Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rhythms of life: circadian disruption and brain disorders across the lifespan

Abstract

Many processes in the human body — including brain function — are regulated over the 24-hour cycle, and there are strong associations between disrupted circadian rhythms (for example, sleep–wake cycles) and disorders of the CNS. Brain disorders such as autism, depression and Parkinson disease typically develop at certain stages of life, and circadian rhythms are important during each stage of life for the regulation of processes that may influence the development of these disorders. Here, we describe circadian disruptions observed in various brain disorders throughout the human lifespan and highlight emerging evidence suggesting these disruptions affect the brain. Currently, much of the evidence linking brain disorders and circadian dysfunction is correlational, and so whether and what kind of causal relationships might exist are unclear. We therefore identify remaining questions that may direct future research towards a better understanding of the links between circadian disruption and CNS disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The circadian timing system.
Fig. 2: Rhythms across the lifespan.
Fig. 3: Maternal and fetal rhythms.
Fig. 4: Effects of social constraints, sleep and circadian disruptions on adolescent brain function.
Fig. 5: Circadian regulation of dopamine.

Similar content being viewed by others

References

  1. Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).

    CAS  PubMed  Google Scholar 

  2. Colwell, C. S. Linking neural activity and molecular oscillations in the SCN. Nat. Rev. Neurosci. 12, 553–569 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Selemon, L. D. A role for synaptic plasticity in the adolescent development of executive function. Transl Psychiatry 3, e238 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Mighdoll, M. I., Tao, R., Kleinman, J. E. & Hyde, T. M. Myelin, myelin-related disorders, and psychosis. Schizophr. Res. 161, 85–93 (2015).

    PubMed  Google Scholar 

  5. Hsu, P. K., Ptacek, L. J. & Fu, Y. H. Genetics of human sleep behavioral phenotypes. Methods Enzymol. 552, 309–324 (2015).

    PubMed  CAS  Google Scholar 

  6. Roenneberg, T. & Merrow, M. Entrainment of the human circadian clock. Cold Spring Harb. Symp. Quant. Biol. 72, 293–299 (2007).

    PubMed  CAS  Google Scholar 

  7. Foster, R. G. et al. Sleep and circadian rhythm disruption in social jetlag and mental illness. Prog. Mol. Biol. Transl Sci. 119, 325–346 (2013).

    PubMed  Google Scholar 

  8. Werner, H., Lebourgeois, M. K., Geiger, A. & Jenni, O. G. Assessment of chronotype in four- to eleven-year-old children: reliability and validity of the Children’s Chronotype Questionnaire (CCTQ). Chronobiol. Int. 26, 992–1014 (2009).

    PubMed  PubMed Central  Google Scholar 

  9. Simpkin, C. T. et al. Chronotype is associated with the timing of the circadian clock and sleep in toddlers. J. Sleep Res. 23, 397–405 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Crowley, S. J. et al. A longitudinal assessment of sleep timing, circadian phase, and phase angle of entrainment across human adolescence. PLOS ONE 9, e112199 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. Chen, C. Y. et al. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 113, 206–211 (2015). This is the largest-scale study of circadian rhythms of gene expression in human post-mortem brain tissue, revealing age-related decline in the expression of core circadian genes and the emergence of other rhythmic pathways in older subjects.

    PubMed  PubMed Central  Google Scholar 

  12. Cornelissen, G. & Otsuka, K. Chronobiology of aging: a mini-review. Gerontology 63, 118–128 (2017).

    PubMed  CAS  Google Scholar 

  13. Drake, C. L., Roehrs, T., Richardson, G., Walsh, J. K. & Roth, T. Shift work sleep disorder: prevalence and consequences beyond that of symptomatic day workers. Sleep 27, 1453–1462 (2004).

    PubMed  Google Scholar 

  14. Ramin, C. et al. Night shift work at specific age ranges and chronic disease risk factors. Occup. Environ. Med. 72, 100–107 (2015).

    PubMed  Google Scholar 

  15. Bedrosian, T. A. & Nelson, R. J. Timing of light exposure affects mood and brain circuits. Transl Psychiatry 7, e1017 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Bedrosian, T. A. & Nelson, R. J. Influence of the modern light environment on mood. Mol. Psychiatry 18, 751–757 (2013).

    PubMed  CAS  Google Scholar 

  17. Nakata, A. et al. Association of sickness absence with poor sleep and depressive symptoms in shift workers. Chronobiol. Int. 21, 899–912 (2004).

    PubMed  Google Scholar 

  18. Roth, T. Shift work disorder: overview and diagnosis. J. Clin. Psychiatry 73, e09 (2012).

    PubMed  Google Scholar 

  19. Wright, K. P. Jr, Bogan, R. K. & Wyatt, J. K. Shift work and the assessment and management of shift work disorder (SWD). Sleep Med. Rev. 17, 41–54 (2012).

    PubMed  Google Scholar 

  20. Benca, R. et al. Biological rhythms, higher brain function, and behavior: gaps, opportunities, and challenges. Brain Res. Rev. 62, 57–70 (2009).

    PubMed  PubMed Central  Google Scholar 

  21. Poggiogalle, E., Jamshed, H. & Peterson, C. M. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism 84, 11–27 (2018).

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Chaudhari, A., Gupta, R., Makwana, K. & Kondratov, R. Circadian clocks, diets and aging. Nutr. Healthy Aging 4, 101–112 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Rivkees, S. A. Developing circadian rhythmicity in infants. Pediatr. Endocrinol. Rev. 1, 38–45 (2003).

    PubMed  Google Scholar 

  24. Swaab, D. F. Development of the human hypothalamus. Neurochem. Res. 20, 509–519 (1995).

    PubMed  CAS  Google Scholar 

  25. VanDunk, C., Hunter, L. A. & Gray, P. A. Development, maturation, and necessity of transcription factors in the mouse suprachiasmatic nucleus. J. Neurosci. 31, 6457–6467 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Reppert, S. M. Pre-natal development of a hypothalamic biological clock. Progress Brain Res. 93, 119–131; discussion 132 (1992).

    CAS  Google Scholar 

  27. Reppert, S. M. Interaction between the circadian clocks of mother and fetus. Ciba Found. Symp. 183, 198–207; discussion 207–111 (1995).

    PubMed  CAS  Google Scholar 

  28. Reppert, S. M., Weaver, D. R. & Rivkees, S. A. Maternal communication of circadian phase to the developing mammal. Psychoneuroendocrinology 13, 63–78 (1988).

    PubMed  CAS  Google Scholar 

  29. Shearman, L. P., Zeitzer, J. & Weaver, D. R. Widespread expression of functional D1-dopamine receptors in fetal rat brain. Brain Res. Dev. Brain Res. 102, 105–115 (1997).

    PubMed  CAS  Google Scholar 

  30. Reiter, R. J., Tan, D. X., Korkmaz, A. & Rosales-Corral, S. A. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum. Reprod. Update 20, 293–307 (2014).

    PubMed  CAS  Google Scholar 

  31. Okatani, Y. et al. Maternal–fetal transfer of melatonin in pregnant women near term. J. Pineal Res. 25, 129–134 (1998).

    PubMed  CAS  Google Scholar 

  32. Schenker, S. et al. Antioxidant transport by the human placenta. Clin. Nutr. 17, 159–167 (1998).

    PubMed  CAS  Google Scholar 

  33. Davis, F. C. & Mannion, J. Entrainment of hamster pup circadian rhythms by prenatal melatonin injections to the mother. Am. J. Physiol. 255, R439–R448 (1988).

    PubMed  CAS  Google Scholar 

  34. Seron-Ferre, M. et al. Circadian rhythms in the fetus. Mol. Cell. Endocrinol. 349, 68–75 (2012).

    PubMed  CAS  Google Scholar 

  35. Seron-Ferre, M., Riffo, R., Valenzuela, G. J. & Germain, A. M. Twenty-four-hour pattern of cortisol in the human fetus at term. Am. J. Obstet. Gynecol. 184, 1278–1283 (2001).

    PubMed  CAS  Google Scholar 

  36. Kennaway, D. J., Goble, F. C. & Stamp, G. E. Factors influencing the development of melatonin rhythmicity in humans. J. Clin. Endocrinol. Metab. 81, 1525–1532 (1996).

    PubMed  CAS  Google Scholar 

  37. Bisanti, L., Olsen, J., Basso, O., Thonneau, P. & Karmaus, W. Shift work and subfecundity: a European multicenter study. European Study Group on Infertility and Subfecundity. J. Occup. Environ. Med. 38, 352–358 (1996).

    PubMed  CAS  Google Scholar 

  38. Aspholm, R. et al. Spontaneous abortions among Finnish flight attendants. J. Occup. Environ. Med. 41, 486–491 (1999).

    PubMed  CAS  Google Scholar 

  39. Cone, J. E., Vaughan, L. M., Huete, A. & Samuels, S. J. Reproductive health outcomes among female flight attendants: an exploratory study. J. Occup. Environ. Med. 40, 210–216 (1998).

    PubMed  CAS  Google Scholar 

  40. Mahoney, M. M. Shift work, jet lag, and female reproduction. Int. J. Endocrinol. 2010, 813764 (2010).

    PubMed  PubMed Central  Google Scholar 

  41. Varcoe, T. J. et al. Characterisation of the maternal response to chronic phase shifts during gestation in the rat: implications for fetal metabolic programming. PLOS ONE 8, e53800 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Torres-Farfan, C. et al. Maternal melatonin selectively inhibits cortisol production in the primate fetal adrenal gland. J. Physiol. 554, 841–856 (2004).

    PubMed  CAS  Google Scholar 

  43. Seron-Ferre, M. et al. Impact of chronodisruption during primate pregnancy on the maternal and newborn temperature rhythms. PLOS ONE 8, e57710 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Matsumoto, T. et al. Circadian myometrial and endocrine rhythms in the pregnant rhesus macaque: effects of constant light and timed melatonin infusion. Am. J. Obstet. Gynecol. 165, 1777–1784 (1991).

    PubMed  CAS  Google Scholar 

  45. Novakova, M., Sladek, M. & Sumova, A. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime. J. Biol. Rhythms 25, 350–360 (2010).

    PubMed  Google Scholar 

  46. Vilches, N. et al. Gestational chronodisruption impairs hippocampal expression of NMDA receptor subunits Grin1b/Grin3a and spatial memory in the adult offspring. PLOS ONE 9, e91313 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Voiculescu, S. E. et al. Behavioral and molecular effects of prenatal continuous light exposure in the adult rat. Brain Res. 1650, 51–59 (2016).

    PubMed  CAS  Google Scholar 

  48. Smarr, B. L., Grant, A. D., Perez, L., Zucker, I. & Kriegsfeld, L. J. Maternal and early-life circadian disruption have long-lasting negative consequences on offspring development and adult behavior in mice. Sci. Rep. 7, 3326 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Cisse, Y. M., Russart, K. L. & Nelson, R. J. Parental exposure to dim light at night prior to mating alters offspring adaptive immunity. Sci. Rep. 7, 45497 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Cisse, Y. M., Russart, K. L. G. & Nelson, R. J. Depressive-like behavior is elevated among offspring of parents exposed to dim light at night prior to mating. Psychoneuroendocrinology 83, 182–186 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. Lunn, R. M. et al. Health consequences of electric lighting practices in the modern world: a report on the National Toxicology Program’s workshop on shift work at night, artificial light at night, and circadian disruption. Sci. Total Environ. 607–608, 1073–1084 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Kennaway, D. J., Stamp, G. E. & Goble, F. C. Development of melatonin production in infants and the impact of prematurity. J. Clin. Endocrinol. Metab. 75, 367–369 (1992).

    PubMed  CAS  Google Scholar 

  53. Davis, K. F., Parker, K. P. & Montgomery, G. L. Sleep in infants and young children: part two: common sleep problems. J. Pediatr. Health Care 18, 130–137 (2004).

    PubMed  Google Scholar 

  54. Dahl, R. E. Sleep, learning, and the developing brain: early-to-bed as a healthy and wise choice for school aged children. Sleep 28, 1498–1499 (2005).

    PubMed  Google Scholar 

  55. Wolke, D., Meyer, R., Ohrt, B. & Riegel, K. Incidence and persistence of problems at sleep onset and sleep continuation in the preschool period: results of a prospective study of a representative sample in Bavaria [German]. Prax Kinderpsychol. Kinderpsychiatr. 43, 331–339 (1994).

    PubMed  CAS  Google Scholar 

  56. Gaylor, E. E., Burnham, M. M., Goodlin-Jones, B. L. & Anders, T. F. A longitudinal follow-up study of young children’s sleep patterns using a developmental classification system. Behav. Sleep Med. 3, 44–61 (2005).

    PubMed  PubMed Central  Google Scholar 

  57. Touchette, E. et al. Associations between sleep duration patterns and behavioral/cognitive functioning at school entry. Sleep 30, 1213–1219 (2007).

    PubMed  PubMed Central  Google Scholar 

  58. Kobayashi, K. et al. Poor toddler-age sleep schedules predict school-age behavioral disorders in a longitudinal survey. Brain Dev. 37, 572–578 (2015).

    PubMed  Google Scholar 

  59. Gregory, A. M. et al. Prospective longitudinal associations between persistent sleep problems in childhood and anxiety and depression disorders in adulthood. J. Abnorm. Child Psychol. 33, 157–163 (2005).

    PubMed  Google Scholar 

  60. Gregory, A. M., Caspi, A., Moffitt, T. E. & Poulton, R. Sleep problems in childhood predict neuropsychological functioning in adolescence. Pediatrics 123, 1171–1176 (2009).

    PubMed  Google Scholar 

  61. Hysing, M., Sivertsen, B., Garthus-Niegel, S. & Eberhard-Gran, M. Pediatric sleep problems and social-emotional problems. A population-based study. Infant Behav. Dev. 42, 111–118 (2016).

    PubMed  Google Scholar 

  62. Gregory, A. M., Eley, T. C., O’Connor, T. G. & Plomin, R. Etiologies of associations between childhood sleep and behavioral problems in a large twin sample. J. Am. Acad. Child Adolesc. Psychiatry 43, 744–751 (2004).

    PubMed  Google Scholar 

  63. Bendova, Z., Sumova, A. & Illnerova, H. Development of circadian rhythmicity and photoperiodic response in subdivisions of the rat suprachiasmatic nucleus. Brain Res. Dev. Brain Res. 148, 105–112 (2004).

    PubMed  CAS  Google Scholar 

  64. Duncan, M. J., Banister, M. J. & Reppert, S. M. Developmental appearance of light–dark entrainment in the rat. Brain Res. 369, 326–330 (1986).

    PubMed  CAS  Google Scholar 

  65. Fahrenkrug, J., Nielsen, H. S. & Hannibal, J. Expression of melanopsin during development of the rat retina. Neuroreport 15, 781–784 (2004).

    PubMed  Google Scholar 

  66. Gonzalez-Menendez, I., Contreras, F., Cernuda-Cernuda, R. & Garcia-Fernandez, J. M. Daily rhythm of melanopsin-expressing cells in the mouse retina. Front. Cell Neurosci. 3, 3 (2009).

    PubMed  PubMed Central  Google Scholar 

  67. Landgraf, D., Koch, C. E. & Oster, H. Embryonic development of circadian clocks in the mammalian suprachiasmatic nuclei. Front. Neuroanat. 8, 143 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. Leard, L. E., Macdonald, E. S., Heller, H. C. & Kilduff, T. S. Ontogeny of photic-induced c-fos mRNA expression in rat suprachiasmatic nuclei. Neuroreport 5, 2683–2687 (1994).

    PubMed  CAS  Google Scholar 

  69. Tarttelin, E. E. et al. Expression of opsin genes early in ocular development of humans and mice. Exp. Eye Res. 76, 393–396 (2003).

    PubMed  CAS  Google Scholar 

  70. Rivkees, S. A. The development of circadian rhythms: from animals to Humans. Sleep Med. Clin. 2, 331–341 (2007).

    PubMed  PubMed Central  Google Scholar 

  71. Guyer, C. et al. Very preterm infants show earlier emergence of 24-hour sleep-wake rhythms compared to term infants. Early Hum. Dev. 91, 37–42 (2015).

    PubMed  Google Scholar 

  72. Boivin, D. B., Duffy, J. F., Kronauer, R. E. & Czeisler, C. A. Dose-response relationships for resetting of human circadian clock by light. Nature 379, 540–542 (1996).

    PubMed  CAS  Google Scholar 

  73. Rivkees, S. A., Hofman, P. L. & Fortman, J. Newborn primate infants are entrained by low intensity lighting. Proc. Natl Acad. Sci. USA 94, 292–297 (1997).

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Shanahan, T. L. & Czeisler, C. A. Physiological effects of light on the human circadian pacemaker. Semin. Perinatol. 24, 299–320 (2000).

    PubMed  CAS  Google Scholar 

  75. Watanabe, S. et al. Designing artificial environments for preterm infants based on circadian studies on pregnant uterus. Front. Endocrinol. 4, 113 (2013).

    Google Scholar 

  76. Morag, I. & Ohlsson, A. Cycled light in the intensive care unit for preterm and low birth weight infants. Cochrane Database Syst. Rev. 8, CD006982 (2013).

    Google Scholar 

  77. Vasquez-Ruiz, S. et al. A light/dark cycle in the NICU accelerates body weight gain and shortens time to discharge in preterm infants. Early Hum. Dev. 90, 535–540 (2014).

    PubMed  Google Scholar 

  78. Mirmiran, M. & Ariagno, R. L. Influence of light in the NICU on the development of circadian rhythms in preterm infants. Semin. Perinatol. 24, 247–257 (2000).

    PubMed  CAS  Google Scholar 

  79. Boo, N. Y., Chee, S. C. & Rohana, J. Randomized controlled study of the effects of different durations of light exposure on weight gain by preterm infants in a neonatal intensive care unit. Acta Paediatr. 91, 674–679 (2002).

    PubMed  CAS  Google Scholar 

  80. Brandon, D. H., Holditch-Davis, D. & Belyea, M. Preterm infants born at less than 31 weeks’ gestation have improved growth in cycled light compared with continuous near darkness. J. Pediatr. 140, 192–199 (2002). This randomized intervention study reports that preterm infants (<31 weeks) receiving cycled light (11 hours on and 11 hours off, with 1 transition hour for shift changes) during hospital care (~4 weeks) gained weight faster than age-matched infants receiving near darkness.

    PubMed  Google Scholar 

  81. Guyer, C. et al. Cycled light exposure reduces fussing and crying in very preterm infants. Pediatrics 130, e145–e151 (2012).

    PubMed  Google Scholar 

  82. Hao, H. & Rivkees, S. A. The biological clock of very premature primate infants is responsive to light. Proc. Natl Acad. Sci. USA 96, 2426–2429 (1999).

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Lebel, V., Aita, M., Johnston, C., Heon, M. & Dupuis, F. Effects of cycled lighting versus continuous near darkness on physiological stability and motor activity level in preterm infants. Adv. Neonatal Care 17, 282–291 (2017).

    PubMed  Google Scholar 

  84. Mann, N. P., Haddow, R., Stokes, L., Goodley, S. & Rutter, N. Effect of night and day on preterm infants in a newborn nursery: randomised trial. Br. Med. J. (Clin. Res. Ed.) 293, (1265–1267 (1986).

    Google Scholar 

  85. Rivkees, S. A., Mayes, L., Jacobs, H. & Gross, I. Rest-activity patterns of premature infants are regulated by cycled lighting. Pediatrics 113, 833–839 (2004).

    PubMed  Google Scholar 

  86. Philipsen, A., Hornyak, M. & Riemann, D. Sleep and sleep disorders in adults with attention deficit/hyperactivity disorder. Sleep Med. Rev. 10, 399–405 (2006).

    PubMed  Google Scholar 

  87. Coogan, A. N. & McGowan, N. M. A systematic review of circadian function, chronotype and chronotherapy in attention deficit hyperactivity disorder. Atten. Defic. Hyperact. Disord. 9, 129–147 (2017).

    PubMed  Google Scholar 

  88. Rybak, Y. E., McNeely, H. E., Mackenzie, B. E., Jain, U. R. & Levitan, R. D. Seasonality and circadian preference in adult attention-deficit/hyperactivity disorder: clinical and neuropsychological correlates. Compr. Psychiatry 48, 562–571 (2007).

    PubMed  Google Scholar 

  89. Baird, A. L., Coogan, A. N., Siddiqui, A., Donev, R. M. & Thome, J. Adult attention-deficit hyperactivity disorder is associated with alterations in circadian rhythms at the behavioural, endocrine and molecular levels. Mol. Psychiatry 17, 988–995 (2012).

    PubMed  CAS  Google Scholar 

  90. Fargason, R. E. et al. Correcting delayed circadian phase with bright light therapy predicts improvement in ADHD symptoms: a pilot study. J. Psychiatr. Res. 91, 105–110 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. Molina-Carballo, A. et al. Methylphenidate effects on blood serotonin and melatonin levels may help to synchronise biological rhythms in children with ADHD. J. Psychiatr. Res. 47, 377–383 (2013).

    PubMed  Google Scholar 

  92. Wang, S. M. et al. Modafinil for the treatment of attention-deficit/hyperactivity disorder: a meta-analysis. J. Psychiatr. Res. 84, 292–300 (2017).

    PubMed  Google Scholar 

  93. Gerrard, P. & Malcolm, R. Mechanisms of modafinil: a review of current research. Neuropsychiatr. Dis. Treat. 3, 349–364 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Cortesi, F., Giannotti, F., Ivanenko, A. & Johnson, K. Sleep in children with autistic spectrum disorder. Sleep Med. 11, 659–664 (2010).

    PubMed  Google Scholar 

  95. Richdale, A. L. & Schreck, K. A. Sleep problems in autism spectrum disorders: prevalence, nature, and possible biopsychosocial aetiologies. Sleep Med. Rev. 13, 403–411 (2009).

    PubMed  Google Scholar 

  96. Giannotti, F. et al. An investigation of sleep characteristics, EEG abnormalities and epilepsy in developmentally regressed and non-regressed children with autism. J. Autism Dev. Disord. 38, 1888–1897 (2008).

    PubMed  Google Scholar 

  97. Takase, M., Taira, M. & Sasaki, H. Sleep–wake rhythm of autistic children. Psychiatry Clin. Neurosci. 52, 181–182 (1998).

    PubMed  CAS  Google Scholar 

  98. Hayashi, E. Seasonal changes in sleep and behavioral problems in a pubescent case with autism. Psychiatry Clin. Neurosci. 55, 223–224 (2001).

    PubMed  CAS  Google Scholar 

  99. Tordjman, S., Anderson, G. M., Pichard, N., Charbuy, H. & Touitou, Y. Nocturnal excretion of 6-sulphatoxymelatonin in children and adolescents with autistic disorder. Biol. Psychiatry 57, 134–138 (2005).

    PubMed  CAS  Google Scholar 

  100. Nir, I. et al. Brief report: circadian melatonin, thyroid-stimulating hormone, prolactin, and cortisol levels in serum of young adults with autism. J. Autism Dev. Disord. 25, 641–654 (1995).

    PubMed  CAS  Google Scholar 

  101. Kulman, G. et al. Evidence of pineal endocrine hypofunction in autistic children. Neuro Endocrinol. Lett. 21, 31–34 (2000).

    PubMed  Google Scholar 

  102. Melke, J. et al. Abnormal melatonin synthesis in autism spectrum disorders. Mol. Psychiatry 13, 90–98 (2008).

    PubMed  CAS  Google Scholar 

  103. Simonneaux, V. & Ribelayga, C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol. Rev. 55, 325–395 (2003).

    PubMed  CAS  Google Scholar 

  104. Jin, Y., Choi, J., Won, J. & Hong, Y. The relationship between autism spectrum disorder and melatonin during fetal development. Molecules 23, E198 (2018).

    PubMed  Google Scholar 

  105. Gringras, P., Nir, T., Breddy, J., Frydman-Marom, A. & Findling, R. L. Efficacy and safety of pediatric prolonged-release melatonin for insomnia in children with autism spectrum disorder. J. Am. Acad. Child Adolesc. Psychiatry 56, 948–957 (2017).

    PubMed  Google Scholar 

  106. Tordjman, S. et al. Autism as a disorder of biological and behavioral rhythms: toward new therapeutic perspectives. Front. Pediatr. 3, 1 (2015).

    PubMed  PubMed Central  Google Scholar 

  107. Hoel, E. P., Albantakis, L., Cirelli, C. & Tononi, G. Synaptic refinement during development and its effect on slow-wave activity: a computational study. J. Neurophysiol. 115, 2199–2213 (2016).

    PubMed  PubMed Central  Google Scholar 

  108. Goldstone, A. et al. The mediating role of cortical thickness and gray matter volume on sleep slow-wave activity during adolescence. Brain Struct. Funct. 223, 669–685 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. Cassidy, S. B., Schwartz, S., Miller, J. L. & Driscoll, D. J. Prader–Willi syndrome. Genet. Med. 14, 10–26 (2012).

    PubMed  CAS  Google Scholar 

  110. Sahoo, T. et al. Prader–Willi phenotype caused by paternal deficiency for the HBII-85C/D box small nucleolar RNA cluster. Nat. Genet. 40, 719–721 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Lassi, G. et al. Deletion of the Snord116/SNORD116 alters sleep in mice and patients with Prader–Willi syndrome. Sleep 39, 637–644 (2016).

    PubMed  PubMed Central  Google Scholar 

  112. Butler, J. V. et al. Prevalence of, and risk factors for, physical ill-health in people with Prader–Willi syndrome: a population-based study. Dev. Med. Child Neurol. 44, 248–255 (2002).

    PubMed  CAS  Google Scholar 

  113. Cavaille, J. et al. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc. Natl Acad. Sci. USA 97, 14311–14316 (2000).

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Galiveti, C. R., Raabe, C. A., Konthur, Z. & Rozhdestvensky, T. S. Differential regulation of non-protein coding RNAs from Prader–Willi syndrome locus. Sci. Rep. 4, 6445 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Runte, M. et al. The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum. Mol. Genet. 10, 2687–2700 (2001).

    PubMed  CAS  Google Scholar 

  116. Powell, W. T. et al. A Prader–Willi locus lncRNA cloud modulates diurnal genes and energy expenditure. Hum. Mol. Genet. 22, 4318–4328 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  117. Gossan, N. C. et al. The E3 ubiquitin ligase UBE3A is an integral component of the molecular circadian clock through regulating the BMAL1 transcription factor. Nucleic Acids Res. 42, 5765–5775 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Solter, D. Differential imprinting and expression of maternal and paternal genomes. Annu. Rev. Genet. 22, 127–146 (1988).

    PubMed  CAS  Google Scholar 

  119. Martins-Taylor, K. et al. Imprinted expression of UBE3A in non-neuronal cells from a Prader–Willi syndrome patient with an atypical deletion. Hum. Mol. Genet. 23, 2364–2373 (2014).

    PubMed  CAS  Google Scholar 

  120. Rougeulle, C., Glatt, H. & Lalande, M. The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat. Genet. 17, 14–15 (1997).

    PubMed  CAS  Google Scholar 

  121. Baron, C. A. et al. Genomic and functional profiling of duplicated chromosome 15 cell lines reveal regulatory alterations in UBE3A-associated ubiquitin-proteasome pathway processes. Hum. Mol. Genet. 15, 853–869 (2006).

    PubMed  CAS  Google Scholar 

  122. Herzing, L. B., Cook, E. H. Jr & Ledbetter, D. H. Allele-specific expression analysis by RNA-FISH demonstrates preferential maternal expression of UBE3A and imprint maintenance within 15q11-q13 duplications. Hum. Mol. Genet. 11, 1707–1718 (2002).

    PubMed  CAS  Google Scholar 

  123. Hogart, A. et al. Chromosome 15q11-13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number. J. Med. Genet. 46, 86–93 (2009).

    PubMed  CAS  Google Scholar 

  124. Nishimura, Y. et al. Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum. Mol. Genet. 16, 1682–1698 (2007).

    PubMed  CAS  Google Scholar 

  125. Dindot, S. V., Antalffy, B. A., Bhattacharjee, M. B. & Beaudet, A. L. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum. Mol. Genet. 17, 111–118 (2008).

    PubMed  CAS  Google Scholar 

  126. Yamasaki, K. et al. Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Hum. Mol. Genet. 12, 837–847 (2003).

    PubMed  CAS  Google Scholar 

  127. Shi, S. Q., Bichell, T. J., Ihrie, R. A. & Johnson, C. H. Ube3a imprinting impairs circadian robustness in Angelman syndrome models. Curr. Biol. 25, 537–545 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  128. Boudreau, E. A. et al. Review of disrupted sleep patterns in Smith–Magenis syndrome and normal melatonin secretion in a patient with an atypical interstitial 17p11.2 deletion. Am. J. Med. Genet. A 149A, 1382–1391 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  129. Greenberg, F. et al. Multi-disciplinary clinical study of Smith–Magenis syndrome (deletion 17p11.2). Am. J. Med. Genet. 62, 247–254 (1996).

    PubMed  CAS  Google Scholar 

  130. Gropman, A. L., Elsea, S., Duncan, W. C. Jr & Smith, A. C. New developments in Smith–Magenis syndrome (del 17p11.2). Curr. Opin. Neurol. 20, 125–134 (2007).

    PubMed  CAS  Google Scholar 

  131. Smith, A. C., Dykens, E. & Greenberg, F. Sleep disturbance in Smith–Magenis syndrome (del 17p11.2). Am. J. Med. Genet. 81, 186–191 (1998).

    PubMed  CAS  Google Scholar 

  132. Boone, P. M. et al. Abnormal circadian rhythm of melatonin in Smith–Magenis syndrome patients with RAI 1 point mutations. Am. J. Med. Genet. A 155A, 2024–2027 (2011).

    PubMed  Google Scholar 

  133. Walz, K. et al. Behavioral characterization of mouse models for Smith–Magenis syndrome and dup(17)(p11.2p11.2). Hum. Mol. Genet. 13, 367–378 (2004).

    PubMed  CAS  Google Scholar 

  134. Lacaria, M., Gu, W. & Lupski, J. R. Circadian abnormalities in mouse models of Smith–Magenis syndrome: evidence for involvement of RAI1. Am. J. Med. Genet. A 161A, 1561–1568 (2013).

    PubMed  Google Scholar 

  135. Williams, S. R., Zies, D., Mullegama, S. V., Grotewiel, M. S. & Elsea, S. H. Smith–Magenis syndrome results in disruption of CLOCK gene transcription and reveals an integral role for RAI1 in the maintenance of circadian rhythmicity. Am. J. Hum. Genet. 90, 941–949 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  136. De Leersnyder, H. et al. β1-adrenergic antagonists improve sleep and behavioural disturbances in a circadian disorder, Smith–Magenis syndrome. J. Med. Genet. 38, 586–590 (2001).

    PubMed  PubMed Central  Google Scholar 

  137. De Leersnyder, H. et al. β1-adrenergic antagonists and melatonin reset the clock and restore sleep in a circadian disorder, Smith–Magenis syndrome. J. Med. Genet. 40, 74–78 (2003).

    PubMed  PubMed Central  Google Scholar 

  138. De Leersnyder, H., Claustrat, B., Munnich, A. & Verloes, A. Circadian rhythm disorder in a rare disease: Smith–Magenis syndrome. Mol. Cell Endocrinol. 252, 88–91 (2006).

    PubMed  Google Scholar 

  139. Elsea, S. H. & Girirajan, S. Smith–Magenis syndrome. Eur. J. Hum. Genet. 16, 412–421 (2008).

    PubMed  CAS  Google Scholar 

  140. Logan, R. W. et al. Impact of sleep and circadian rhythms on addiction vulnerability in adolescents. Biol. Psychiatry 83, 987–996 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. Roenneberg, T. et al. A marker for the end of adolescence. Curr. Biol. 14, R1038–R1039 (2004).

    PubMed  CAS  Google Scholar 

  142. Hagenauer, M. H. & Lee, T. M. The neuroendocrine control of the circadian system: adolescent chronotype. Front. Neuroendocrinol. 33, 211–229 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  143. Hagenauer, M. H. & Lee, T. M. Adolescent sleep patterns in humans and laboratory animals. Horm. Behav. 64, 270–279 (2013).

    PubMed  PubMed Central  Google Scholar 

  144. Cain, N. & Gradisar, M. Electronic media use and sleep in school-aged children and adolescents: a review. Sleep Med. 11, 735–742 (2010).

    PubMed  Google Scholar 

  145. Crowley, S. J., Cain, S. W., Burns, A. C., Acebo, C. & Carskadon, M. A. Increased sensitivity of the circadian system to light in early/mid-puberty. J. Clin. Endocrinol. Metab. 100, 4067–4073 (2015). This study shows that endogenous melatonin levels of prepubertal children and early adolescents are more sensitive to the suppressive effects of acute light exposure during the evening than melatonin levels in late adolescents.

    PubMed  PubMed Central  CAS  Google Scholar 

  146. Paruthi, S. et al. Recommended amount of sleep for pediatric populations: a consensus statement of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 12, 785–786 (2016).

    PubMed  PubMed Central  Google Scholar 

  147. Basch, C. E., Basch, C. H., Ruggles, K. V. & Rajan, S. Prevalence of sleep duration on an average school night among 4 nationally representative successive samples of American high school students, 2007–2013. Prev. Chron. Dis. 11, E216 (2014).

    Google Scholar 

  148. Touitou, Y. Adolescent sleep misalignment: a chronic jet lag and a matter of public health. J. Physiol. Paris 107, 323–326 (2013).

    PubMed  Google Scholar 

  149. Hasler, B. P. et al. Weekend-weekday advances in sleep timing are associated with altered reward-related brain function in healthy adolescents. Biol. Psychol. 91, 334–341 (2012).

    PubMed  PubMed Central  Google Scholar 

  150. Skeldon, A. C., Phillips, A. J. & Dijk, D. J. The effects of self-selected light–dark cycles and social constraints on human sleep and circadian timing: a modeling approach. Sci. Rep. 7, 45158 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  151. Crowley, S. J. & Carskadon, M. A. Modifications to weekend recovery sleep delay circadian phase in older adolescents. Chronobiol. Int. 27, 1469–1492 (2010).

    PubMed  PubMed Central  Google Scholar 

  152. Wittmann, M., Dinich, J., Merrow, M. & Roenneberg, T. Social jetlag: misalignment of biological and social time. Chronobiol. Int. 23, 497–509 (2006).

    PubMed  Google Scholar 

  153. Chen, K. & Kandel, D. B. The natural history of drug use from adolescence to the mid-thirties in a general population sample. Am. J. Publ. Health 85, 41–47 (1995).

    CAS  Google Scholar 

  154. Falcon, E. & McClung, C. A. A role for the circadian genes in drug addiction. Neuropharmacology 56, 91–96 (2009). (Suppl. 1).

    PubMed  CAS  Google Scholar 

  155. O’Brien, E. M. & Mindell, J. A. Sleep and risk-taking behavior in adolescents. Behav. Sleep Med. 3, 113–133 (2005).

    PubMed  Google Scholar 

  156. Pasch, K. E., Laska, M. N., Lytle, L. A. & Moe, S. G. Adolescent sleep, risk behaviors, and depressive symptoms: are they linked? Am. J. Health Behav. 34, 237–248 (2010).

    PubMed  PubMed Central  Google Scholar 

  157. McKnight-Eily, L. R. et al. Relationships between hours of sleep and health-risk behaviors in US adolescent students. Prev. Med. 53, 271–273 (2011).

    PubMed  Google Scholar 

  158. Paiva, T., Gaspar, T. & Matos, M. G. Mutual relations between sleep deprivation, sleep stealers and risk behaviours in adolescents. Sleep Sci. 9, 7–13 (2016).

    PubMed  PubMed Central  Google Scholar 

  159. Sivertsen, B., Skogen, J. C., Jakobsen, R. & Hysing, M. Sleep and use of alcohol and drug in adolescence. A large population-based study of Norwegian adolescents aged 16 to 19 years. Drug Alcohol Depend. 149, 180–186 (2015).

    PubMed  Google Scholar 

  160. Thomas, A. G., Monahan, K. C., Lukowski, A. F. & Cauffman, E. Sleep problems across development: a pathway to adolescent risk taking through working memory. J. Youth Adolesc. 44, 447–464 (2015).

    PubMed  Google Scholar 

  161. Wheaton, A. G., Olsen, E. O., Miller, G. F. & Croft, J. B. Sleep duration and injury-related risk behaviors among high school students — United States, 2007–2013. MMWR Morb. Mortal. Wkly Rep. 65, 337–341 (2016).

    PubMed  Google Scholar 

  162. Pasch, K. E., Latimer, L. A., Cance, J. D., Moe, S. G. & Lytle, L. A. Longitudinal bi-directional relationships between sleep and youth substance use. J. Youth Adolesc. 41, 1184–1196 (2012).

    PubMed  PubMed Central  Google Scholar 

  163. Hasler, B. P., Martin, C. S., Wood, D. S., Rosario, B. & Clark, D. B. A longitudinal study of insomnia and other sleep complaints in adolescents with and without alcohol use disorders. Alcohol Clin. Exp. Res. 38, 2225–2233 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. Hasler, B. P., Kirisci, L. & Clark, D. B. Restless sleep and variable sleep timing during late childhood accelerate the onset of alcohol and other drug involvement. J. Stud. Alcohol Drugs 77, 649–655 (2016).

    PubMed  PubMed Central  Google Scholar 

  165. Hasler, B. P., Soehner, A. M. & Clark, D. B. Sleep and circadian contributions to adolescent alcohol use disorder. Alcohol 49, 377–387 (2015).

    PubMed  Google Scholar 

  166. Tavernier, R., Munroe, M. & Willoughby, T. Perceived morningness-eveningness predicts academic adjustment and substance use across university, but social jetlag is not to blame. Chronobiol. Int. 32, 1233–1245 (2015).

    PubMed  Google Scholar 

  167. Hasler, B. P., Casement, M. D., Sitnick, S. L., Shaw, D. S. & Forbes, E. E. Eveningness among late adolescent males predicts neural reactivity to reward and alcohol dependence two years later. Behav. Brain Res. 327, 112–120 (2017). This study shows that an evening chronotype during late adolescence (20 years of age) is associated with strength of activation in the VS to reward outcome, which was positively correlated with alcohol dependence 2 years later.

    PubMed  PubMed Central  Google Scholar 

  168. Mednick, S. C., Christakis, N. A. & Fowler, J. H. The spread of sleep loss influences drug use in adolescent social networks. PLOS ONE 5, e9775 (2010).

    PubMed  PubMed Central  Google Scholar 

  169. Forbes, E. E. et al. Healthy adolescents’ neural response to reward: associations with puberty, positive affect, and depressive symptoms. J. Am. Acad. Child Adolesc. Psychiatry 49, 162–172 (2010).

    PubMed  PubMed Central  Google Scholar 

  170. Padmanabhan, A., Geier, C. F., Ordaz, S. J., Teslovich, T. & Luna, B. Developmental changes in brain function underlying the influence of reward processing on inhibitory control. Dev. Cogn. Neurosci. 1, 517–529 (2011).

    PubMed  PubMed Central  Google Scholar 

  171. Frischknecht, R. & Gundelfinger, E. D. The brain’s extracellular matrix and its role in synaptic plasticity. Adv. Exp. Med. Biol. 970, 153–171 (2012).

    PubMed  CAS  Google Scholar 

  172. Luciana, M. & Collins, P. F. Incentive motivation, cognitive control, and the adolescent brain: is it time for a paradigm shift? Child Dev. Perspect. 6, 392–399 (2012).

    PubMed  PubMed Central  Google Scholar 

  173. Padmanabhan, A. & Luna, B. Developmental imaging genetics: linking dopamine function to adolescent behavior. Brain Cogn. 89, 27–38 (2014).

    PubMed  Google Scholar 

  174. Ernst, M. & Fudge, J. L. A developmental neurobiological model of motivated behavior: anatomy, connectivity and ontogeny of the triadic nodes. Neurosci. Biobehav. Rev. 33, 367–382 (2009).

    PubMed  Google Scholar 

  175. Somerville, L. H., Jones, R. M. & Casey, B. J. A time of change: behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain Cogn. 72, 124–133 (2010).

    PubMed  Google Scholar 

  176. Logan, R. W., Williams, W. P. & McClung, C. A. Circadian rhythms and addiction: mechanistic insights and future directions. Behav. Neurosci. 128, 387–412 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  177. Hasler, B. P., Forbes, E. E. & Franzen, P. L. Time-of-day differences and short-term stability of the neural response to monetary reward: a pilot study. Psychiatry Res. 224, 22–27 (2014).

    PubMed  PubMed Central  Google Scholar 

  178. Hasler, B. P. et al. Chronotype and diurnal patterns of positive affect and affective neural circuitry in primary insomnia. J. Sleep Res. 21, 515–526 (2012).

    PubMed  PubMed Central  Google Scholar 

  179. Hasler, B. P., Sitnick, S. L., Shaw, D. S. & Forbes, E. E. An altered neural response to reward may contribute to alcohol problems among late adolescents with an evening chronotype. Psychiatry Res. 214, 357–364 (2013).

    PubMed  Google Scholar 

  180. Mullin, B. C. et al. Sleep deprivation amplifies striatal activation to monetary reward. Psychol. Med. 43, 2215–2225 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  181. Miller, M. B., Donahue, M. L., Carey, K. B. & Scott-Sheldon, L. A. J. Insomnia treatment in the context of alcohol use disorder: a systematic review and meta-analysis. Drug Alcohol Depend. 181, 200–207 (2017).

    PubMed  PubMed Central  Google Scholar 

  182. Merikangas, K. R. et al. Lifetime prevalence of mental disorders in U. S. adolescents: results from the National Comorbidity Survey Replication — Adolescent Supplement (NCS-A). J. Am. Acad. Child Adolesc. Psychiatry 49, 980–989 (2010).

    PubMed  PubMed Central  Google Scholar 

  183. Lamont, E. W., Coutu, D. L., Cermakian, N. & Boivin, D. B. Circadian rhythms and clock genes in psychotic disorders. Isr. J. Psychiatry Relat. Sci. 47, 27–35 (2010).

    PubMed  Google Scholar 

  184. McClung, C. A. How might circadian rhythms control mood? Let me count the ways. Biol. Psychiatry 74, 242–249 (2013).

    PubMed  PubMed Central  Google Scholar 

  185. Mansour, H. A. et al. Circadian phase variation in bipolar I disorder. Chronobiol. Int. 22, 571–584 (2005).

    PubMed  Google Scholar 

  186. McCarthy, M. J. & Welsh, D. K. Cellular circadian clocks in mood disorders. J. Biol. Rhythms 27, 339–352 (2012).

    PubMed  CAS  Google Scholar 

  187. McClung, C. A. Circadian rhythms and mood regulation: insights from pre-clinical models. Eur. Neuropsychopharmacol. 21, S683–S693 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  188. Wulff, K., Dijk, D. J., Middleton, B., Foster, R. G. & Joyce, E. M. Sleep and circadian rhythm disruption in schizophrenia. Br. J. Psychiatry 200, 308–316 (2012). This study reports notable circadian misalignment (phase delays and advances) of sleep–wake cycles and melatonin rhythms in patients with schizophrenia despite other factors, including mood, cognitive status and pharmacological treatments.

    PubMed  PubMed Central  Google Scholar 

  189. Frank, E., Swartz, H. A. & Kupfer, D. J. Interpersonal and social rhythm therapy: managing the chaos of bipolar disorder. Biol. Psychiatry 48, 593–604 (2000).

    PubMed  CAS  Google Scholar 

  190. Malkoff-Schwartz, S. et al. Stressful life events and social rhythm disruption in the onset of manic and depressive bipolar episodes: a preliminary investigation. Arch. Gen. Psychiatry 55, 702–707 (1998).

    PubMed  CAS  Google Scholar 

  191. Melo, M. C. A., Abreu, R. L. C., Linhares Neto, V. B., de Bruin, P. F. C. & de Bruin, V. M. S. Chronotype and circadian rhythm in bipolar disorder: a systematic review. Sleep Med. Rev. 34, 46–58 (2017).

    PubMed  Google Scholar 

  192. Winthorst, W. H. et al. Seasonal affective disorder and non-seasonal affective disorders: results from the NESDA study. BJPsych Open 3, 196–203 (2017).

    PubMed  PubMed Central  Google Scholar 

  193. Medici, C. R., Vestergaard, C. H., Hadzi-Pavlovic, D., Munk-Jorgensen, P. & Parker, G. Seasonal variations in hospital admissions for mania: examining for associations with weather variables over time. J. Affect. Disord. 205, 81–86 (2016).

    PubMed  Google Scholar 

  194. Young, J. W. & Dulcis, D. Investigating the mechanism(s) underlying switching between states in bipolar disorder. Eur. J. Pharmacol. 759, 151–162 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  195. Raniti, M. B. et al. Sleep duration and sleep quality: associations with depressive symptoms across adolescence. Behav. Sleep Med. 15, 198–215 (2017).

    PubMed  Google Scholar 

  196. Lewy, A. J. Depressive disorders may more commonly be related to circadian phase delays rather than advances: time will tell. Sleep Med. 11, 117–118 (2010).

    PubMed  Google Scholar 

  197. Addington, J. & Heinssen, R. Prediction and prevention of psychosis in youth at clinical high risk. Annu. Rev. Clin. Psychol. 8, 269–289 (2012).

    PubMed  Google Scholar 

  198. Lunsford-Avery, J. R. et al. Adolescents at clinical-high risk for psychosis: circadian rhythm disturbances predict worsened prognosis at 1-year follow-up. Schizophr. Res. 189, 37–42 (2017).

    PubMed  PubMed Central  Google Scholar 

  199. Robillard, R. et al. Sleep–wake profiles predict longitudinal changes in manic symptoms and memory in young people with mood disorders. J. Sleep Res. 25, 549–555 (2016).

    PubMed  Google Scholar 

  200. Crews, F. T., Vetreno, R. P., Broadwater, M. A. & Robinson, D. L. Adolescent alcohol exposure persistently impacts adult neurobiology and behavior. Pharmacol. Rev. 68, 1074–1109 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  201. Wei, Y., Krishnan, G. P. & Bazhenov, M. Synaptic mechanisms of memory consolidation during sleep slow oscillations. J. Neurosci. 36, 4231–4247 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  202. Walker, M. P. & Stickgold, R. Sleep-dependent learning and memory consolidation. Neuron 44, 121–133 (2004).

    PubMed  CAS  Google Scholar 

  203. Havekes, R., Meerlo, P. & Abel, T. Animal studies on the role of sleep in memory: from behavioral performance to molecular mechanisms. Curr. Top. Behav. Neurosci. 25, 183–206 (2015).

    PubMed  Google Scholar 

  204. Marshall, L., Helgadottir, H., Molle, M. & Born, J. Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613 (2006). This study establishes the importance of slow-wave sleep during non-REM episodes that occur during the early night and shows that it promotes the retention of hippocampus-dependent declarative memories.

    PubMed  CAS  Google Scholar 

  205. Selemon, L. D. & Zecevic, N. Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl Psychiatry 5, e623 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  206. Keshavan, M. S., Anderson, S. & Pettegrew, J. W. Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J. Psychiatr. Res. 28, 239–265 (1994).

    PubMed  CAS  Google Scholar 

  207. Billeh, Y. N. et al. Effects of chronic sleep restriction during early adolescence on the adult pattern of connectivity of mouse secondary motor cortex. eNeuro https://doi.org/10.1523/ENEURO.0053-16-2016 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Carskadon, M. A. Patterns of sleep and sleepiness in adolescents. Pediatrician 17, 5–12 (1990).

    PubMed  CAS  Google Scholar 

  209. Johnson, E. O., Roth, T., Schultz, L. & Breslau, N. Epidemiology of DSM-IV insomnia in adolescence: lifetime prevalence, chronicity, and an emergent gender difference. Pediatrics 117, e247–e256 (2006).

    PubMed  Google Scholar 

  210. Sivertsen, B. et al. Delayed sleep phase syndrome in adolescents: prevalence and correlates in a large population based study. BMC Publ. Health 13, 1163 (2013).

    Google Scholar 

  211. Owens, J. A., Belon, K. & Moss, P. Impact of delaying school start time on adolescent sleep, mood, and behavior. Arch. Pediatr. Adolesc. Med. 164, 608–614 (2010).

    PubMed  Google Scholar 

  212. Wirz-Justice, A. & Terman, M. Chronotherapeutics (light and wake therapy) as a class of interventions for affective disorders. Handb. Clin. Neurol. 106, 697–713 (2012).

    PubMed  Google Scholar 

  213. Srinivasan, V., De Berardis, D., Shillcutt, S. D. & Brzezinski, A. Role of melatonin in mood disorders and the antidepressant effects of agomelatine. Expert Opin. Investig. Drugs 21, 1503–1522 (2012).

    PubMed  CAS  Google Scholar 

  214. Wu, J. C. et al. Rapid and sustained antidepressant response with sleep deprivation and chronotherapy in bipolar disorder. Biol. Psychiatry 66, 298–301 (2009). This study demonstrates, in a cohort of 49 patients with bipolar disorder, the ability of non-invasive circadian therapy (that is, bright light therapy and sleep phase advance) and sleep (that is, acute sleep deprivation) to improve and sustain the therapeutic efficacy of lithium and antidepressants on mood symptoms.

    PubMed  CAS  Google Scholar 

  215. Li, J., Lu, W. Q., Beesley, S., Loudon, A. S. & Meng, Q. J. Lithium impacts on the amplitude and period of the molecular circadian clockwork. PLOS ONE 7, e33292 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  216. Johansson, A. S., Brask, J., Owe-Larsson, B., Hetta, J. & Lundkvist, G. B. Valproic acid phase shifts the rhythmic expression of Period2::Luciferase. J. Biol. Rhythms 26, 541–551 (2011).

    PubMed  CAS  Google Scholar 

  217. Sprouse, J., Braselton, J. & Reynolds, L. Fluoxetine modulates the circadian biological clock via phase advances of suprachiasmatic nucleus neuronal firing. Biol. Psychiatry 60, 896–899 (2006).

    PubMed  CAS  Google Scholar 

  218. Duncan, W. C. Jr et al. Motor-activity markers of circadian timekeeping are related to ketamine’s rapid antidepressant properties. Biol. Psychiatry 82, 361–369 (2017). In a study of 51 patients with major depressive disorder or bipolar disorder, circadian activity patterns prior to and following the administration of ketamine are linked to therapeutic response of mood symptoms.

    PubMed  PubMed Central  CAS  Google Scholar 

  219. Kragh, M. et al. Predictors of response to combined wake and light therapy in treatment-resistant inpatients with depression. Chronobiol. Int. https://doi.org/10.1080/07420528.2018.1468341 (2018).

  220. Adan, A. & Natale, V. Gender differences in morningness–eveningness preference. Chronobiol. Int. 19, 709–720 (2002).

    PubMed  Google Scholar 

  221. Caci, H., Deschaux, O., Adan, A. & Natale, V. Comparing three morningness scales: age and gender effects, structure and cut-off criteria. Sleep Med. 10, 240–245 (2009).

    PubMed  Google Scholar 

  222. Duarte, L. L. et al. Chronotype ontogeny related to gender. Braz. J. Med. Biol. Res. 47, 316–320 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  223. Paine, S. J., Gander, P. H. & Travier, N. The epidemiology of morningness/eveningness: influence of age, gender, ethnicity, and socioeconomic factors in adults (30–49 years). J. Biol. Rhythms 21, 68–76 (2006).

    PubMed  Google Scholar 

  224. Patke, A. et al. Mutation of the human circadian clock gene CRY1 in familial delayed sleep phase disorder. Cell 169, 203–215 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  225. Kripke, D. F. et al. Circadian polymorphisms in night owls, in bipolars, and in non-24-hour sleep cycles. Psychiatry Invest. 11, 345–362 (2014).

    CAS  Google Scholar 

  226. Murray, J. M. et al. Prevalence of circadian misalignment and its association with depressive symptoms in delayed sleep phase disorder. Sleep 40, zsw002 (2017).

    Google Scholar 

  227. James, S. M., Honn, K. A., Gaddameedhi, S. & Van Dongen, H. P. A. Shift work: disrupted circadian rhythms and sleep-implications for health and well-being. Curr. Sleep Med. Rep. 3, 104–112 (2017).

    PubMed  PubMed Central  Google Scholar 

  228. Hall, A. L., Franche, R. L. & Koehoorn, M. Examining exposure assessment in shift work research: a study on depression among nurses. Ann. Work Expo. Health 62, 182–194 (2018).

    PubMed  PubMed Central  Google Scholar 

  229. Kang, M. Y., Kwon, H. J., Choi, K. H., Kang, C. W. & Kim, H. The relationship between shift work and mental health among electronics workers in South Korea: a cross-sectional study. PLOS ONE 12, e0188019 (2017).

    PubMed  PubMed Central  Google Scholar 

  230. McNeely, E. et al. The self-reported health of U. S. flight attendants compared to the general population. Environ. Health 13, 13 (2014).

    PubMed  PubMed Central  Google Scholar 

  231. McNeely, E. et al. Cancer prevalence among flight attendants compared to the general population. Environ. Health 17, 49 (2018).

    PubMed  PubMed Central  Google Scholar 

  232. Grajewski, B., Whelan, E. A., Nguyen, M. M., Kwan, L. & Cole, R. J. Sleep disturbance in female flight attendants and teachers. Aerosp. Med. Hum. Perform. 87, 638–645 (2016).

    PubMed  Google Scholar 

  233. McNeely, E., Mordukhovich, I., Tideman, S., Gale, S. & Coull, B. Estimating the health consequences of flight attendant work: comparing flight attendant health to the general population in a cross-sectional study. BMC Publ. Health 18, 346 (2018).

    Google Scholar 

  234. Feinsilver, S. H. & Hernandez, A. B. Sleep in the elderly: unanswered questions. Clin. Geriatr. Med. 33, 579–596 (2017).

    PubMed  Google Scholar 

  235. Mattis, J. & Sehgal, A. Circadian rhythms, sleep, and disorders of aging. Trends Endocrinol. Metab. 27, 192–203 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  236. Musiek, E. S. & Holtzman, D. M. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 354, 1004–1008 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  237. Karasek, M. Melatonin, human aging, and age-related diseases. Exp. Gerontol. 39, 1723–1729 (2004).

    PubMed  CAS  Google Scholar 

  238. Zeitzer, J. M. et al. Do plasma melatonin concentrations decline with age? Am. J. Med. 107, 432–436 (1999).

    PubMed  CAS  Google Scholar 

  239. Czeisler, C. A. et al. Association of sleep–wake habits in older people with changes in output of circadian pacemaker. Lancet 340, 933–936 (1992). This landmark study suggests that changes in sleep timing and consolidation driven by the circadian system underlie sleep disturbances in elderly individuals.

    PubMed  CAS  Google Scholar 

  240. Wang, J. L. et al. Suprachiasmatic neuron numbers and rest–activity circadian rhythms in older humans. Ann. Neurol. 78, 317–322 (2015).

    PubMed  PubMed Central  Google Scholar 

  241. Chang, H. C. & Guarente, L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153, 1448–1460 (2013). This mouse study reveals that reductions of sirtuin activity in the SCN leads to a gradual age-dependent dampening of SCN activity and locomotor rhythms.

    PubMed  PubMed Central  CAS  Google Scholar 

  242. Yamazaki, S. et al. Effects of aging on central and peripheral mammalian clocks. Proc. Natl Acad. Sci. USA 99, 10801–10806 (2002).

    PubMed  CAS  PubMed Central  Google Scholar 

  243. Swaab, D. F., Fliers, E. & Partiman, T. S. The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res. 342, 37–44 (1985).

    PubMed  CAS  Google Scholar 

  244. Zhou, J. N., Hofman, M. A. & Swaab, D. F. VIP neurons in the human SCN in relation to sex, age, and Alzheimer’s disease. Neurobiol. Aging 16, 571–576 (1995).

    PubMed  CAS  Google Scholar 

  245. Roozendaal, B., van Gool, W. A., Swaab, D. F., Hoogendijk, J. E. & Mirmiran, M. Changes in vasopressin cells of the rat suprachiasmatic nucleus with aging. Brain Res. 409, 259–264 (1987).

    PubMed  CAS  Google Scholar 

  246. Tsukahara, S., Tanaka, S., Ishida, K., Hoshi, N. & Kitagawa, H. Age-related change and its sex differences in histoarchitecture of the hypothalamic suprachiasmatic nucleus of F344/N rats. Exp. Gerontol. 40, 147–155 (2005).

    PubMed  Google Scholar 

  247. Nygard, M., Hill, R. H., Wikstrom, M. A. & Kristensson, K. Age-related changes in electrophysiological properties of the mouse suprachiasmatic nucleus in vitro. Brain Res. Bull. 65, 149–154 (2005).

    PubMed  Google Scholar 

  248. Farajnia, S. et al. Evidence for neuronal desynchrony in the aged suprachiasmatic nucleus clock. J. Neurosci. 32, 5891–5899 (2012).

    PubMed  CAS  PubMed Central  Google Scholar 

  249. Nakamura, T. J. et al. Age-related decline in circadian output. J. Neurosci. 31, 10201–10205 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  250. Tranah, G. J. et al. Circadian activity rhythms and risk of incident dementia and mild cognitive impairment in older women. Ann. Neurol. 70, 722–732 (2011).

    PubMed  PubMed Central  Google Scholar 

  251. Chen, H. F., Huang, C. Q., You, C., Wang, Z. R. & Si-qing, H. Polymorphism of CLOCK gene rs 4580704C>G is associated with susceptibility of Alzheimer’s disease in a Chinese population. Arch. Med. Res. 44, 203–207 (2013).

    PubMed  CAS  Google Scholar 

  252. Chen, Q., Peng, X. D., Huang, C. Q., Hu, X. Y. & Zhang, X. M. Association between ARNTL (BMAL1) rs2278749 polymorphism T>C and susceptibility to Alzheimer disease in a Chinese population. Genet. Mol. Res. 14, 18515–18522 (2015).

    PubMed  CAS  Google Scholar 

  253. Gu, Z. et al. Association of ARNTL and PER1 genes with Parkinson’s disease: a case-control study of Han Chinese. Sci. Rep. 5, 15891 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  254. Videnovic, A. & Golombek, D. Circadian dysregulation in Parkinson’s disease. Neurobiol. Sleep Circadian Rhythms 2, 53–58 (2017).

    PubMed  Google Scholar 

  255. Breen, D. P. et al. Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol. 71, 589–595 (2014). This study shows significantly increased sleep latency, reduced sleep efficiency and reduced REM, along with reduced melatonin levels and a loss of BMAL1 serum expression rhythms, in a cohort of 239 individuals with PD.

    PubMed  PubMed Central  Google Scholar 

  256. Gros, P. & Videnovic, A. Sleep and circadian rhythm disorders in Parkinson’s disease. Curr. Sleep Med. Rep. 3, 222–234 (2017).

    PubMed  PubMed Central  Google Scholar 

  257. Uchida, K., Okamoto, N., Ohara, K. & Morita, Y. Daily rhythm of serum melatonin in patients with dementia of the degenerate type. Brain Res. 717, 154–159 (1996).

    PubMed  CAS  Google Scholar 

  258. Videnovic, A. et al. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol. 71, 463–469 (2014).

    PubMed  PubMed Central  Google Scholar 

  259. Claassen, D. O. & Kutscher, S. J. Sleep disturbances in Parkinson’s disease patients and management options. Nat. Sci. Sleep 3, 125–133 (2011).

    PubMed  PubMed Central  Google Scholar 

  260. Rothman, S. M. & Mattson, M. P. Sleep disturbances in Alzheimer’s and Parkinson’s diseases. Neuromolecular Med. 14, 194–204 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  261. Vitiello, M. V., Prinz, P. N., Williams, D. E., Frommlet, M. S. & Ries, R. K. Sleep disturbances in patients with mild-stage Alzheimer’s disease. J. Gerontol. 45, M131–M138 (1990).

    PubMed  CAS  Google Scholar 

  262. Stopa, E. G. et al. Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J. Neuropathol. Exp. Neurol. 58, 29–39 (1999).

    PubMed  CAS  Google Scholar 

  263. Cermakian, N., Lamont, E. W., Boudreau, P. & Boivin, D. B. Circadian clock gene expression in brain regions of Alzheimer ‘s disease patients and control subjects. J. Biol. Rhythms 26, 160–170 (2011).

    PubMed  Google Scholar 

  264. Logan, R. W. et al. NAD+ cellular redox and SIRT1 regulate the diurnal rhythms of tyrosine hydroxylase and conditioned cocaine reward. Mol. Psychiatry. https://doi.org/10.1038/s41380-018-0061-1 (2018). This study demonstrates mechanistic links between circadian regulation of SIRT1-dependent metabolic signalling and dopaminergic neurotransmission in the mouse ventral tegmental area, which is important for drug reward.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Belaidi, A. A. et al. Marked age-related changes in brain iron homeostasis in amyloid protein precursor knockout mice. Neurotherapeutics https://doi.org/10.1007/s13311-018-0656-x (2018).

  266. Uranga, R. M. & Salvador, G. A. Unraveling the burden of iron in neurodegeneration: intersections with amyloid beta peptide pathology. Oxid. Med. Cell. Longev. 2018, 2850341 (2018).

    PubMed  PubMed Central  Google Scholar 

  267. Graham, D. G. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol. 14, 633–643 (1978).

    PubMed  CAS  Google Scholar 

  268. Tse, D. C., McCreery, R. L. & Adams, R. N. Potential oxidative pathways of brain catecholamines. J. Med. Chem. 19, 37–40 (1976).

    PubMed  CAS  Google Scholar 

  269. Burbulla, L. F. et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 357, 1255–1261 (2017). This study demonstrates that mitochondrial stress promotes the accumulation of oxidized dopamine, consequently increasing α-synuclein aggregates in neurons derived from patients with PD, an effect selective to human neurons.

    PubMed  PubMed Central  CAS  Google Scholar 

  270. Barone, P. et al. The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov. Disord. 24, 1641–1649 (2009).

    PubMed  Google Scholar 

  271. Chaudhuri, K. R. et al. International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson’s disease: the NMSQuest study. Mov. Disord. 21, 916–923 (2006).

    PubMed  Google Scholar 

  272. Goodman, A. O., Morton, A. J. & Barker, R. A. Identifying sleep disturbances in Huntington’s disease using a simple disease-focused questionnaire. PLOS Curr. 2, RRN1189 (2010).

    PubMed  PubMed Central  Google Scholar 

  273. Aziz, N. A., Anguelova, G. V., Marinus, J., Lammers, G. J. & Roos, R. A. Sleep and circadian rhythm alterations correlate with depression and cognitive impairment in Huntington’s disease. Parkinsonism Relat. Disord. 16, 345–350 (2010).

    PubMed  Google Scholar 

  274. Iranzo, A. et al. Neurodegenerative disorder risk in idiopathic REM sleep behavior disorder: study in 174 patients. PLOS ONE 9, e89741 (2014).

    PubMed  PubMed Central  Google Scholar 

  275. Schenck, C. H., Boeve, B. F. & Mahowald, M. W. Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series. Sleep Med. 14, 744–748 (2013).

    PubMed  Google Scholar 

  276. Kudo, T., Loh, D. H., Truong, D., Wu, Y. & Colwell, C. S. Circadian dysfunction in a mouse model of Parkinson’s disease. Exp. Neurol. 232, 66–75 (2011).

    PubMed  Google Scholar 

  277. Grippo, R. M., Purohit, A. M., Zhang, Q., Zweifel, L. S. & Guler, A. D. Direct midbrain dopamine input to the suprachiasmatic nucleus accelerates circadian entrainment. Curr. Biol. 27, 2465–2475 (2017). This study shows re-entrainment of the SCN to phase shifts in the light–dark schedule is facilitated by dopaminergic projections from the ventral tegmental area to the SCN and is dependent on dopamine 1 receptor-expressing neurons in the SCN.

    PubMed  PubMed Central  CAS  Google Scholar 

  278. Korshunov, K. S., Blakemore, L. J. & Trombley, P. Q. Dopamine: a modulator of circadian rhythms in the central nervous system. Front. Cell. Neurosci. 11, 91 (2017).

    PubMed  PubMed Central  Google Scholar 

  279. Fifel, K. & Cooper, H. M. Loss of dopamine disrupts circadian rhythms in a mouse model of Parkinson’s disease. Neurobiol. Dis. 71, 359–369 (2014).

    PubMed  CAS  Google Scholar 

  280. Gnanasekaran, G. “Sundowning” as a biological phenomenon: current understandings and future directions: an update. Aging Clin. Exp. Res. 28, 383–392 (2016).

    PubMed  Google Scholar 

  281. Bedrosian, T. A. & Nelson, R. J. Sundowning syndrome in aging and dementia: research in mouse models. Exp. Neurol. 243, 67–73 (2013).

    PubMed  Google Scholar 

  282. Volicer, L., Harper, D. G., Manning, B. C., Goldstein, R. & Satlin, A. Sundowning and circadian rhythms in Alzheimer’s disease. Am. J. Psychiatry 158, 704–711 (2001). This study shows that patients with AD have less diurnal activity, more nocturnal activity and phase delays in body-temperature rhythms, and that the severity of sundowning is positively correlated with lower-amplitude and more-phase-delayed rhythms.

    PubMed  CAS  Google Scholar 

  283. Todd, W. D. et al. A hypothalamic circuit for the circadian control of aggression. Nat. Neurosci. 21, 717–724 (2018). This chemogenetic study in mice reveals a neural circuit involving projections from the SCN to the ventromedial hypothalamus that drives time-of-day-dependent aggressive behaviours.

    PubMed  PubMed Central  CAS  Google Scholar 

  284. Shokri-Kojori, E. et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc. Natl Acad. Sci. USA 115, 4483–4488 (2018).

    PubMed  CAS  PubMed Central  Google Scholar 

  285. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013). A landmark study in mice demonstrating that wakefulness suppresses the outflow of cerebral spinal fluid from the brain, whereas sleep leads to an increase in convective fluxes of fluid, effectively promoting the clearance of neurotoxic metabolics, including Aβ.

    PubMed  CAS  Google Scholar 

  286. Da Mesquita, S. et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560, 185–191 (2018).

    PubMed  PubMed Central  Google Scholar 

  287. Kang, J. E. et al. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science 326, 1005–1007 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  288. Tabuchi, M. et al. Sleep interacts with Aβ to modulate intrinsic neuronal excitability. Curr. Biol. 25, 702–712 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  289. Faghih, M. M. & Sharp, M. K. Is bulk flow plausible in perivascular, paravascular and paravenous channels? Fluids Barriers CNS 15, 17 (2018).

    PubMed  PubMed Central  Google Scholar 

  290. McClung, C. A. Mind your rhythms: an important role for circadian genes in neuroprotection. J. Clin. Invest. 123, 4994–4996 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  291. Musiek, E. S. et al. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J. Clin. Invest. 123, 5389–5400 (2013). This preclinical investigation demonstrates that components of the molecular clock control redox state and, when disrupted, lead to oxidative stress and cell death related to neurodegeneration.

    PubMed  PubMed Central  CAS  Google Scholar 

  292. Kondratov, R. V., Vykhovanets, O., Kondratova, A. A. & Antoch, M. P. Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1. Aging 1, 979–987 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  293. Chauhan, R., Chen, K. F., Kent, B. A. & Crowther, D. C. Central and peripheral circadian clocks and their role in Alzheimer’s disease. Dis. Model. Mech. 10, 1187–1199 (2017).

    PubMed  PubMed Central  Google Scholar 

  294. Homolak, J., Mudrovcic, M., Vukic, B. & Toljan, K. Circadian rhythm and Alzheimer’s disease. Med. Sci. 6, 52 (2018).

    Google Scholar 

  295. Huang, Z. et al. Circadian rhythm dysfunction accelerates disease progression in a mouse model with amyotrophic lateral sclerosis. Front. Neurol. 9, 218 (2018).

    PubMed  PubMed Central  Google Scholar 

  296. Skjerve, A., Bjorvatn, B. & Holsten, F. Light therapy for behavioural and psychological symptoms of dementia. Int. J. Geriatr. Psychiatry 19, 516–522 (2004).

    PubMed  Google Scholar 

  297. Yamadera, H. et al. Effects of bright light on cognitive and sleep-wake (circadian) rhythm disturbances in Alzheimer-type dementia. Psychiatry Clin. Neurosci. 54, 352–353 (2000).

    PubMed  CAS  Google Scholar 

  298. Hanford, N. & Figueiro, M. Light therapy and Alzheimer’s disease and related dementia: past, present, and future. J. Alzheimers Dis. 33, 913–922 (2013).

    PubMed  PubMed Central  Google Scholar 

  299. De Lepeleire, J., Bouwen, A., De Coninck, L. & Buntinx, F. Insufficient lighting in nursing homes. J. Am. Med. Dir. Assoc. 8, 314–317 (2007).

    PubMed  Google Scholar 

  300. Figueiro, M. G. et al. Tailored lighting intervention improves measures of sleep, depression, and agitation in persons with Alzheimer’s disease and related dementia living in long-term care facilities. Clin. Interv. Aging 9, 1527–1537 (2014).

    PubMed  PubMed Central  Google Scholar 

  301. Riemersma-van der Lek, R. F. et al. Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. JAMA 299, 2642–2655 (2008). This double-blinded randomized controlled trial of 189 elderly residents of a group care facility demonstrates that a combination of melatonin supplementation and scheduled light exposure improves cognitive symptoms of dementia and reduces aggression.

    PubMed  CAS  Google Scholar 

  302. Singer, C. et al. A multicenter, placebo-controlled trial of melatonin for sleep disturbance in Alzheimer’s disease. Sleep 26, 893–901 (2003).

    PubMed  Google Scholar 

  303. Coogan, A. N. et al. The circadian system in Alzheimer’s disease: disturbances, mechanisms, and opportunities. Biol. Psychiatry 74, 333–339 (2013).

    PubMed  Google Scholar 

  304. Arey, R. N. et al. An important role for cholecystokinin, a CLOCK target gene, in the development and treatment of manic-like behaviors. Mol. Psychiatry 19, 342–350 (2014).

    PubMed  CAS  Google Scholar 

  305. Coque, L. et al. Specific role of VTA dopamine neuronal firing rates and morphology in the reversal of anxiety-related, but not depression-related behavior in the Clock∆19 mouse model of mania. Neuropsychopharmacology 36, 1478–1488 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  306. Dzirasa, K. et al. Lithium ameliorates nucleus accumbens phase-signaling dysfunction in a genetic mouse model of mania. J. Neurosci. 30, 16314–16323 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  307. McClung, C. A. Circadian rhythms, the mesolimbic dopaminergic circuit, and drug addiction. ScientificWorldJournal 7, 194–202 (2007).

    PubMed  PubMed Central  Google Scholar 

  308. McClung, C. A. et al. Regulation of dopaminergic transmission and cocaine reward by the Cloc k gene. Proc. Natl Acad. Sci. USA 102, 9377–9381 (2005).

    PubMed  CAS  PubMed Central  Google Scholar 

  309. Ozburn, A. R. et al. Direct regulation of diurnal Drd3 expression and cocaine reward by NPAS2. Biol. Psychiatry 77, 425–433 (2015).

    PubMed  CAS  Google Scholar 

  310. Ozburn, A. R. et al. NPAS2 regulation of anxiety-like behavior and GABAA receptors. Front. Mol. Neurosci. 10, 360 (2017).

    PubMed  PubMed Central  Google Scholar 

  311. Ozburn, A. R., Larson, E. B., Self, D. W. & McClung, C. A. Cocaine self-administration behaviors in Clock∆19 mice. Psychopharmacology 223, 169–177 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  312. Parekh, P. K. et al. Altered GluA1 (Gria1) function and accumbal synaptic plasticity in the Clock∆19 model of bipolar mania. Biol. Psychiatry. https://doi.org/10.1016/j.biopsych.2017.06.022 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  313. Roybal, K. et al. Mania-like behavior induced by disruption of CLOCK. Proc. Natl Acad. Sci. USA 104, 6406–6411 (2007). This study demonstrates mice harbouring a mutation in Clock display a behavioural repertoire similar to human mania and provides evidence for CLOCK specifically in the ventral tegmental area to be important for these behaviours via modulation of dopamine cell firing.

    PubMed  CAS  PubMed Central  Google Scholar 

  314. Sidor, M. M. et al. Daytime spikes in dopaminergic activity drive rapid mood-cycling in mice. Mol. Psychiatry 20, 1406–1419 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  315. Spencer, S. et al. A mutation in CLOCK leads to altered dopamine receptor function. J. Neurochem. 123, 124–134 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  316. Neufeld-Cohen, A. et al. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc. Natl Acad. Sci. USA 113, E1673–E1682 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  317. O’Neill, J. S. & Feeney, K. A. Circadian redox and metabolic oscillations in mammalian systems. Antioxid. Redox Signal. 20, 2966–2981 (2014).

    PubMed  PubMed Central  Google Scholar 

  318. Marcheva, B. et al. Circadian clocks and metabolism. Handb. Exp. Pharmacol. 217, 127–155 (2013).

    CAS  Google Scholar 

  319. Braun, R. et al. Universal method for robust detection of circadian state from gene expression. Proc. Natl Acad. Sci. USA 115, E9247–E9256 (2018). This study demonstrates the use of a set of computational algorithms called TimeSignature to predict the endogenous phase of an individual based on the particular gene signatures from the blood acquired at a single timepoint.

    PubMed  PubMed Central  Google Scholar 

  320. Jones, S. E. et al. Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci. PLOS Genet. 12, e1006125 (2016).

    PubMed  PubMed Central  Google Scholar 

  321. Lane, J. M. et al. Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. Nat. Commun. 7, 10889 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  322. LeGates, T. A., Fernandez, D. C. & Hattar, S. Light as a central modulator of circadian rhythms, sleep and affect. Nat. Rev. Neurosci. 15, 443–454 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  323. LeGates, T. A. et al. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature 491, 594–598 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  324. Fernandez, D. C. et al. Light affects mood and learning through distinct retina-brain pathways. Cell 175, 71–84 (2018). Using mice, this study demonstrates that light input to the brain reaches neural circuits related to depression and learning through distinct projections from the retina, revealing a potential mechanism by which aberrant light exposure (for example, light at night) affects mood and cognition.

    PubMed  CAS  PubMed Central  Google Scholar 

  325. Librodo, P., Buckley, M., Luk, M. & Bisso, A. Chronotherapeutic drug delivery. J. Infus. Nurs. 38, S18–S23 (2015).

    PubMed  Google Scholar 

  326. Ruben, M. D. et al. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci. Transl Med. 10, eaat8806 (2018).

    PubMed  PubMed Central  Google Scholar 

  327. Melkani, G. C. & Panda, S. Time-restricted feeding for prevention and treatment of cardiometabolic disorders. J. Physiol. 595, 3691–3700 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  328. Mindikoglu, A. L., Opekun, A. R., Gagan, S. K. & Devaraj, S. Impact of time-restricted feeding and dawn-to-sunset fasting on circadian rhythm, obesity, metabolic syndrome, and nonalcoholic fatty liver disease. Gastroenterol. Res. Pract. 2017, 3932491 (2017).

    PubMed  PubMed Central  Google Scholar 

  329. Stewart, K. T., McEachron, D. L., Rosenwasser, A. M. & Adler, N. T. Lithium lengthens circadian period but fails to counteract behavioral helplessness in rats. Biol. Psychiatry 30, 515–518 (1991).

    PubMed  CAS  Google Scholar 

  330. McCarthy, M. J. et al. Genetic and clinical factors predict lithium’s effects on PER2 gene expression rhythms in cells from bipolar disorder patients. Transl Psychiatry 3, e318 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  331. Sprouse, J., Reynolds, L., Braselton, J. & Schmidt, A. Serotonin-induced phase advances of SCN neuronal firing in vitro: a possible role for 5-HT5A receptors? Synapse 54, 111–118 (2004).

    PubMed  CAS  Google Scholar 

  332. Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).

    PubMed  CAS  PubMed Central  Google Scholar 

  333. Dokucu, M. E., Yu, L. & Taghert, P. H. Lithium- and valproate-induced alterations in circadian locomotor behavior in Drosophila. Neuropsychopharmacology 30, 2216–2224 (2005).

    PubMed  CAS  Google Scholar 

  334. Sathyanarayana, A. et al. Sleep quality prediction from wearable data using deep learning. JMIR Mhealth Uhealth 4, e125 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Figures were initially designed using BioRender software (biorender.io). Funding for the studies discussed from the authors’ group was obtained from NARSAD, International Mental Health Research Organization (IMHRO), MH106460, DA039865, DA037636, MH082876 and DA023988 to C.A.M. and from NARSAD, DA038654 and DA041872 to R.W.L.

Reviewer information

Nature Reviews Neuroscience thanks A. Phillips, K. Wulff and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for article, made substantial contributions to the discussion of the content, wrote the article and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Colleen A. McClung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Peripheral oscillators

Circadian ‘clocks’ in other parts of the brain and in peripheral organs that are driven by the suprachiasmatic nucleus and various other nonphotic cues and stimuli.

Actigraphy

The monitoring of physical activity patterns (that is, rest–activity cycles) over many days, weeks or months, typically using non-invasive devices, such as wrist actometers.

Chronotype

The preference for early or late activities (translating to morning or evening chronotypes, respectively) during the 24-hour cycle.

Sleep homeostasis

A type of homeostasis by which prolonged periods of wakefulness lead to increases in the intensity and duration of subsequent sleep, in compensation for a sleep deficit or deprivation.

Melanopsin photoreceptors

Opsin class G protein-coupled receptors expressed in a small percentage (~2%) of photosensitive mammalian retinal ganglion cells.

Bright light therapy

A therapy for mood and sleep disorders that involves the use of bright light, typically in the morning, to shift and stabilize endogenous circadian timing.

Sleep efficiency

A measure of the integrity of sleep architecture and quality of sleep, consisting of the ratio of total sleep time to the amount of time spent in bed.

Narcolepsy

A chronic neurological disorder characterized by excessive daytime sleepiness, with many individuals experiencing intermittent, uncontrollable episodes of cataplexy (a sudden loss of muscle tone during wakefulness).

Amphetamine

A potent stimulant drug that can be used in the treatment of attention-deficit hyperactivity disorder.

Methylphenidate

A stimulant drug primarily used in the treatment of attention-deficit hyperactivity disorder.

Eveningness

The preference for activity in the evening and later bed times, related to endogenous circadian phase, and akin to evening chronotype.

Frontostriatal reward circuitry

Neural pathways that connect frontal regions with basal ganglia and mediate reward value and motivation.

Slow-wave activity

An electrophysiological measure of slow (0.5–4 Hz), synchronized oscillatory activity primarily expressed during non-rapid eye movement sleep.

Delayed sleep phase syndrome

A circadian rhythm disorder in which sleep timing is shifted later by 2 or more hours relative to normative sleep–wake cycles and often accompanied by similar shifts in body-temperature and hormone rhythms.

Acute sleep deprivation

A partial night or full night of sleep restriction. This approach can produce a short-term antidepressant effect.

Interpersonal and social rhythm therapy

A cognitive behavioural therapy often used for bipolar disorder that acts to stabilize sleep–wake and social schedules.

Dim light melatonin onset

(DLMO). A marker of endogenous circadian phase that can be used for research or to determine the appropriate timing of treatments.

Fatigue

The feeling of exhaustion and lack of energy.

REM sleep behaviour disorder

(RBD). A disorder in which there is a loss of the paralysis that normally occurs during rapid eye movement sleep, allowing the person to physically ‘act out’ their dreams.

Restless legs syndrome

A condition marked by uncomfortable sensations in the legs accompanied by the urge to move them.

MitoPark transgenic mice

A mouse model of Parkinson disease in which dopamine neurons are deficient in mitochondrial function through inactivation of mitochondrial transcription factor A.

REM sleep

A phase of sleep characterized by rapid movement of the eyes, low muscle tone and dreams that can later be recollected.

Glymphatic system

A functional waste clearance system in the brain that is active during sleep.

Astrocytosis

An abnormal increase in the number of astrocytes, attributable to the death of nearby neurons.

Mini-Mental State Examination

(MMSE). A standardized set of 11 questions with a maximal score of 30 (≤23 indicating cognitive impairment) used to assess five cognitive functional areas: orientation, registration, attention and calculation, recall and language.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logan, R.W., McClung, C.A. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci 20, 49–65 (2019). https://doi.org/10.1038/s41583-018-0088-y

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-018-0088-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing