Cytomegalovirus-infected primary endothelial cells trigger NKG2C+ natural killer cells. J. Innate Immun. 8, 374–385 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vales-Gomez, M., Reyburn, H. T., Erskine, R. A., Lopez-Botet, M. & Strominger, J. L. Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E. EMBO J. 18, 4250–4260 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hammer, Q., Ruckert, T. & Romagnani, C. Natural killer cell specificity for viral infections. Nat. Immunol. 19, 800–808 (2018).

    Article  PubMed  Google Scholar 

  66. Hammer, Q. et al. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat. Immunol. 19, 453–463 (2018).

    Article  PubMed  Google Scholar 

  67. Schlums, H. et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 42, 443–456 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Beziat, V. et al. CMV drives clonal expansion of NKG2C+ NK cells expressing self-specific KIRs in chronic hepatitis patients. Eur. J. Immunol. 42, 447–457 (2012).

    Article  PubMed  Google Scholar 

  69. Guma, M. et al. Human cytomegalovirus infection is associated with increased proportions of NK cells that express the CD94/NKG2C receptor in aviremic HIV-1-positive patients. J. Infect. Dis. 194, 38–41 (2006).

    Article  PubMed  Google Scholar 

  70. Lee, J. et al. Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity 42, 431–442 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    Article  PubMed  Google Scholar 

  72. Scoville, S. D., Freud, A. G. & Caligiuri, M. A. Cellular pathways in the development of human and murine innate lymphoid cells. Curr. Opin. Immunol. 56, 100–106 (2019).

    Article  PubMed  Google Scholar 

  73. Freud, A. G., Mundy-Bosse, B. L., Yu, J. & Caligiuri, M. A. The broad spectrum of human natural killer cell diversity. Immunity 47, 820–833 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bal, S. M., Golebski, K. & Spits, H. Plasticity of innate lymphoid cell subsets. Nat. Rev. Immunol. 20, 552–565 (2020).

    Article  PubMed  Google Scholar 

  75. Zhou, J., Tian, Z. & Peng, H. Tissue-resident NK cells and other innate lymphoid cells. Adv. Immunol. 145, 37–53 (2020).

    Article  PubMed  Google Scholar 

  76. Turner, J. E., Rickassel, C., Healy, H. & Kassianos, A. J. Natural killer cells in kidney health and disease. Front. Immunol. 10, 587 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Turner, J. E., Becker, M., Mittrucker, H. W. & Panzer, U. Tissue-resident lymphocytes in the kidney. J. Am. Soc. Nephrol. 29, 389–399 (2018).

    Article  PubMed  Google Scholar 

  78. Victorino, F. et al. Tissue-resident NK cells mediate ischemic kidney injury and are not depleted by anti-asialo-GM1 antibody. J. Immunol. 195, 4973–4985 (2015).

    Article  PubMed  Google Scholar 

  79. Parkes, M. D., Halloran, P. F. & Hidalgo, L. G. Evidence for CD16a-mediated NK cell stimulation in antibody-mediated kidney transplant rejection. Transplantation 101, e102–e111 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Apps, R. et al. HIV-1 Vpu mediates HLA-C downregulation. Cell Host Microbe 19, 686–695 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ende, Z. et al. HLA class I downregulation by HIV-1 variants from subtype C transmission pairs. J. Virol. 92, e01633-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lin, A., Xu, H. & Yan, W. Modulation of HLA expression in human cytomegalovirus immune evasion. Cell Mol. Immunol. 4, 91–98 (2007).

    PubMed  Google Scholar 

  83. Aptsiauri, N., Ruiz-Cabello, F. & Garrido, F. The transition from HLA-I positive to HLA-I negative primary tumors: the road to escape from T-cell responses. Curr. Opin. Immunol. 51, 123–132 (2018).

    Article  PubMed  Google Scholar 

  84. Fangazio, M. et al. Genetic mechanisms of HLA-I loss and immune escape in diffuse large B cell lymphoma. Proc. Natl Acad. Sci. USA 118, e2104504118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Puttick, C. et al. MHC Hammer reveals genetic and non-genetic HLA disruption in cancer evolution. Nat. Genet. 56, 2121–2131 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  86. McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271.e11 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Law, B. M. P. et al. Interferon-γ production by tubulointerstitial human CD56bright natural killer cells contributes to renal fibrosis and chronic kidney disease progression. Kidney Int. 92, 79–88 (2017).

    Article  PubMed  Google Scholar 

  88. Song, H. et al. Transforming growth factor-β1 regulates human renal proximal tubular epithelial cell susceptibility to natural killer cells via modulation of the NKG2D ligands. Int. J. Mol. Med. 36, 1180–1188 (2015).

    Article  PubMed  Google Scholar 

  89. Shinozaki, M. et al. IL-15, a survival factor for kidney epithelial cells, counteracts apoptosis and inflammation during nephritis. J. Clin. Invest. 109, 951–960 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Maddineni, S. et al. An intraepithelial ILC1-like natural killer cell subset produces IL-13. Front. Immunol. 16, 1521086 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Caligiuri, M. A. Human natural killer cells. Blood 112, 461–469 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hadad, U., Martinez, O. & Krams, S. M. NK cells after transplantation: friend or foe. Immunol. Res. 58, 259–267 (2014).

    Article  PubMed  Google Scholar 

  93. Sagoo, P. et al. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J. Clin. Invest. 120, 1848–1861 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ferlazzo, G. & Moretta, L. Dendritic cell editing by natural killer cells. Crit. Rev. Oncog. 19, 67–75 (2014).

    Article  PubMed  Google Scholar 

  95. Ferlazzo, G. et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J. Exp. Med. 195, 343–351 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lv, D. et al. Advances in understanding of dendritic cell in the pathogenesis of acute kidney injury. Front. Immunol. 15, 1294807 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cantoni, C. et al. Recent advances in the role of natural killer cells in acute kidney injury. Front. Immunol. 11, 1484 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Cao, Q., Harris, D. C. & Wang, Y. Macrophages in kidney injury, inflammation, and fibrosis. Physiology 30, 183–194 (2015).

    Article  PubMed  Google Scholar 

  99. Zhang, Z. X. et al. NK cells induce apoptosis in tubular epithelial cells and contribute to renal ischemia-reperfusion injury. J. Immunol. 181, 7489–7498 (2008).

    Article  PubMed  Google Scholar 

  100. Sadler, R. et al. The differential effect of Interferon-gamma on acute kidney injury and parasitemia in experimental malaria. Sci. Rep. 15, 6402 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Cyster, J. G. & Schwab, S. R. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30, 69–94 (2012).

    Article  PubMed  Google Scholar 

  102. Shannon, M. J. & Mace, E. M. Natural killer cell integrins and their functions in tissue residency. Front. Immunol. 12, 647358 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kim, H. J. et al. TLR2 signaling in tubular epithelial cells regulates NK cell recruitment in kidney ischemia-reperfusion injury. J. Immunol. 191, 2657–2664 (2013).

    Article  PubMed  Google Scholar 

  104. Kim, H. J. et al. Reverse signaling through the costimulatory ligand CD137L in epithelial cells is essential for natural killer cell-mediated acute tissue inflammation. Proc. Natl Acad. Sci. USA 109, E13–E22 (2012).

    PubMed  Google Scholar 

  105. Zhang, Z. X. et al. Osteopontin expressed in tubular epithelial cells regulates NK cell-mediated kidney ischemia reperfusion injury. J. Immunol. 185, 967–973 (2010).

    Article  PubMed  Google Scholar 

  106. Zou, X. et al. NK cell regulatory property is involved in the protective role of MSC-derived extracellular vesicles in renal ischemic reperfusion injury. Hum. Gene Ther. 27, 926–935 (2016).

    Article  PubMed  Google Scholar 

  107. Wu, I.-W. et al. Deep immune profiling of patients with renal impairment unveils distinct immunotypes associated with disease severity. Clin. Kidney J. 16, 78–89 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Burfeind, K. G., Funahashi, Y., Munhall, A. C., Eiwaz, M. & Hutchens, M. P. Natural killer lymphocytes mediate renal fibrosis due to acute cardiorenal syndrome. Kidney360 5, 8–21 (2024).

    Article  PubMed  Google Scholar 

  109. Furini, G. et al. Proteomic profiling reveals the transglutaminase-2 externalization pathway in kidneys after unilateral ureteric obstruction. J. Am. Soc. Nephrol. 29, 880–905 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Scarpellini, A. et al. Syndecan-4 knockout leads to reduced extracellular transglutaminase-2 and protects against tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 25, 1013–1027 (2014).

    Article  PubMed  Google Scholar 

  111. Yadav, B., Prasad, N., Agrawal, V., Agarwal, V. & Jain, M. Lower circulating cytotoxic T-cell frequency and higher intragraft granzyme-B expression are associated with inflammatory interstitial fibrosis and tubular atrophy in renal allograft recipients. Medicina 59, 1175 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Rowshani, A. T. et al. Hyperexpression of the granzyme B inhibitor PI-9 in human renal allografts: a potential mechanism for stable renal function in patients with subclinical rejection. Kidney Int. 66, 1417–1422 (2004).

    Article  PubMed  Google Scholar 

  113. Choy, J. C. Granzymes and perforin in solid organ transplant rejection. Cell Death Differ. 17, 567–576 (2010).

    Article  PubMed  Google Scholar 

  114. Kuepper, M. et al. Increase in killer-specific secretory protein of 37 kDa in bronchoalveolar lavage fluid of allergen-challenged patients with atopic asthma. Clin. Exp. Allergy 35, 643–649 (2005).

    Article  PubMed  Google Scholar 

  115. Ogawa, K. et al. A novel serum protein that is selectively produced by cytotoxic lymphocytes. J. Immunol. 166, 6404–6412 (2001).

    Article  PubMed  Google Scholar 

  116. Maucourant, C. et al. Natural killer cell immunotypes related to COVID-19 disease severity. Sci. Immunol. 5, eabd6832 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Halloran, P. F. et al. Molecular diagnosis of ABMR with or without donor-specific antibody in kidney transplant biopsies: differences in timing and intensity but similar mechanisms and outcomes. Am. J. Transpl. 22, 1976–1991 (2022).

    Article  Google Scholar 

  118. Halloran, P. F. et al. Review: the transcripts associated with organ allograft rejection. Am. J. Transpl. 18, 785–795 (2018).

    Article  Google Scholar 

  119. Hidalgo, L. G. et al. NK cell transcripts and NK cells in kidney biopsies from patients with donor-specific antibodies: evidence for NK cell involvement in antibody-mediated rejection. Am. J. Transpl. 10, 1812–1822 (2010).

    Article  Google Scholar 

  120. Taetzsch, T., Brayman, V. L. & Valdez, G. FGF binding proteins (FGFBPs): modulators of FGF signaling in the developing, adult, and stressed nervous system. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 2983–2991 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Xie, Y. et al. FGF/FGFR signaling in health and disease. Signal Transduct. Target. Ther. 5, 181 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hanneken, A., Maher, P. A. & Baird, A. High affinity immunoreactive FGF receptors in the extracellular matrix of vascular endothelial cells — implications for the modulation of FGF-2. J. Cell Biol. 128, 1221–1228 (1995).

    Article  PubMed  Google Scholar 

  123. Stauber, D. J., DiGabriele, A. D. & Hendrickson, W. A. Structural interactions of fibroblast growth factor receptor with its ligands. Proc. Natl Acad. Sci. USA 97, 49–54 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hu, X. et al. Fibroblast growth factor 2 Is produced by renal tubular cells to act as a paracrine factor in maladaptive kidney repair after cisplatin nephrotoxicity. Lab. Invest. 103, 100009 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Livingston, M. J. et al. Autophagy activates EGR1 via MAPK/ERK to induce FGF2 in renal tubular cells for fibroblast activation and fibrosis during maladaptive kidney repair. Autophagy 20, 1032–1053 (2024).

    Article  PubMed  Google Scholar 

  126. Aggarwal, S. et al. SOX9 switch links regeneration to fibrosis at the single-cell level in mammalian kidneys. Science 383, eadd6371 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Robertson, M. J. Role of chemokines in the biology of natural killer cells. J. Leukoc. Biol. 71, 173–183 (2002).

    Article  PubMed  Google Scholar 

  128. Anders, H. J., Kitching, A. R., Leung, N. & Romagnani, P. Glomerulonephritis: immunopathogenesis and immunotherapy. Nat. Rev. Immunol. 23, 453–471 (2023).

    Article  PubMed  Google Scholar 

  129. Sylvestre, D. L. & Ravetch, J. V. Fc receptors initiate the arthus reaction: redefining the inflammatory cascade. Science 265, 1095–1098 (1994).

    Article  PubMed  Google Scholar 

  130. Spada, R. et al. NKG2D ligand overexpression in lupus nephritis correlates with increased NK cell activity and differentiation in kidneys but not in the periphery. J. Leukoc. Biol. 97, 583–598 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Naesens, M. et al. The Banff 2022 Kidney Meeting report: reappraisal of microvascular inflammation and the role of biopsy-based transcript diagnostics. Am. J. Transpl. 24, 338–349 (2024).

    Article  Google Scholar 

  132. Reindl-Schwaighofer, R. et al. Contribution of non-HLA incompatibility between donor and recipient to kidney allograft survival: genome-wide analysis in a prospective cohort. Lancet 393, 910–917 (2019).

    Article  PubMed  Google Scholar 

  133. Sablik, M. et al. Microvascular inflammation of kidney allografts and clinical outcomes. N. Engl. J. Med. 392, 763–776 (2025).

    Article  PubMed  Google Scholar 

  134. Hirohashi, T. et al. A novel pathway of chronic allograft rejection mediated by NK cells and alloantibody. Am. J. Transpl. 12, 313–321 (2012).

    Article  Google Scholar 

  135. Kohei, N. et al. Natural killer cells play a critical role in mediating inflammation and graft failure during antibody-mediated rejection of kidney allografts. Kidney Int. 89, 1293–1306 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Yagisawa, T. et al. In the absence of natural killer cell activation donor-specific antibody mediates chronic, but not acute, kidney allograft rejection. Kidney Int. 95, 350–362 (2019).

    Article  PubMed  Google Scholar 

  137. Miyairi, S. et al. Recipient myeloperoxidase-producing cells regulate antibody-mediated acute versus chronic kidney allograft rejection. JCI Insight 6, e148747 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Yazdani, S. et al. Natural killer cell infiltration is discriminative for antibody-mediated rejection and predicts outcome after kidney transplantation. Kidney Int. 95, 188–198 (2019).

    Article  PubMed  Google Scholar 

  139. Colvin, R. B. Antibody-mediated renal allograft rejection: diagnosis and pathogenesis. J. Am. Soc. Nephrol. 18, 1046–1056 (2007).

    Article  PubMed  Google Scholar 

  140. Mauiyyedi, S. et al. Chronic humoral rejection: identification of antibody-mediated chronic renal allograft rejection by C4d deposits in peritubular capillaries. J. Am. Soc. Nephrol. 12, 574–582 (2001).

    Article  PubMed  Google Scholar 

  141. Lamarthee, B. et al. Transcriptional and spatial profiling of the kidney allograft unravels a central role for FcyRIII+ innate immune cells in rejection. Nat. Commun. 14, 4359 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Bailly, E. et al. Interleukin-21 promotes Type-1 activation and cytotoxicity of CD56dimCD16bright natural killer cells during kidney allograft antibody-mediated rejection showing a new link between adaptive and innate humoral allo-immunity. Kidney Int. 104, 707–723 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hill, P. A., Main, I. W. & Atkins, R. C. ICAM-1 and VCAM-1 in human renal allograft rejection. Kidney Int. 47, 1383–1391 (1995).

    Article  PubMed  Google Scholar 

  144. Alari-Pahissa, E. et al. Alloreactive adaptive natural killer cells in renal transplantation: potential contribution to allograft microvascular inflammation. Am. J. Transpl. 25, 1657–1669 (2025).

    Article  Google Scholar 

  145. Diebold, M. et al. Natural killer cell presence in antibody-mediated rejection. Transpl. Int. 37, 13209 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Liu, L. L. et al. Critical Role of CD2 co-stimulation in adaptive natural killer cell responses revealed in NKG2C-deficient humans. Cell Rep. 15, 1088–1099 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Diebold, M. et al. Natural killer cell functional genetics and donor-specific antibody-triggered microvascular inflammation. Am. J. Transpl. 24, 743–754 (2024).

    Article  Google Scholar 

  148. Redondo-Pachon, D. et al. Adaptive NKG2C+ NK cell response and the risk of cytomegalovirus infection in kidney transplant recipients. J. Immunol. 198, 94–101 (2017).

    Article  PubMed  Google Scholar 

  149. Llinas-Mallol, L. et al. Long-term redistribution of peripheral lymphocyte subpopulations after switching from calcineurin to mTOR inhibitors in kidney transplant recipients. J. Clin. Med. 9, 1088 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Hoffmann, U. et al. NK Cells of kidney transplant recipients display an activated phenotype that is influenced by immunosuppression and pathological staging. PLoS ONE 10, e0132484 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Neudoerfl, C. et al. The peripheral NK cell repertoire after kidney transplantation is modulated by different immunosuppressive drugs. Front. Immunol. 4, 46 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Bailly, E. et al. FCGR2C Q13 and FCGR3A V176 alleles jointly associate with worse natural killer cell-mediated antibody-dependent cellular cytotoxicity and microvascular inflammation in kidney allograft antibody-mediated rejection. Am. J. Transpl. 25, 302–315 (2025).

    Article  Google Scholar 

  153. Diebold, M. et al. Effect of felzartamab on the molecular phenotype of antibody-mediated rejection in kidney transplant biopsies. Nat. Med. 31, 1668–1676 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Marks, W. H. et al. Safety and efficacy of eculizumab in the prevention of antibody-mediated rejection in living-donor kidney transplant recipients requiring desensitization therapy: a randomized trial. Am. J. Transpl. 19, 2876–2888 (2019).

    Article  Google Scholar 

  155. Bhalla, A., Alachkar, N. & Alasfar, S. Complement-based therapy in the management of antibody-mediated rejection. Adv. Chronic Kidney Dis. 27, 138–148 (2020).

    Article  PubMed  Google Scholar 

  156. Tiller, G. et al. Weak expression of terminal complement in active antibody-mediated rejection of the kidney. Front. Immunol. 13, 845301 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Schmauch, E. et al. Integrative multi-omics profiling in human decedents receiving pig heart xenografts. Nat. Med. 30, 1448–1460 (2024).

    Article  PubMed  Google Scholar 

  158. Loupy, A. et al. Immune response after pig-to-human kidney xenotransplantation: a multimodal phenotyping study. Lancet 402, 1158–1169 (2023).

    Article  PubMed  Google Scholar 

  159. Uehara, S., Chase, C. M., Colvin, R. B., Russell, P. S. & Madsen, J. C. Further evidence that NK cells may contribute to the development of cardiac allograft vasculopathy. Transpl. Proc. 37, 70–71 (2005).

    Article  Google Scholar 

  160. Uehara, S. et al. NK cells can trigger allograft vasculopathy: the role of hybrid resistance in solid organ allografts. J. Immunol. 175, 3424–3430 (2005).

    Article  PubMed  Google Scholar 

  161. Koenig, A. et al. Missing self triggers NK cell-mediated chronic vascular rejection of solid organ transplants. Nat. Commun. 10, 5350 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Callemeyn, J. et al. Missing self-induced microvascular rejection of kidney allografts: a population-based study. J. Am. Soc. Nephrol. 32, 2070–2082 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Callemeyn, J. et al. Transcriptional changes in kidney allografts with histology of antibody-mediated rejection without anti-HLA donor-specific antibodies. J. Am. Soc. Nephrol. 31, 2168–2183 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Diebold, M. et al. Functional natural killer-cell genetics and microvascular inflammation after kidney transplantation: an observational cohort study. Transplantation 109, 860–870 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Koenig, A. et al. Missing self-induced activation of NK cells combines with non-complement-fixing donor-specific antibodies to accelerate kidney transplant loss in chronic antibody-mediated rejection. J. Am. Soc. Nephrol. 32, 479–494 (2021).

    Article  PubMed  Google Scholar 

  166. Bohmig, G. A., Loupy, A., Sablik, M. & Naesens, M. Microvascular inflammation in kidney allografts: new directions for patient management. Am. J. Transpl. 25, 1410–1416 (2025).

    Article  Google Scholar 

  167. Ruan, D. F. et al. High-dimensional analysis of NK cells in kidney transplantation uncovers subsets associated with antibody-independent graft dysfunction. JCI Insight 9, e185687 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Lin, C. M., Gill, R. G. & Mehrad, B. The natural killer cell activating receptor, NKG2D, is critical to antibody-dependent chronic rejection in heart transplantation. Am. J. Transpl. 21, 3550–3560 (2021).

    Article  Google Scholar 

  169. Maier, S. et al. Inhibition of natural killer cells results in acceptance of cardiac allografts in CD28−/− mice. Nat. Med. 7, 557–562 (2001).

    Article  PubMed  Google Scholar 

  170. Diebold, M. et al. Chronic rejection after kidney transplantation. Transplantation 109, 610–621 (2025).

    Article  PubMed  Google Scholar 

  171. Mayer, K. A. et al. A randomized phase 2 trial of felzartamab in antibody-mediated rejection. N. Engl. J. Med. 391, 122–132 (2024).

    Article  PubMed  Google Scholar 

  172. Haustein, S. et al. Interleukin-15 receptor blockade in non-human primate kidney transplantation. Transplantation 89, 937–944 (2010).

    Article  PubMed  Google Scholar 

  173. Shin, B. H. et al. Regulation of anti-HLA antibody-dependent natural killer cell activation by immunosuppressive agents. Transplantation 97, 294–300 (2014).

    Article  PubMed  Google Scholar 

  174. Ashraf, M. I. et al. Natural killer cells promote kidney graft rejection independently of cyclosporine A therapy. Front. Immunol. 10, 2279 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Raulet, D. H. & Vance, R. E. Self-tolerance of natural killer cells. Nat. Rev. Immunol. 6, 520–531 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Fairchild for critical review of the manuscript before submission. Additionally, the authors thank A. Freud for personal discussion on NK cell development and differentiation pathways. The work was partly supported by NIH grant U01 AI 70424 to P.H.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, made substantial contributions to discussions of the content and wrote, reviewed or edited the manuscript before submission.

Corresponding authors

Correspondence to Amir Horowitz or Peter Heeger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Georg Böhmig, Luis Hidalgo and Maarten Naesens for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horowitz, A., Heeger, P. Natural killer cells in kidney immune surveillance, injury and fibrosis. Nat Rev Nephrol (2025). https://doi.org/10.1038/s41581-025-01029-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41581-025-01029-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing