Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Brain mechanisms underlying the inhibitory control of thought

Abstract

Controlling action and thought requires the capacity to stop mental processes. Over the past two decades, evidence has grown that a domain-general inhibitory control mechanism supported by the right lateral prefrontal cortex achieves these functions. However, current views of the neural mechanisms of inhibitory control derive largely from research into the stopping of action. Whereas action stopping is a convenient empirical model, it does not invoke thought inhibition and cannot be used to identify the unique features of this process. Here, we review research that addresses how organisms stop a key process that drives thoughts: memory retrieval. This work has shown that retrieval stopping shares right dorsolateral and ventrolateral prefrontal mechanisms with action stopping, consistent with a domain-general inhibitory control mechanism, but also recruits a distinct fronto-temporal pathway that determines the success of mental control. As part of this pathway, GABAergic inhibition within the hippocampus influences the efficacy of prefrontal control over thought. These unique elements of mental control suggest that hippocampal disinhibition is a transdiagnostic factor underlying intrusive thinking, linking the fronto-temporal control pathway to preclinical models of psychiatric disorders and fear extinction. We suggest that retrieval-stopping deficits may underlie the intrusive thinking that is common across many psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Retrieval stopping as a model for inhibitory control over thought.
Fig. 2: Using the think/no-think procedure to measure retrieval stopping.
Fig. 3: Domain-general components of inhibitory control.
Fig. 4: Domain-specific components of inhibitory control.
Fig. 5: Candidate pathways underlying fronto-temporal inhibitory control.

Similar content being viewed by others

References

  1. Falconer, E. et al. The neural networks of inhibitory control in posttraumatic stress disorder. J. Psychiatry Neurosci. 33, 413–422 (2008).

    PubMed  PubMed Central  Google Scholar 

  2. Visser, R. et al. in Intrusive Thinking: From Molecules to Free Will (eds Kalivas, P. W. & Paulus, M. P.) 124–184 (MIT Press, 2020). Results of a conference on intrusive thinking attended by 40 scientists in multiple areas of psychology and neuroscience, capturing multiple perspectives on the topic.

  3. Kalivas, P. W., Gourley, S. L. & Paulus, M. P. Intrusive thinking: circuit and synaptic mechanisms of a transdiagnostic psychiatric symptom. Neurosci. Biobehav. Rev. 150, 105196 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Watkins, E. R. Constructive and unconstructive repetitive thought. Psychol. Bull. 134, 163–206 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Payne, A., Kralj, A., Young, J. & Meiser-Stedman, R. The prevalence of intrusive memories in adult depression: a meta-analysis. J. Affect. Disord. 253, 193–202 (2019).

    Article  PubMed  Google Scholar 

  6. Badcock, J. C. & Hugdahl, K. Cognitive mechanisms of auditory verbal hallucinations in psychotic and non-psychotic groups. Neurosci. Biobehav. Rev. 36, 431–438 (2012).

    Article  PubMed  Google Scholar 

  7. Alderson-Day, B. et al. Intentional inhibition but not source memory is related to hallucination-proneness and intrusive thoughts in a university sample. Cortex 113, 267–278 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Clark, D. A. Intrusive Thoughts in Clinical Disorders: Theory, Research, and Treatment (Guilford, 2005).

  9. Aron, A. R. The neural basis of inhibition in cognitive control. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 13, 214–228 (2007).

    Google Scholar 

  10. Jahanshahi, M., Obeso, I., Rothwell, J. C. & Obeso, J. A. A fronto–striato–subthalamic–pallidal network for goal-directed and habitual inhibition. Nat. Rev. Neurosci. 16, 719–732 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Lipszyc, J. & Schachar, R. Inhibitory control and psychopathology: a meta-analysis of studies using the stop signal task. J. Int. Neuropsychol. Soc. 16, 1064–1076 (2010).

    Article  PubMed  Google Scholar 

  12. Logan, G. D. & Cowan, W. B. On the ability to inhibit thought and action: a theory of an act of control. Psychol. Rev. 91, 295–327 (1984).

    Article  Google Scholar 

  13. Logan, G. D., Van Zandt, T., Verbruggen, F. & Wagenmakers, E.-J. On the ability to inhibit thought and action: general and special theories of an act of control. Psychol. Rev. 121, 66–95 (2014).

    Article  PubMed  Google Scholar 

  14. Matzke, D., Verbruggen, F. & Logan, G. D. in Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience (ed. Wixted, J. T.) 1–45 (Wiley, 2018).

  15. Schall, J. D., Palmeri, T. J. & Logan, G. D. Models of inhibitory control. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160193 (2017).

    Article  Google Scholar 

  16. Aron, A. R., Robbins, T. W. & Poldrack, R. A. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn. Sci. 18, 177–185 (2014).

    Article  PubMed  Google Scholar 

  17. Bari, A. & Robbins, T. W. Inhibition and impulsivity: behavioral and neural basis of response control. Prog. Neurobiol. 108, 44–79 (2013).

    Article  PubMed  Google Scholar 

  18. Wessel, J. R. & Anderson, M. C. Neural mechanisms of domain-general inhibitory control. Trends Cogn. Sci. 28, 124–143 (2024). A review of evidence for a domain-general inhibitory control mechanism with a novel proposal about the role of thalamic drive reduction.

    Article  Google Scholar 

  19. Apšvalka, D., Ferreira, C. S., Schmitz, T. W., Rowe, J. B. & Anderson, M. C. Dynamic targeting enables domain-general inhibitory control over action and thought by the prefrontal cortex. Nat. Commun. 13, 274 (2022). Important evidence for a domain-general inhibitory control process in right dorsolateral and ventrolateral prefrontal cortices that dynamically shifts connectivity between motor cortex and hippocampus, depending on whether actions or thoughts need to be stopped.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wimber, M., Alink, A., Charest, I., Kriegeskorte, N. & Anderson, M. C. Retrieval induces adaptive forgetting of competing memories via cortical pattern suppression. Nat. Neurosci. 18, 582–589 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, H., Smolker, H. R., Smith, L. L., Banich, M. T. & Lewis-Peacock, J. A. Changes to information in working memory depend on distinct removal operations. Nat. Commun. 11, 6239 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brewin, C. R., Gregory, J. D., Lipton, M. & Burgess, N. Intrusive images in psychological disorders: characteristics, neural mechanisms, and treatment implications. Psychol. Rev. 117, 210–232 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Levy, B. J. & Anderson, M. C. Purging of memories from conscious awareness tracked in the human brain. J. Neurosci. 32, 16785–16794 (2012). An early demonstration that intrusions of unwanted thoughts trigger increased suppression of hippocampal activity, indicating that hippocampal downregulation reflects reactive control.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mace, J. H. in Involuntary Memory (ed. Mace, J. H.) 1–19 (Blackwell Publishing, 2007).

  25. Berntsen, D. Involuntary autobiographical memories and their relation to other forms of spontaneous thoughts. Philos. Trans. R. Soc. B Biol. Sci. 376, 20190693 (2020).

    Article  Google Scholar 

  26. Aron, A. R., Robbins, T. W. & Poldrack, R. A. Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 8, 170–177 (2004).

    Article  PubMed  Google Scholar 

  27. Anderson, M. C. & Weaver, C. in Encyclopedia of Neuroscience (ed. Squire, L. R.) 153–163 (Academic, 2009).

  28. Renoult, L., Irish, M., Moscovitch, M. & Rugg, M. D. From knowing to remembering: the semantic–episodic distinction. Trends Cogn. Sci. 23, 1041–1057 (2019).

    Article  PubMed  Google Scholar 

  29. Tanguay, A. F. et al. The shared and unique neural correlates of personal semantic, general semantic, and episodic memory. eLife 12, e83645 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Anderson, M. C. & Green, C. Suppressing unwanted memories by executive control. Nature 410, 366–369 (2001). An early demonstration that intentionally stopping the retrieval process induces forgetting of suppressed thoughts, consistent with inhibitory control.

    Article  CAS  PubMed  Google Scholar 

  31. Nardo, D. & Anderson, M. C. Everything you ever wanted to know about the think/no-think task, but forgot to ask. Behav. Res. Methods 56, 3831–3860 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Benoit, R. G. & Anderson, M. C. Opposing mechanisms support the voluntary forgetting of unwanted memories. Neuron 76, 450–460 (2012). Demonstrates two distinct mechanisms for controlling unwanted memories, thought substitution and direct suppression, with opposite effects on hippocampal activity and relying on distinct prefrontal mechanisms.

    Article  CAS  PubMed  Google Scholar 

  33. Hertel, P. T. & Calcaterra, G. Intentional forgetting benefits from thought substitution. Psychon. Bull. Rev. 12, 484–489 (2005).

    Article  PubMed  Google Scholar 

  34. Bergström, Z. M., De Fockert, J. W. & Richardson-Klavehn, A. ERP and behavioural evidence for direct suppression of unwanted memories. NeuroImage 48, 726–737 (2009). A pioneering article that dissociates direct suppression and thought substitution as distinct mechanisms of memory control.

    Article  PubMed  Google Scholar 

  35. Aron, A. R. From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol. Psychiatry 69, e55–e68 (2011).

    Article  PubMed  Google Scholar 

  36. Munakata, Y. et al. A unified framework for inhibitory control. Trends Cogn. Sci. 15, 453–459 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bissett, P. G. & Logan, G. D. Selective stopping? Maybe not. J. Exp. Psychol. Gen. 143, 455–472 (2014).

    Article  PubMed  Google Scholar 

  38. Duque, J., Greenhouse, I., Labruna, L. & Ivry, R. B. Physiological markers of motor inhibition during human behavior. Trends Neurosci. 40, 219–236 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tarder-Stoll, H., Jayakumar, M., Dimsdale-Zucker, H. R., Günseli, E. & Aly, M. Dynamic internal states shape memory retrieval. Neuropsychologia 138, 107328 (2020).

    Article  PubMed  Google Scholar 

  40. Madore, K. P. & Wagner, A. D. Readiness to remember: predicting variability in episodic memory. Trends Cogn. Sci. 26, 707–723 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Anderson, M. C. & Hulbert, J. C. Active forgetting: adaptation of memory by prefrontal control. Annu. Rev. Psychol. 72, 1–36 (2021). An integrated review of research demonstrating that humans engage prefrontal control processes to adapt the state of memory to cognitive and emotional goals, inducing active forgetting.

    Article  PubMed  Google Scholar 

  42. Levy, B. J. & Anderson, M. C. Individual differences in the suppression of unwanted memories: the executive deficit hypothesis. Acta Psychol. 127, 623–635 (2008).

    Article  Google Scholar 

  43. Stramaccia, D. F., Meyer, A.-K., Rischer, K. M., Fawcett, J. M. & Benoit, R. G. Memory suppression and its deficiency in psychological disorders: a focused meta-analysis. J. Exp. Psychol. Gen. 150, 828–850 (2021). Meta-analytic evidence that a range of psychological disorders are associated with impaired suppression-induced forgetting, relative to control samples.

    Article  PubMed  Google Scholar 

  44. Wang, Y., Cao, Z., Zhu, Z., Cai, H. & Wu, Y. Cue-independent forgetting by intentional suppression — evidence for inhibition as the mechanism of intentional forgetting. Cognition 143, 31–35 (2015).

    Article  PubMed  Google Scholar 

  45. Liu, P. et al. Task compliance predicts suppression-induced forgetting in a large sample. Sci. Rep. 11, 20166 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, Y. & Zhu, Z. Retrieval suppression induced forgetting on 1-week-old consolidated episodic memories. Psychon. Bull. Rev. 29, 1377–1386 (2022).

    Article  PubMed  Google Scholar 

  47. Schmidt, M., Anderson, M. C. & Tempel, T. Suppression-induced forgetting of motor sequences. Cognition 230, 105292 (2023).

    Article  PubMed  Google Scholar 

  48. Kim, D.-Y., Oh, D. H., Kim, S. H., Sim, K.-B. & Lee, J.-H. Effects of intentional suppression of recall of unwanted images in repressors and nonrepressors. Soc. Behav. Pers. Int. J. 41, 319–326 (2013).

    Article  Google Scholar 

  49. Anderson, M. C. & Hanslmayr, S. Neural mechanisms of motivated forgetting. Trends Cogn. Sci. 18, 279–292 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Engen, H. G. & Anderson, M. C. Memory control: a fundamental mechanism of emotion regulation. Trends Cogn. Sci. 22, 982–995 (2018). A synthesis of work arguing that stopping upsetting thoughts provides a vital mechanism for regulating emotion, with a consideration of how conventional emotion regulation strategies may recruit suppression.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Küpper, C. S., Benoit, R. G., Dalgleish, T. & Anderson, M. C. Direct suppression as a mechanism for controlling unpleasant memories in daily life. J. Exp. Psychol. Gen. 143, 1443–1449 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Marsh, L. C. & Anderson, M. C. in The Oxford Handbook of Human Memory, Two Volume Pack (eds Kahana, M. J. & Wagner, A. D.) 1209–1256 (Oxford Univ. Press, 2024).

  53. López-Caneda, E., Crego, A., Campos, A. D., González-Villar, A. & Sampaio, A. The think/no-think alcohol task: a new paradigm for assessing memory suppression in alcohol-related contexts. Alcohol Clin. Exp. Res. 43, 36–47 (2019).

    Article  PubMed  Google Scholar 

  54. Hu, X., Bergström, Z. M., Bodenhausen, G. V. & Rosenfeld, J. P. Suppressing unwanted autobiographical memories reduces their automatic influences: evidence from electrophysiology and an implicit autobiographical memory test. Psychol. Sci. 26, 1098–1106 (2015).

    Article  PubMed  Google Scholar 

  55. Noreen, S. & Macleod, M. D. It’s all in the detail: intentional forgetting of autobiographical memories using the autobiographical think/no-think task. J. Exp. Psychol. Learn. Mem. Cogn. 39, 375–393 (2013).

    Article  PubMed  Google Scholar 

  56. Lu, F., Yang, W. & Qiu, J. Neural bases of motivated forgetting of autobiographical memories. Cogn. Neurosci. 14, 15–24 (2023).

    Article  PubMed  Google Scholar 

  57. Waldhauser, G. T., Lindgren, M. & Johansson, M. Intentional suppression can lead to a reduction of memory strength: behavioral and electrophysiological findings. Front. Psychol. 3, 401 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Benoit, R. G., Hulbert, J. C., Huddleston, E. & Anderson, M. C. Adaptive top-down suppression of hippocampal activity and the purging of intrusive memories from consciousness. J. Cogn. Neurosci. 27, 96–111 (2015).

    Article  PubMed  Google Scholar 

  59. Gagnepain, P., Hulbert, J. & Anderson, M. C. Parallel regulation of memory and emotion supports the suppression of intrusive memories. J. Neurosci. 37, 6423–6441 (2017). Evidence showing that stopping retrieval of unpleasant scenes regulates both memory and affect by parallel modulation of the hippocampus and amygdala, driven by intrusions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Harrington, M. O., Ashton, J. E., Sankarasubramanian, S., Anderson, M. C. & Cairney, S. A. Losing control: sleep deprivation impairs the suppression of unwanted thoughts. Clin. Psychol. Sci. 9, 97–113 (2021).

    Article  PubMed  Google Scholar 

  61. Mary, A. et al. Resilience after trauma: the role of memory suppression. Science 367, eaay8477 (2020). Compelling demonstration of how fronto-hippocampal modulation during thought suppression, particularly in response to intrusions, plays a critical role in resilience, in the context of the November 15th Paris terrorist attacks.

    Article  CAS  PubMed  Google Scholar 

  62. van Schie, K. & Anderson, M. C. Successfully controlling intrusive memories is harder when control must be sustained. Memory 25, 1201–1216 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Legrand, N. et al. Attentional capture mediates the emergence and suppression of intrusive memories. iScience 25, 105516 (2022). Innovative use of pattern classification on electroencephalography timefrequency data to identify the occurrence and timing of intrusions during retrieval suppression and their engagement of attentional capture mechanisms.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Legrand, N. et al. Long-term modulation of cardiac activity induced by inhibitory control over emotional memories. Sci. Rep. 10, 1–19 (2020).

    Article  Google Scholar 

  65. Hellerstedt, R., Johansson, M. & Anderson, M. C. Tracking the intrusion of unwanted memories into awareness with event-related potentials. Neuropsychologia 89, 510–523 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gagnepain, P., Henson, R. N. & Anderson, M. C. Suppressing unwanted memories reduces their unconscious influence via targeted cortical inhibition. Proc. Natl Acad. Sci. USA 111, E1310–E1319 (2014). An early demonstration that stopping retrieval suppresses both hippocampal and neocortical regions in parallel, inducing a persisting cortical aftereffect that disrupts unconscious memory.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim, K. & Yi, D.-J. Out of mind, out of sight: perceptual consequences of memory suppression. Psychol. Sci. 24, 569–574 (2013). A pioneering study that demonstrated how suppressing visual memories impaired later perception of the suppressed content.

    Article  PubMed  Google Scholar 

  68. Hertel, P. T., Large, D., Stück, E. D. & Levy, A. Suppression-induced forgetting on a free-association test. Memory 20, 100–109 (2012).

    Article  PubMed  Google Scholar 

  69. Taubenfeld, A., Anderson, M. C. & Levy, D. A. The impact of retrieval suppression on conceptual implicit memory. Memory 27, 686–697 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang, Y., Luppi, A., Fawcett, J. & Anderson, M. C. Reconsidering unconscious persistence: suppressing unwanted memories reduces their indirect expression in later thoughts. Cognition 187, 78–94 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hertel, P. T., Maydon, A., Ogilvie, A. & Mor, N. Ruminators (unlike others) fail to show suppression-induced forgetting on indirect measures of memory. Clin. Psychol. Sci. 6, 872–881 (2018).

    Article  Google Scholar 

  72. Hu, X., Bergström, Z. M., Gagnepain, P. & Anderson, M. C. Suppressing unwanted memories reduces their unintended influences. Curr. Dir. Psychol. Sci. 26, 197–206 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Whitlock, J., Lo, Y.-P., Chiu, Y.-C. & Sahakyan, L. Eye movement analyses of strong and weak memories and goal-driven forgetting. Cognition 204, 104391 (2020).

    Article  PubMed  Google Scholar 

  74. Kulkarni, M., Nickel, A. E., Minor, G. N. & Hannula, D. E. Control of memory retrieval alters memory-based eye movements. J. Exp. Psychol. Learn. Mem. Cogn. 50, 1199–1219 (2023).

    Article  PubMed  Google Scholar 

  75. Anderson, M. C., Bunce, J. G. & Barbas, H. Prefrontal–hippocampal pathways underlying inhibitory control over memory. Neurobiol. Learn. Mem. 134, 145–161 (2016). Discusses pathways by which the prefrontal cortex could modulate hippocampal activity during retrieval stopping, based on detailed review of primate and rodent anatomical studies, and introduces the entorhinal gating and thalamo-hippocampal modulation hypotheses.

    Article  PubMed  Google Scholar 

  76. Anderson, M. C. et al. Neural systems underlying the suppression of unwanted memories. Science 303, 232–235 (2004). Introduces our fronto-hippocampal model of motivated forgetting, demonstrating the engagement of right dorsolateral prefrontal cortex and the suppression of hippocampal activity in helping us to forget unwanted thoughts.

    Article  CAS  PubMed  Google Scholar 

  77. Crespo-García, M., Wang, Y., Jiang, M., Anderson, M. C. & Lei, X. Anterior cingulate cortex signals the need to control intrusive thoughts during motivated forgetting. J. Neurosci. 42, 4342–4359 (2022). A rare simultaneous functional MRI/electroencephalography study revealing the dynamic interaction between the anterior cingulate cortex, which detects intrusive thoughts, and the right dorsolateral prefrontal cortex, to upregulate control by increasing hippocampal suppression via beta-oscillatory signals.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Schmitz, T. W., Correia, M. M., Ferreira, C. S., Prescot, A. P. & Anderson, M. C. Hippocampal GABA enables inhibitory control over unwanted thoughts. Nat. Commun. 8, 1311 (2017). Evidence that retrieval stopping engages GABAergic interneurons in the hippocampus to downregulate its activity and disrupt retention, implementing key aspects of inhibitory control.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sacchet, M. D. et al. Cognitive and neural consequences of memory suppression in major depressive disorder. Cogn. Affect. Behav. Neurosci. 17, 77–93 (2017).

    Article  PubMed  Google Scholar 

  80. Paz-Alonso, P. M., Bunge, S. A., Anderson, M. C. & Ghetti, S. Strength of coupling within a mnemonic control network differentiates those who can and cannot suppress memory retrieval. J. Neurosci. 33, 5017–5026 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Depue, B. E., Curran, T. & Banich, M. T. Prefrontal regions orchestrate suppression of emotional memories via a two-phase process. Science 317, 215–219 (2007). An early demonstration that retrieval stopping mechanisms could suppress the retrieval of aversive memories by modulation of the hippocampus and amygdala.

    Article  CAS  PubMed  Google Scholar 

  82. Depue, B. E., Orr, J. M., Smolker, H. R., Naaz, F. & Banich, M. T. The organization of right prefrontal networks reveals common mechanisms of inhibitory regulation across cognitive, emotional, and motor processes. Cereb. Cortex 26, 1634 (2016). Evidence for a region in the right dorsolateral prefrontal cortex mediating the stopping of actions, thoughts and affective responses.

    Article  CAS  PubMed  Google Scholar 

  83. Liu, Y. et al. Memory consolidation reconfigures neural pathways involved in the suppression of emotional memories. Nat. Commun. 7, 13375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Meyer, A.-K. & Benoit, R. G. Suppression weakens unwanted memories via a sustained reduction of neural reactivation. eLife 11, e71309 (2022). Evidence that retrieval stopping weakens representations of suppressed scenes, as reflected by reduced scene information in the parahippocampal place area both during suppression and on later retrieval tests for suppressed content.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sullivan, D. R. et al. Behavioral and neural correlates of memory suppression in PTSD. J. Psychiatr. Res. 112, 30–37 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Banich, M. T., Mackiewicz Seghete, K. L., Depue, B. E. & Burgess, G. C. Multiple modes of clearing one’s mind of current thoughts: overlapping and distinct neural systems. Neuropsychologia 69, 105–117 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. DeRosa, J., Kim, H., Lewis-Peacock, J. & Banich, M. T. Neural systems underlying the implementation of working memory removal operations. J. Neurosci. 44, e0283232023 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nee, D. E. et al. A meta-analysis of executive components of working memory. Cereb. Cortex 23, 264–282 (2013).

    Article  PubMed  Google Scholar 

  89. Lewis-Peacock, J. A., Kessler, Y. & Oberauer, K. The removal of information from working memory. Ann. N. Y. Acad. Sci. 1424, 33–44 (2018).

    Article  PubMed  Google Scholar 

  90. Diamond, A. Executive functions. Annu. Rev. Psychol. 64, 135–168 (2013).

    Article  PubMed  Google Scholar 

  91. Kane, M. J. & Engle, R. W. The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychon. Bull. Rev. 9, 637–671 (2002).

    Article  PubMed  Google Scholar 

  92. Kane, M. J., Bleckley, M. K., Conway, A. R. & Engle, R. W. A controlled-attention view of working-memory capacity. J. Exp. Psychol. Gen. 130, 169–183 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Wierzba, M. et al. Cognitive control over memory — individual differences in memory performance for emotional and neutral material. Sci. Rep. 8, 3808 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Eich, T. S., Lao, P. & Anderson, M. C. Cortical thickness in the right inferior frontal gyrus mediates age-related performance differences on an item-method directed forgetting task. Neurobiol. Aging 106, 95–102 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mitchell, J. P. et al. Separating sustained from transient aspects of cognitive control during thought suppression. Psychol. Sci. 18, 292–297 (2007).

    Article  PubMed  Google Scholar 

  96. Koenig-Robert, R. & Pearson, J. Decoding nonconscious thought representations during successful thought suppression. J. Cogn. Neurosci. 32, 2272–2284 (2020).

    Article  PubMed  Google Scholar 

  97. Conway, M. & Fthenaki, A. Disruption of inhibitory control of memory following lesions to the frontal and temporal lobes. Cortex 39, 667–686 (2003).

    Article  PubMed  Google Scholar 

  98. Jamadar, S. D., Fielding, J. & Egan, G. F. Quantitative meta-analysis of fMRI and PET studies reveals consistent activation in fronto-striatal-parietal regions and cerebellum during antisaccades and prosaccades. Front. Psychol. 4, 749 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Coe, B. C. & Munoz, D. P. Mechanisms of saccade suppression revealed in the anti-saccade task. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160192 (2017).

    Article  Google Scholar 

  100. Coiner, B. et al. Functional neuroanatomy of the human eye movement network: a review and atlas. Brain Struct. Funct. 224, 2603–2617 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Gavazzi, G. et al. Subregional prefrontal cortex recruitment as a function of inhibitory demand: an fMRI metanalysis. Neurosci. Biobehav. Rev. 152, 105285 (2023).

    Article  PubMed  Google Scholar 

  102. Fedorenko, E., Duncan, J. & Kanwisher, N. Broad domain generality in focal regions of frontal and parietal cortex. Proc. Natl Acad. Sci. USA 110, 16616–16621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Assem, M., Shashidhara, S., Glasser, M. F. & Duncan, J. Basis of executive functions in fine-grained architecture of cortical and subcortical human brain networks. Cereb. Cortex 34, bhad537 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Guo, Y., Schmitz, T. W., Mur, M., Ferreira, C. S. & Anderson, M. C. A supramodal role of the basal ganglia in memory and motor inhibition: meta-analytic evidence. Neuropsychologia 108, 117–134 (2018). A meta-analysis with convincing evidence for a role of the basal ganglia in retrieval stopping, and the colocalization of retrieval and action stopping activations.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hannah, R. & Aron, A. R. Towards real-world generalizability of a circuit for action-stopping. Nat. Rev. Neurosci. 22, 538–552 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Depue, B. E., Burgess, G. C., Willcutt, E. G., Ruzic, L. & Banich, M. T. Inhibitory control of memory retrieval and motor processing associated with the right lateral prefrontal cortex: evidence from deficits in individuals with ADHD. Neuropsychologia 48, 3909–3917 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Castiglione, A., Wagner, J., Anderson, M. & Aron, A. R. Preventing a thought from coming to mind elicits increased right frontal beta just as stopping action does. Cereb. Cortex 29, 2160–2172 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Mecklinger, A., Parra, M. & Waldhauser, G. T. ERP correlates of intentional forgetting. Brain Res. 1255, 132–147 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Streb, M., Mecklinger, A., Anderson, M. C., Johanna, L. H. & Michael, T. Memory control ability modulates intrusive memories after analogue trauma. J. Affect. Disord. 192, 134–142 (2016).

    Article  PubMed  Google Scholar 

  110. Chen, S., Mao, X. & Wu, Y. Can’t stop thinking: the role of cognitive control in suppression-induced forgetting. Neuropsychologia 172, 108274 (2022).

    Article  PubMed  Google Scholar 

  111. Subbulakshmi, S. Domain-General Control Mechanisms Underlying Stopping of Thought and Action. Doctoral thesis, University of Cambridge (2022).

  112. Gillie, B. L., Vasey, M. W. & Thayer, J. F. Heart rate variability predicts control over memory retrieval. Psychol. Sci. 25, 458–465 (2014).

    Article  PubMed  Google Scholar 

  113. Gunduz, T., Gunduz, H. & Cetinkaya, H. Increase in physiological inhibitory control results in better suppression of unwanted memories. Br. J. Psychol. 114, 908–927 (2023).

    Article  PubMed  Google Scholar 

  114. Hubbard, R. J. & Sahakyan, L. Differential recruitment of inhibitory control processes by directed forgetting and thought substitution. J. Neurosci. 43, 1963–1975 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Oehrn, C. R. et al. Direct electrophysiological evidence for prefrontal control of hippocampal processing during voluntary forgetting. Curr. Biol. 28, 3016–3022.e4 (2018). A rare glimpse of the electrophysiological mechanisms underlying intentional forgetting using intracranial recording in the human hippocampus and prefrontal cortex, providing temporally, spatially and mechanistically specific evidence for top-down control of memory.

    Article  CAS  PubMed  Google Scholar 

  116. Smolker, H. R., Friedman, N. P., Hewitt, J. K. & Banich, M. T. Neuroanatomical correlates of the unity and diversity model of executive function in young adults. Front. Hum. Neurosci. 12, 283 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Friedman, N. P. & Robbins, T. W. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 47, 72–89 (2022).

    Article  PubMed  Google Scholar 

  118. Badre, D. in The Frontal Cortex (eds Banich, M. T., Haber, S. N. & Robbins, T. W.) 109–130 (The MIT Press, 2024).

  119. Schachar, R. et al. Restraint and cancellation: multiple inhibition deficits in attention deficit hyperactivity disorder. J. Abnorm. Child Psychol. 35, 229–238 (2007).

    Article  PubMed  Google Scholar 

  120. Verbruggen, F. & Logan, G. D. Response inhibition in the stop-signal paradigm. Trends Cogn. Sci. 12, 418–424 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Dalley, J. W., Everitt, B. J. & Robbins, T. W. Impulsivity, compulsivity, and top-down cognitive control. Neuron 69, 680–694 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Raud, L., Westerhausen, R., Dooley, N. & Huster, R. J. Differences in unity: the go/no-go and stop signal tasks rely on different mechanisms. NeuroImage 210, 116582 (2020).

    Article  PubMed  Google Scholar 

  123. Swick, D., Ashley, V. & Turken, U. Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. NeuroImage 56, 1655–1665 (2011).

    Article  PubMed  Google Scholar 

  124. Zhang, R., Geng, X. & Lee, T. M. C. Large-scale functional neural network correlates of response inhibition: an fMRI meta-analysis. Brain Struct. Funct. 222, 3973–3990 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Cipolotti, L. et al. Inhibition processes are dissociable and lateralized in human prefrontal cortex. Neuropsychologia 93, 1–12 (2016).

    Article  PubMed  Google Scholar 

  126. Okayasu, M. et al. The Stroop effect involves an excitatory–inhibitory fronto-cerebellar loop. Nat. Commun. 14, 27 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bartolomeo, P. & Seidel Malkinson, T. Hemispheric lateralization of attention processes in the human brain. Curr. Opin. Psychol. 29, 90–96 (2019).

    Article  PubMed  Google Scholar 

  128. Parris, B. A. et al. An fMRI study of response and semantic conflict in the Stroop task. Front. Psychol. 10, 2426 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Huang, Y., Su, L. & Ma, Q. The Stroop effect: an activation likelihood estimation meta-analysis in healthy young adults. Neurosci. Lett. 716, 134683 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Noreen, S. & MacLeod, M. D. What do we really know about cognitive inhibition? Task demands and inhibitory effects across a range of memory and behavioural tasks. PLoS ONE 10, e0134951 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Anderson, M. C. & Levy, B. J. in Inhibition in Cognition (eds Gorfein, D. S. & MacLeod, C. M.) 81–102 (American Psychological Association, 2007).

  132. Schilling, C. J., Storm, B. C. & Anderson, M. C. Examining the costs and benefits of inhibition in memory retrieval. Cognition 133, 358–370 (2014).

    Article  PubMed  Google Scholar 

  133. Ochsner, K. N., Silvers, J. A. & Buhle, J. T. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann. N. Y. Acad. Sci. 1251, E1–E24 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Powers, J. P. & LaBar, K. S. Regulating emotion through distancing: a taxonomy, neurocognitive model, and supporting meta-analysis. Neurosci. Biobehav. Rev. 96, 155–173 (2019).

    Article  PubMed  Google Scholar 

  135. Morawetz, C., Bode, S., Derntl, B. & Heekeren, H. R. The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: a meta-analysis of fMRI studies. Neurosci. Biobehav. Rev. 72, 111–128 (2017).

    Article  PubMed  Google Scholar 

  136. Frank, D. W. et al. Emotion regulation: quantitative meta-analysis of functional activation and deactivation. Neurosci. Biobehav. Rev. 45, 202–211 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Fullana, M. A. et al. Fear extinction in the human brain: a meta-analysis of fMRI studies in healthy participants. Neurosci. Biobehav. Rev. 88, 16–25 (2018).

    Article  PubMed  Google Scholar 

  138. Anderson, M. C. & Floresco, S. B. Prefrontal–hippocampal interactions supporting the extinction of emotional memories: the retrieval stopping model. Neuropsychopharmacology 47, 180–195 (2022). Introduces a model of fear extinction which argues that extinction operates in part, by spontaneously recruiting stopping, and reviews human and animal evidence consistent with this proposal.

    Article  PubMed  Google Scholar 

  139. Hunt, K. J., Knight, L. K. & Depue, B. E. Related neural networks underlie suppression of emotion, memory, motor processes as identified by data-driven analysis. BMC Neurosci. 24, 44 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Liu, W., Peeters, N., Fernández, G. & Kohn, N. Common neural and transcriptional correlates of inhibitory control underlie emotion regulation and memory control. Soc. Cogn. Affect. Neurosci. 15, 523–536 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Diesburg, D. A., Greenlee, J. D. & Wessel, J. R. Cortico-subcortical β burst dynamics underlying movement cancellation in humans. eLife 10, e70270 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Choo, Y., Matzke, D., Bowren, M. D. Jr, Tranel, D. & Wessel, J. R. Right inferior frontal gyrus damage is associated with impaired initiation of inhibitory control, but not its implementation. eLife 11, e79667 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Swann, N. et al. Intracranial EEG reveals a time- and frequency-specific role for the right inferior frontal gyrus and primary motor cortex in stopping initiated responses. J. Neurosci. 29, 12675–12685 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wessel, J. R., Conner, C. R., Aron, A. R. & Tandon, N. Chronometric electrical stimulation of right inferior frontal cortex increases motor braking. J. Neurosci. 33, 19611–19619 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wagner, J., Wessel, J. R., Ghahremani, A. & Aron, A. R. Establishing a right frontal beta signature for stopping action in scalp EEG: implications for testing inhibitory control in other task contexts. J. Cogn. Neurosci. 30, 107–118 (2018).

    Article  PubMed  Google Scholar 

  146. Cole, M. W. et al. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat. Neurosci. 16, 1348–1355 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Boucher, L., Palmeri, T. J., Logan, G. D. & Schall, J. D. Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychol. Rev. 114, 376–397 (2007).

    Article  PubMed  Google Scholar 

  148. Coxon, J. P., Stinear, C. M. & Byblow, W. D. Intracortical inhibition during volitional inhibition of prepared action. J. Neurophysiol. 95, 3371–3383 (2006).

    Article  PubMed  Google Scholar 

  149. Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67, 105–134 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Rugg, M. D. & Vilberg, K. L. Brain networks underlying episodic memory retrieval. Curr. Opin. Neurobiol. 23, 255–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Hulbert, J. C., Henson, R. N. & Anderson, M. C. Inducing amnesia through systemic suppression. Nat. Commun. 7, 11003 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yang, W. et al. Behavioral and neural correlates of memory suppression in subthreshold depression. Psychiatry Res. Neuroimaging 297, 111030 (2020).

    Article  PubMed  Google Scholar 

  153. Butler, A. J. & James, K. H. The neural correlates of attempting to suppress negative versus neutral memories. Cogn. Affect. Behav. Neurosci. 10, 182–194 (2010).

    Article  PubMed  Google Scholar 

  154. Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Ekstrom, A. How and when the fMRI BOLD signal relates to underlying neural activity: the danger in dissociation. Brain Res. Rev. 62, 233–244 (2010).

    Article  PubMed  Google Scholar 

  156. Epp, S. M. et al. Two distinct modes of hemodynamic responses in the human brain. Preprint at bioRxiv https://doi.org/10.1101/2023.12.08.570806 (2023).

  157. Shmuel, A., Augath, M., Oeltermann, A. & Logothetis, N. K. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat. Neurosci. 9, 569–577 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Pasley, B. N., Inglis, B. A. & Freeman, R. D. Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex. NeuroImage 36, 269–276 (2007).

    Article  PubMed  Google Scholar 

  159. Mullinger, K. J., Mayhew, S. D., Bagshaw, A. P., Bowtell, R. & Francis, S. T. Evidence that the negative BOLD response is neuronal in origin: a simultaneous EEG–BOLD–CBF study in humans. NeuroImage 94, 263–274 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Lauritzen, M., Mathiesen, C., Schaefer, K. & Thomsen, K. J. Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses. NeuroImage 62, 1040–1050 (2012).

    Article  PubMed  Google Scholar 

  161. Boillat, Y., Xin, L., van der Zwaag, W. & Gruetter, R. Metabolite concentration changes associated with positive and negative BOLD responses in the human visual cortex: a functional MRS study at 7 tesla. J. Cereb. Blood Flow. Metab. 40, 488–500 (2020).

    Article  PubMed  Google Scholar 

  162. Rizio, A. A. & Dennis, N. A. The neural correlates of cognitive control: successful remembering and intentional forgetting. J. Cogn. Neurosci. 25, 297–312 (2013).

    Article  PubMed  Google Scholar 

  163. Fuentemilla, L. Memory: theta rhythm couples periodic reactivation during memory retrieval. Curr. Biol. 28, R1243–R1245 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Staresina, B. & Wimber, M. A neural chronometry of memory recall. Trends Cogn. Sci. 23, 1071–1085 (2019).

    Article  PubMed  Google Scholar 

  165. Herweg, N. A. et al. Theta-alpha oscillations bind the hippocampus, prefrontal cortex, and striatum during recollection: evidence from simultaneous EEG-fMRI. J. Neurosci. 36, 3579–3587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Düzel, E. et al. A multivariate, spatiotemporal analysis of electromagnetic time–frequency data of recognition memory. NeuroImage 18, 185–197 (2003).

    Article  PubMed  Google Scholar 

  167. Osipova, D. et al. Theta and gamma oscillations predict encoding and retrieval of declarative memory. J. Neurosci. 26, 7523–7531 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Guderian, S. & Düzel, E. Induced theta oscillations mediate large-scale synchrony with mediotemporal areas during recollection in humans. Hippocampus 15, 901–912 (2005).

    Article  PubMed  Google Scholar 

  169. Fuentemilla, L., Barnes, G. R., Düzel, E. & Levine, B. Theta oscillations orchestrate medial temporal lobe and neocortex in remembering autobiographical memories. NeuroImage 85, 730–737 (2014).

    Article  PubMed  Google Scholar 

  170. Kota, S., Rugg, M. D. & Lega, B. C. Hippocampal theta oscillations support successful associative memory formation. J. Neurosci. 40, 9507–9518 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Herweg, N. A., Solomon, E. A. & Kahana, M. J. Theta oscillations in human memory. Trends Cogn. Sci. 24, 208–227 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Kam, J. W. Y. et al. Default network and frontoparietal control network theta connectivity supports internal attention. Nat. Hum. Behav. 3, 1263–1270 (2019).

    Article  PubMed  Google Scholar 

  173. Satish, A., Hellerstedt, R., Anderson, M. C. & Bergström, Z. M. EEG evidence that morally relevant autobiographical memories can be suppressed. Cogn. Affect. Behav. Neurosci. 22, 1290–1310 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Waldhauser, G. T., Bäuml, K. H. T. & Hanslmayr, S. Brain oscillations mediate successful suppression of unwanted memories. Cereb. Cortex 25, 4180–4190 (2015). Careful exploration of the brain oscillatory mechanisms of retrieval stopping, including evidence that suppression reduces medial-temporal lobe theta.

    Article  PubMed  Google Scholar 

  175. Kim, H. Dissociating the roles of the default-mode, dorsal, and ventral networks in episodic memory retrieval. NeuroImage 50, 1648–1657 (2010).

    Article  PubMed  Google Scholar 

  176. Grady, C. L. Meta-analytic and functional connectivity evidence from functional magnetic resonance imaging for an anterior to posterior gradient of function along the hippocampal axis. Hippocampus 30, 456–471 (2020).

    Article  PubMed  Google Scholar 

  177. Rugg, M. D. et al. Item memory, context memory and the hippocampus: fMRI evidence. Neuropsychologia 50, 3070–3079 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Drew, T. W., McCollough, A. W. & Vogel, E. K. Event-related potential measures of visual working memory. Clin. EEG Neurosci. 37, 286–291 (2006).

    Article  PubMed  Google Scholar 

  179. Chen, C. et al. Suppression of aversive memories associates with changes in early and late stages of neurocognitive processing. Neuropsychologia 50, 2839–2848 (2012).

    Article  PubMed  Google Scholar 

  180. Bergström, Z. M., Velmans, M., de Fockert, J. & Richardson-Klavehn, A. ERP evidence for successful voluntary avoidance of conscious recollection. Brain Res. 1151, 119–133 (2007).

    Article  PubMed  Google Scholar 

  181. Lin, X. et al. Observing the suppression of individual aversive memories from conscious awareness. Cereb. Cortex 34, bhae080 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

    Article  CAS  PubMed  Google Scholar 

  183. Botvinick, M. M. Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cogn. Affect. Behav. Neurosci. 7, 356–366 (2007).

    Article  PubMed  Google Scholar 

  184. Alexander, W. H. & Brown, J. W. Hierarchical error representation: a computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Comput. 27, 2354–2410 (2015).

    Article  PubMed  Google Scholar 

  185. Vassena, E., Deraeve, J. & Alexander, W. H. Surprise, value and control in anterior cingulate cortex during speeded decision-making. Nat. Hum. Behav. 4, 412–422 (2020).

    Article  PubMed  Google Scholar 

  186. Cavanagh, J. F. & Frank, M. J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 18, 414–421 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Depue, B. E. et al. ERPs and neural oscillations during volitional suppression of memory retrieval. J. Cogn. Neurosci. 25, 1624–1633 (2013).

    Article  PubMed  Google Scholar 

  188. Kuhl, B. A., Dudukovic, N. M., Kahn, I. & Wagner, A. D. Decreased demands on cognitive control reveal the neural processing benefits of forgetting. Nat. Neurosci. 10, 908–914 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Leone, G. et al. Plasticity of human resilience mechanisms. Sci. Adv. 11, eadq8336 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Catarino, A., Küpper, C. S., Werner-Seidler, A., Dalgleish, T. & Anderson, M. C. Failing to forget: inhibitory-control deficits compromise memory suppression in posttraumatic stress disorder. Psychol. Sci. 26, 604–616 (2015).

    Article  PubMed  Google Scholar 

  191. Postel, C. et al. Variations in response to trauma and hippocampal subfield changes. Neurobiol. Stress 15, 100346 (2021). Detailed study of how the structural integrity of hippocampal subregions relates to deficits in intrusive memories of trauma and imaging markers of memory control ability in patients with post-traumatic stress disorder and traumatized controls.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Theves, S., Grande, X., Duzel, E. & Doeller, C. F. in The Oxford Handbook of Human Memory, Two Volume Pack (eds Kahana, M. J. & Wagner, A. D.) 988–1016 (Oxford Univ. Press, 2024).

  193. Depue, B. E. A neuroanatomical model of prefrontal inhibitory modulation of memory retrieval. Neurosci. Biobehav. Rev. 36, 1382–1399 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Wessel, J. R. & Aron, A. R. On the globality of motor suppression: unexpected events and their influence on behavior and cognition. Neuron 93, 259–280 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Badry, R. et al. Suppression of human cortico-motoneuronal excitability during the stop-signal task. Clin. Neurophysiol. 120, 1717–1723 (2009).

    Article  PubMed  Google Scholar 

  196. Anderson, M. C. & Subbulakshmi, S. Amnesia in healthy people via hippocampal inhibition: a new forgetting mechanism. Q. J. Exp. Psychol. 77, 1–13 (2024).

    Article  Google Scholar 

  197. Hulbert, J. C., Hirschstein, Z., Brontë, C. A. L. & Broughton, E. Unintended side effects of a spotless mind: theory and practice. Memory 26, 306–320 (2018).

    Article  PubMed  Google Scholar 

  198. Aggleton, J. P. & Brown, M. W. Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behav. Brain Sci. 22, 425–444 (1999).

    Article  CAS  PubMed  Google Scholar 

  199. Eichenbaum, H., Sauvage, M., Fortin, N., Komorowski, R. & Lipton, P. Towards a functional organization of episodic memory in the medial temporal lobe. Neurosci. Biobehav. Rev. 36, 1597–1608 (2012).

    Article  PubMed  Google Scholar 

  200. Eichenbaum, H., Yonelinas, A. R. & Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30, 123–152 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zhu, Z., Anderson, M. C. & Wang, Y. Inducing forgetting of unwanted memories through subliminal reactivation. Nat. Commun. 13, 6496 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhu, Z. & Wang, Y. Forgetting unrelated episodic memories through suppression-induced amnesia. J. Exp. Psychol. Gen. 150, 401–413 (2021).

    Article  PubMed  Google Scholar 

  203. Duss, S. B., Oggier, S., Reber, T. P. & Henke, K. Formation of semantic associations between subliminally presented face-word pairs. Conscious. Cogn. 20, 928–935 (2011).

    Article  PubMed  Google Scholar 

  204. Henke, K. et al. Nonconscious formation and reactivation of semantic associations by way of the medial temporal lobe. Neuropsychologia 41, 863–876 (2003).

    Article  PubMed  Google Scholar 

  205. Reber, T. P., Luechinger, R., Boesiger, P. & Henke, K. Unconscious relational inference recruits the hippocampus. J. Neurosci. 32, 6138–6148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Duss, S. B. et al. Unconscious relational encoding depends on hippocampus. Brain J. Neurol. 137, 3355–3370 (2014).

    Article  Google Scholar 

  207. Degonda, N. et al. Implicit associative learning engages the hippocampus and interacts with explicit associative learning. Neuron 46, 505–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  208. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  209. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  PubMed  Google Scholar 

  210. Barbas, H. et al. Relationship of prefrontal connections to inhibitory systems in superior temporal areas in the rhesus monkey. Cereb. Cortex 15, 1356–1370 (2005).

    Article  CAS  PubMed  Google Scholar 

  211. Germuska, M., Saha, S., Fiala, J. & Barbas, H. Synaptic distinction of laminar-specific prefrontal–temporal pathways in primates. Cereb. Cortex 16, 865–875 (2006).

    Article  PubMed  Google Scholar 

  212. Medalla, M., Lera, P., Feinberg, M. & Barbas, H. Specificity in inhibitory systems associated with prefrontal pathways to temporal cortex in primates. Cereb. Cortex 17, i136–i150 (2007).

    Article  PubMed  Google Scholar 

  213. White, E. L. in Cortical Circuits: Synaptic Organization of the Cerebral Cortex Structure, Function, and Theory (ed. White, E. L.) 46–82 (Birkhäuser, 1989).

  214. Grill-Spector, K., Kushnir, T., Hendler, T. & Malach, R. The dynamics of object-selective activation correlate with recognition performance in humans. Nat. Neurosci. 3, 837–843 (2000).

    Article  CAS  PubMed  Google Scholar 

  215. Bar, M. et al. Cortical mechanisms specific to explicit visual object recognition. Neuron 29, 529–535 (2001).

    Article  CAS  PubMed  Google Scholar 

  216. Henson, R. N. A. Neuroimaging studies of priming. Prog. Neurobiol. 70, 53–81 (2003).

    Article  CAS  PubMed  Google Scholar 

  217. Barron, H. C., Garvert, M. M. & Behrens, T. E. J. Repetition suppression: a means to index neural representations using BOLD? Philos. Trans. R. Soc. B Biol. Sci. 371, 20150355 (2016).

    Article  Google Scholar 

  218. Hannula, D. E. & Ranganath, C. The eyes have it: hippocampal activity predicts expression of memory in eye movements. Neuron 63, 592–599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Sheldon, S. A. M. & Moscovitch, M. Recollective performance advantages for implicit memory tasks. Memory 18, 681–697 (2010).

    Article  PubMed  Google Scholar 

  220. Wimmer, G. E. & Shohamy, D. Preference by association: how memory mechanisms in the hippocampus bias decisions. Science 338, 270–273 (2012).

    Article  CAS  PubMed  Google Scholar 

  221. Staresina, B. P. et al. Recollection in the human hippocampal–entorhinal cell circuitry. Nat. Commun. 10, 1503 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Danker, J. F. & Anderson, J. R. The ghosts of brain states past: remembering reactivates the brain regions engaged during encoding. Psychol. Bull. 136, 87–102 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  223. McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    Article  PubMed  Google Scholar 

  224. Hannula, D. E. & Greene, A. J. The hippocampus reevaluated in unconscious learning and memory: at a tipping point? Front. Hum. Neurosci. 6, 80 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Moscovitch, M. The hippocampus as a ‘stupid,’ domain-specific module: implications for theories of recent and remote memory, and of imagination. Can. J. Exp. Psychol. Rev. Can. Psychol. Exp. 62, 62–79 (2008).

    Article  Google Scholar 

  226. Wimber, M., Maaß, A., Staudigl, T., Richardson-Klavehn, A. & Hanslmayr, S. Rapid memory reactivation revealed by oscillatory entrainment. Curr. Biol. 22, 1482–1486 (2012).

    Article  CAS  PubMed  Google Scholar 

  227. Waldhauser, G. T., Braun, V. & Hanslmayr, S. Episodic memory retrieval functionally relies on very rapid reactivation of sensory information. J. Neurosci. 36, 251–260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Aggleton, J. P. A description of the amygdalo-hippocampal interconnections in the macaque monkey. Exp. Brain Res. 64, 515–526 (1986).

    Article  CAS  PubMed  Google Scholar 

  229. Saunders, R. C., Rosene, D. L. & Van Hoesen, G. W. Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non-reciprocal connections. J. Comp. Neurol. 271, 185–207 (1988).

    Article  CAS  PubMed  Google Scholar 

  230. Suzuki, W. A. Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: organization of cortical inputs and interconnections with amygdala and striatum. Semin. Neurosci. 8, 3–12 (1996).

    Article  Google Scholar 

  231. Witter, M. P., Groenewegen, H. J., Lopes da Silva, F. H. & Lohman, A. H. Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog. Neurobiol. 33, 161–253 (1989).

    Article  CAS  PubMed  Google Scholar 

  232. Mamat, Z. & Anderson, M. C. Improving mental health by training the suppression of unwanted thoughts. Sci. Adv. 9, eadh5292 (2023). An early experimental demonstration that training people to suppress upsetting thoughts of feared future events significantly improves mental health, contrary to widespread clinical belief.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Fawcett, J. M., Lawrence, M. A. & Taylor, T. L. The representational consequences of intentional forgetting: impairments to both the probability and fidelity of long-term memory. J. Exp. Psychol. Gen. 145, 56–81 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Yan, Y. et al. Reduced hippocampal–cortical connectivity during memory suppression predicts the ability to forget unwanted memories. Cereb. Cortex 33, 4189–4201 (2023).

    Article  PubMed  Google Scholar 

  235. Benoit, R. G., Davies, D. J. & Anderson, M. C. Reducing future fears by suppressing the brain mechanisms underlying episodic simulation. Proc. Natl Acad. Sci. USA 113, E8492–E8501 (2016). An important extension of the retrieval stopping model of memory control to the control of future fears, rather than memories of the past, relating this ability to anxiety.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Nishiyama, S. & Saito, S. Retrieval stopping can reduce distress from aversive memories. Cogn. Emot. 36, 957–974 (2022).

    Article  PubMed  Google Scholar 

  237. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  238. Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Yantis, S. & Jonides, J. Abrupt visual onsets and selective attention: evidence from visual search. J. Exp. Psychol. Hum. Percept. Perform. 10, 601–621 (1984).

    Article  CAS  PubMed  Google Scholar 

  240. Luck, S. J., Gaspelin, N., Folk, C. L., Remington, R. W. & Theeuwes, J. Progress toward resolving the attentional capture debate. Vis. Cogn. 29, 1–21 (2021).

    Article  PubMed  Google Scholar 

  241. Cabeza, R., Ciaramelli, E., Olson, I. R. & Moscovitch, M. The parietal cortex and episodic memory: an attentional account. Nat. Rev. Neurosci. 9, 613–625 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Cabeza, R., Ciaramelli, E. & Moscovitch, M. Cognitive contributions of the ventral parietal cortex: an integrative theoretical account. Trends Cogn. Sci. 16, 338–352 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Posner, M. I. Orienting of attention. Q. J. Exp. Psychol. 32, 3–25 (1980).

    Article  CAS  PubMed  Google Scholar 

  244. Anderson, M. C. & Spellman, B. A. On the status of inhibitory mechanisms in cognition: memory retrieval as a model case. Psychol. Rev. 102, 68–100 (1995).

    Article  CAS  PubMed  Google Scholar 

  245. Verschooren, S. & Egner, T. When the mind’s eye prevails: the internal dominance over external attention (IDEA) hypothesis. Psychon. Bull. Rev. 30, 1668–1688 (2023).

    Article  PubMed  Google Scholar 

  246. van Ede, F. & Nobre, A. C. Turning attention inside out: how working memory serves behavior. Annu. Rev. Psychol. 74, 137–165 (2023).

    Article  PubMed  Google Scholar 

  247. Cai, W., Ryali, S., Chen, T., Li, C.-S. R. & Menon, V. Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets. J. Neurosci. 34, 14652–14667 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Molnar-Szakacs, I. & Uddin, L. Q. Anterior insula as a gatekeeper of executive control. Neurosci. Biobehav. Rev. 139, 104736 (2022).

    Article  PubMed  Google Scholar 

  249. Menon, V. & D’Esposito, M. The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology 47, 90–103 (2022).

    Article  PubMed  Google Scholar 

  250. Sridharan, D., Levitin, D. J. & Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl Acad. Sci. USA 105, 12569–12574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Yang, W. et al. Memory suppression ability can be robustly predicted by the internetwork communication of frontoparietal control network. Cereb. Cortex 31, 3451–3461 (2021).

    Article  PubMed  Google Scholar 

  252. Shulman, G. L., Astafiev, S. V., McAvoy, M. P., d’Avossa, G. & Corbetta, M. Right TPJ deactivation during visual search: functional significance and support for a filter hypothesis. Cereb. Cortex 17, 2625–2633 (2007).

    Article  PubMed  Google Scholar 

  253. Solís‐Vivanco, R., Jensen, O. & Bonnefond, M. New insights on the ventral attention network: active suppression and involuntary recruitment during a bimodal task. Hum. Brain Mapp. 42, 1699–1713 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Todd, J. J., Fougnie, D. & Marois, R. Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness. Psychol. Sci. 16, 965–972 (2005).

    Article  PubMed  Google Scholar 

  255. Malik, R., Li, Y., Schamiloglu, S. & Sohal, V. S. Top-down control of hippocampal signal-to-noise by prefrontal long-range inhibition. Cell 185, 1602–1617.e17 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Barbas, H., Ghashghaei, H., Dombrowski, S. M. & Rempel-Clower, N. L. Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. J. Comp. Neurol. 410, 343–367 (1999).

    Article  CAS  PubMed  Google Scholar 

  257. Ghashghaei, H. T., Hilgetag, C. C. & Barbas, H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage 34, 905–923 (2007).

    Article  CAS  PubMed  Google Scholar 

  258. Ongür, D., An, X. & Price, J. L. Prefrontal cortical projections to the hypothalamus in macaque monkeys. J. Comp. Neurol. 401, 480–505 (1998).

    Article  PubMed  Google Scholar 

  259. Rempel-Clower, N. L. & Barbas, H. Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 398, 393–419 (1998).

    Article  CAS  PubMed  Google Scholar 

  260. Barbas, H. & Blatt, G. J. Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus 5, 511–533 (1995).

    Article  CAS  PubMed  Google Scholar 

  261. Cavada, C., Compañy, T., Tejedor, J., Cruz-Rizzolo, R. J. & Reinoso-Suárez, F. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb. Cortex 10, 220–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  262. Insausti, R. & Muñoz, M. Cortical projections of the non-entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis). Eur. J. Neurosci. 14, 435–451 (2001).

    Article  CAS  PubMed  Google Scholar 

  263. Rosene, D. L. & Van Hoesen, G. W. Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198, 315–317 (1977).

    Article  CAS  PubMed  Google Scholar 

  264. Apergis-Schoute, J., Pinto, A. & Paré, D. Ultrastructural organization of medial prefrontal inputs to the rhinal cortices. Eur. J. Neurosci. 24, 135–144 (2006).

    Article  PubMed  Google Scholar 

  265. Bunce, J. G., Zikopoulos, B., Feinberg, M. & Barbas, H. Parallel prefrontal pathways reach distinct excitatory and inhibitory systems in memory-related rhinal cortices. J. Comp. Neurol. 521, 4260–4283 (2013).

    Article  PubMed  Google Scholar 

  266. Ludowig, E. et al. Active suppression in the mediotemporal lobe during directed forgetting. Neurobiol. Learn. Mem. 93, 352–361 (2010).

    Article  PubMed  Google Scholar 

  267. Barbas, H., Henion, T. H. & Dermon, C. R. Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 313, 65–94 (1991).

    Article  CAS  PubMed  Google Scholar 

  268. Dermon, C. R. & Barbas, H. Contralateral thalamic projections predominantly reach transitional cortices in the rhesus monkey. J. Comp. Neurol. 344, 508–531 (1994).

    Article  CAS  PubMed  Google Scholar 

  269. Bertram, E. H. & Zhang, D. X. Thalamic excitation of hippocampal CA1 neurons: a comparison with the effects of CA3 stimulation. Neuroscience 92, 15–26 (1999).

    Article  CAS  PubMed  Google Scholar 

  270. Cassel, J.-C. et al. The reuniens and rhomboid nuclei: neuroanatomy, electrophysiological characteristics and behavioral implications. Prog. Neurobiol. 111, 34–52 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Dolleman-Van der Weel, M. J. & Witter, M. P. Nucleus reuniens thalami innervates gamma aminobutyric acid positive cells in hippocampal field CA1 of the rat. Neurosci. Lett. 278, 145–148 (2000).

    Article  CAS  PubMed  Google Scholar 

  272. Varela, C., Kumar, S., Yang, J. Y. & Wilson, M. A. Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Struct. Funct. 219, 911–929 (2014).

    Article  CAS  PubMed  Google Scholar 

  273. Vertes, R. P. Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142, 1–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  274. Vertes, R. P., Hoover, W. B., Szigeti-Buck, K. & Leranth, C. Nucleus reuniens of the midline thalamus: link between the medial prefrontal cortex and the hippocampus. Brain Res. Bull. 71, 601–609 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Andrianova, L. et al. Hippocampal CA1 pyramidal cells do not receive monosynaptic input from thalamic nucleus reuniens. Preprint at bioRxiv https://doi.org/10.1101/2021.09.30.462517 (2021).

  276. Plas, S. L. et al. Neural circuits for the adaptive regulation of fear and extinction memory. Front. Behav. Neurosci. 18, 1352797 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Totty, M. S. et al. Thalamic nucleus reuniens coordinates prefrontal-hippocampal synchrony to suppress extinguished fear. Nat. Commun. 14, 6565 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Ratigan, H. C., Krishnan, S., Smith, S. & Sheffield, M. E. J. A thalamic-hippocampal CA1 signal for contextual fear memory suppression, extinction, and discrimination. Nat. Commun. 14, 6758 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Vertes, R. P., Hoover, W. B. & Viana Di Prisco, G. Theta rhythm of the hippocampus: subcortical control and functional significance. Behav. Cogn. Neurosci. Rev. 3, 173–200 (2004).

    Article  PubMed  Google Scholar 

  280. Freund, T. F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  281. Hangya, B., Borhegyi, Z., Szilágyi, N., Freund, T. F. & Varga, V. GABAergic neurons of the medial septum lead the hippocampal network during theta activity. J. Neurosci. 29, 8094–8102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Tzilivaki, A. et al. Hippocampal GABAergic interneurons and memory. Neuron 111, 3154–3175 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Hasselmo, M. E., Bodelón, C. & Wyble, B. P. A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 14, 793–817 (2002).

    Article  PubMed  Google Scholar 

  284. Mizumori, S. J., Perez, G. M., Alvarado, M. C., Barnes, C. A. & McNaughton, B. L. Reversible inactivation of the medial septum differentially affects two forms of learning in rats. Brain Res. 528, 12–20 (1990).

    Article  CAS  PubMed  Google Scholar 

  285. Butler, T. et al. Volume of the human septal forebrain region is a predictor of source memory accuracy. J. Int. Neuropsychol. Soc. 18, 157–161 (2012).

    Article  PubMed  Google Scholar 

  286. Tsanov, M. Basal forebrain impairment: understanding the mnemonic function of the septal region translates in therapeutic advances. Front. Neural Circuits 16, 916499 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Sans-Dublanc, A. et al. Septal GABAergic inputs to CA1 govern contextual memory retrieval. Sci. Adv. 6, eaba5003 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Tóth, K., Freund, T. F. & Miles, R. Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. J. Physiol. 500, 463–474 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Vertes, R. P. in Handbook of Behavioral Neuroscience (eds Müller, C. P. & Jacobs, B. L.) Vol. 21 277–292 (Elsevier, 2010).

  290. Vertes, R. P., Fortin, W. J. & Crane, A. M. Projections of the median raphe nucleus in the rat. J. Comp. Neurol. 407, 555–582 (1999).

    Article  CAS  PubMed  Google Scholar 

  291. Schnider, A. & Ptak, R. Spontaneous confabulators fail to suppress currently irrelevant memory traces. Nat. Neurosci. 2, 677–681 (1999).

    Article  CAS  PubMed  Google Scholar 

  292. Schnider, A. Spontaneous confabulation and the adaptation of thought to ongoing reality. Nat. Rev. Neurosci. 4, 662–671 (2003).

    Article  CAS  PubMed  Google Scholar 

  293. Hasselmo, M. E., Schnell, E. & Barkai, E. Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. J. Neurosci. 15, 5249–5262 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Meeter, M., Murre, J. M. J. & Talamini, L. M. Mode shifting between storage and recall based on novelty detection in oscillating hippocampal circuits. Hippocampus 14, 722–741 (2004).

    Article  CAS  PubMed  Google Scholar 

  295. Zandbelt, B. B. & Vink, M. On the role of the striatum in response inhibition. PLoS ONE 5, e13848 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Zandbelt, B. B., Bloemendaal, M., Hoogendam, J. M., Kahn, R. S. & Vink, M. Transcranial magnetic stimulation and functional MRI reveal cortical and subcortical interactions during stop-signal response inhibition. J. Cogn. Neurosci. 25, 157–174 (2013).

    Article  PubMed  Google Scholar 

  297. Pas, P., Plessis, S. D., van den Munkhof, H. E., Gladwin, T. E. & Vink, M. Using subjective expectations to model the neural underpinnings of proactive inhibition. Eur. J. Neurosci. 49, 1575–1586 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Vink, M., Kaldewaij, R., Zandbelt, B. B., Pas, P. & du Plessis, S. The role of stop-signal probability and expectation in proactive inhibition. Eur. J. Neurosci. 41, 1086–1094 (2015).

    Article  PubMed  Google Scholar 

  299. Majid, D. S. A., Cai, W., Corey-Bloom, J. & Aron, A. R. Proactive selective response suppression is implemented via the basal ganglia. J. Neurosci. 33, 13259–13269 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Diesburg, D. A. & Wessel, J. R. The pause-then-cancel model of human action-stopping: theoretical considerations and empirical evidence. Neurosci. Biobehav. Rev. 129, 17–34 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  301. Chatham, C. H. & Badre, D. Multiple gates on working memory. Curr. Opin. Behav. Sci. 1, 23–31 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Hirsch, C. R. & Mathews, A. A cognitive model of pathological worry. Behav. Res. Ther. 50, 636–646 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Watkins, E. R. & Roberts, H. Reflecting on rumination: consequences, causes, mechanisms and treatment of rumination. Behav. Res. Ther. 127, 103573 (2020).

    Article  PubMed  Google Scholar 

  304. Schacter, D. L., Benoit, R. G., De Brigard, F. & Szpunar, K. K. Episodic future thinking and episodic counterfactual thinking: intersections between memory and decisions. Neurobiol. Learn. Mem. 117, 14–21 (2015).

    Article  PubMed  Google Scholar 

  305. Benoit, R. G. & Schacter, D. L. Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia 75, 450–457 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Waldhauser, G. T. et al. The neural dynamics of deficient memory control in heavily traumatized refugees. Sci. Rep. 8, 13132 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Leone, G. et al. Altered predictive control during memory suppression in PTSD. Nat. Commun. 13, 3300 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Hertel, P. T. & Gerstle, M. Depressive deficits in forgetting. Psychol. Sci. 14, 573–578 (2003).

    Article  PubMed  Google Scholar 

  309. Noreen, S. & Ridout, N. Intentional forgetting in dysphoria: investigating the inhibitory effects of thought substitution using independent cues. J. Behav. Ther. Exp. Psychiatry 52, 110–118 (2016).

    Article  PubMed  Google Scholar 

  310. Zhang, D., Xie, H., Liu, Y. & Luo, Y. Neural correlates underlying impaired memory facilitation and suppression of negative material in depression. Sci. Rep. 6, 37556 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Marzi, T., Regina, A. & Righi, S. Emotions shape memory suppression in trait anxiety. Front. Psychol. 4, 1001 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  312. Fawcett, J. M. et al. The origins of repetitive thought in rumination: separating cognitive style from deficits in inhibitory control over memory. J. Behav. Ther. Exp. Psychiatry 47, 1–8 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  313. Quaedflieg, C. W. E. M., Schneider, T. R., Daume, J. & Engel, A. K. Stress impairs intentional memory control through altered theta oscillations in lateral parietal cortex. J. Neurosci. 40, 7739–7748 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Harrington, M. O. & Cairney, S. A. Sleep loss gives rise to intrusive thoughts. Trends Cogn. Sci. 25, 434–436 (2021).

    Article  PubMed  Google Scholar 

  315. Quaedflieg, C. W. E. M., Stoffregen, H. & Ashton, S. M. Cortisol reactivity impairs suppression-induced forgetting. Psychoneuroendocrinology 142, 105774 (2022).

    Article  CAS  PubMed  Google Scholar 

  316. Ashton, S. M., Benoit, R. G. & Quaedflieg, C. W. E. M. The impairing effect of acute stress on suppression-induced forgetting of future fears and its moderation by working memory capacity. Psychoneuroendocrinology 120, 104790 (2020).

    Article  CAS  PubMed  Google Scholar 

  317. Harrington, M. O. et al. Memory control deficits in the sleep-deprived human brain. Proc. Natl Acad. Sci. USA 122, e2400743122 (2025).

    Article  CAS  PubMed  Google Scholar 

  318. Caspi, A. & Moffitt, T. E. All for one and one for all: mental disorders in one dimension. Am. J. Psychiatry 175, 831–844 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  319. Sevenster, D., Visser, R. M. & D’Hooge, R. A translational perspective on neural circuits of fear extinction: current promises and challenges. Neurobiol. Learn. Mem. 155, 113–126 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  320. Fullana, M. A. et al. Human fear conditioning: from neuroscience to the clinic. Behav. Res. Ther. 124, 103528 (2020).

    Article  CAS  PubMed  Google Scholar 

  321. Singewald, N. & Holmes, A. Rodent models of impaired fear extinction. Psychopharmacology 236, 21–32 (2019).

    Article  CAS  PubMed  Google Scholar 

  322. Craske, M. G., Hermans, D. & Vervliet, B. State-of-the-art and future directions for extinction as a translational model for fear and anxiety. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170025 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  323. Dunsmoor, J. E., Cisler, J. M., Fonzo, G. A., Creech, S. K. & Nemeroff, C. B. Laboratory models of post-traumatic stress disorder: the elusive bridge to translation. Neuron 110, 1754–1776 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Wang, Y., Zhu, Z., Hu, J., Schiller, D. & Li, J. Active suppression prevents the return of threat memory in humans. Commun. Biol. 4, 609 (2021). An early demonstration that retrieval suppression might augment fear extinction, improving its durability and generalizability.

    Article  PubMed  PubMed Central  Google Scholar 

  325. Kalisch, R., Russo, S. J. & Müller, M. B. Neurobiology and systems biology of stress resilience. Physiol. Rev. 104, 1205–1263 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  326. Hulbert, J. C. & Anderson, M. C. What doesn’t kill you makes you stronger: psychological trauma and its relationship to enhanced memory control. J. Exp. Psychol. Gen. 147, 1931–1949 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  327. Berry, J. A., Guhle, D. C. & Davis, R. L. Active forgetting and neuropsychiatric diseases. Mol. Psychiatry 29, 2810–2820 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Burback, L., Brult-Phillips, S., Nijdam, M. J., McFarlane, A. & Vermetten, E. Treatment of posttraumatic stress disorder: a state-of-the-art review. Curr. Neuropharmacol. 22, 557–635 (2024).

    Article  CAS  PubMed  Google Scholar 

  329. Miyake, A. et al. The unity and diversity of executive functions and their contributions to complex ‘frontal lobe’ tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100 (2000).

    Article  CAS  PubMed  Google Scholar 

  330. Brewin, C. R. The nature and significance of memory disturbance in posttraumatic stress disorder. Annu. Rev. Clin. Psychol. 7, 203–227 (2011). Synthesis of evidence for memory deficits in post-traumatic stress disorder and their implications.

    Article  PubMed  Google Scholar 

  331. Guez, J. et al. Traumatic stress is linked to a deficit in associative episodic memory. J. Trauma. Stress 24, 260–267 (2011).

    Article  PubMed  Google Scholar 

  332. Guez, J. et al. Associative memory impairment in acute stress disorder: characteristics and time course. Psychiatry Res. 209, 479–484 (2013).

    Article  PubMed  Google Scholar 

  333. Kopelman, M. D. Anomalies of autobiographical memory. J. Int. Neuropsychol. Soc. 25, 1061–1075 (2019).

    Article  PubMed  Google Scholar 

  334. Marsh, L. C. et al. Prefrontally mediated inhibition of memory systems in dissociative amnesia. Psychol. Med. 54, 1–9 (2025).

    PubMed  Google Scholar 

  335. Anderson, M. C. & Huddleston, E. in True and False Recovered Memories: Toward a Reconciliation of the Debate (ed. Belli, R. F.) 53–120 (Springer, 2012).

  336. Nørby, S. Mnemonic emotion regulation: a three-process model. Cogn. Emot. 33, 959–975 (2019).

    Article  PubMed  Google Scholar 

  337. Fawcett, J. M. & Hulbert, J. C. The many faces of forgetting: toward a constructive view of forgetting in everyday life. J. Appl. Res. Mem. Cogn. 9, 1–18 (2020).

    Article  Google Scholar 

  338. Nørby, S. Forgetting and emotion regulation in mental health, anxiety and depression. Memory 26, 342–363 (2018).

    Article  PubMed  Google Scholar 

  339. Satish, A., Hellerstedt, R., Anderson, M. C. & Bergström, Z. M. Memory control immediately improves unpleasant emotions associated with autobiographical memories of past immoral actions. Cogn. Emot. 38, 1032–1047 (2024).

    Article  PubMed  Google Scholar 

  340. Chalkia, A., Vanhasbroeck, N., Van Oudenhove, L., Kindt, M. & Beckers, T. Emotional associative memory is disrupted by directed forgetting. Commun. Psychol. 1, 24 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  341. Hayes-Skelton, S. A. & Eustis, E. H. in Clinical Handbook of Fear and Anxiety: Maintenance Processes and Treatment Mechanisms (eds Abramowitz, J. S. & Blakey, S. M.) 115–131 (American Psychological Association, 2020).

  342. Wegner, D. M. Ironic processes of mental control. Psychol. Rev. 101, 34–52 (1994).

    Article  CAS  PubMed  Google Scholar 

  343. Wegner, D. M. How to think, say, or do precisely the worst thing for any occasion. Science 325, 48–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  344. Pelkey, K. A. et al. Hippocampal GABAergic inhibitory interneurons. Physiol. Rev. 97, 1619–1747 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Heckers, S. & Konradi, C. GABAergic mechanisms of hippocampal hyperactivity in schizophrenia. Schizophr. Res. 167, 4–11 (2015). Reviews diverse evidence for the role of hippocampal GABAergic in schizophrenia, illustrating how deficient control over hippocampal activity can promote intrusive symptoms.

    Article  PubMed  Google Scholar 

  346. Osuch, E. A. et al. Regional cerebral blood flow correlated with flashback intensity in patients with posttraumatic stress disorder. Biol. Psychiatry 50, 246–253 (2001).

    Article  CAS  PubMed  Google Scholar 

  347. Patel, R., Spreng, R. N., Shin, L. M. & Girard, T. A. Neurocircuitry models of posttraumatic stress disorder and beyond: a meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 36, 2130–2142 (2012).

    Article  PubMed  Google Scholar 

  348. Tregellas, J. R. et al. Intrinsic hippocampal activity as a biomarker for cognition and symptoms in schizophrenia. Am. J. Psychiatry 171, 549–556 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  349. Konradi, C. et al. Hippocampal interneurons are abnormal in schizophrenia. Schizophr. Res. 131, 165–173 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  350. Whitfield-Gabrieli, S. & Ford, J. M. Default mode network activity and connectivity in psychopathology. Annu. Rev. Clin. Psychol. 8, 49–76 (2012). Influential review documenting the prevalence of default network hyperactivity in mental illness, consistent with the current proposal that inhibitory regulation of hippocampal activity helps control intrusive symptomatology.

    Article  PubMed  Google Scholar 

  351. Sheline, Y. I. et al. The default mode network and self-referential processes in depression. Proc. Natl Acad. Sci. USA 106, 1942–1947 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Lieberman, J. A. et al. Hippocampal dysfunction in the pathophysiology of schizophrenia: a selective review and hypothesis for early detection and intervention. Mol. Psychiatry 23, 1764–1772 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Roeske, M. J., Konradi, C., Heckers, S. & Lewis, A. S. Hippocampal volume and hippocampal neuron density, number and size in schizophrenia: a systematic review and meta-analysis of postmortem studies. Mol. Psychiatry 26, 3524–3535 (2021).

    Article  PubMed  Google Scholar 

  354. Gilani, A. I. et al. Interneuron precursor transplants in adult hippocampus reverse psychosis-relevant features in a mouse model of hippocampal disinhibition. Proc. Natl Acad. Sci. USA 111, 7450–7455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Schobel, S. A. et al. Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron 78, 81–93 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Rayner, G., Jackson, G. & Wilson, S. Cognition-related brain networks underpin the symptoms of unipolar depression: evidence from a systematic review. Neurosci. Biobehav. Rev. 61, 53–65 (2016).

    Article  PubMed  Google Scholar 

  357. Hu, W., Zhang, M., Czéh, B., Flügge, G. & Zhang, W. Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network. Neuropsychopharmacol 35, 1693–1707 (2010).

    Article  CAS  Google Scholar 

  358. Chen, S. et al. Defects of parvalbumin-positive interneurons in the ventral dentate gyrus region are implicated depression-like behavior in mice. Brain Behav. Immun. 99, 27–42 (2022).

    Article  CAS  PubMed  Google Scholar 

  359. Perez-Rando, M. et al. Impact of stress on inhibitory neuronal circuits, our tribute to Bruce McEwen. Neurobiol. Stress 19, 100460 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Crestani, F. et al. Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat. Neurosci. 2, 833–839 (1999).

    Article  CAS  PubMed  Google Scholar 

  361. Crestani, F. et al. Trace fear conditioning involves hippocampal alpha5 GABA(A) receptors. Proc. Natl Acad. Sci. USA 99, 8980–8985 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Yee, B. K. et al. GABA receptors containing the alpha5 subunit mediate the trace effect in aversive and appetitive conditioning and extinction of conditioned fear. Eur. J. Neurosci. 20, 1928–1936 (2004).

    Article  PubMed  Google Scholar 

  363. Hatoum, A. S. et al. Genome-wide association study shows that executive functioning is influenced by GABAergic processes and is a neurocognitive genetic correlate of psychiatric disorders. Biol. Psychiatry 93, 59–70 (2023).

    Article  CAS  PubMed  Google Scholar 

  364. Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N. & Andrews-Hanna, J. R. Mind-wandering as spontaneous thought: a dynamic framework. Nat. Rev. Neurosci. 17, 718–731 (2016).

    Article  CAS  PubMed  Google Scholar 

  365. Kucyi, A., Kam, J. W. Y., Andrews-Hanna, J. R., Christoff, K. & Whitfield-Gabrieli, S. Recent advances in the neuroscience of spontaneous and off-task thought: implications for mental health. Nat. Ment. Health 1, 827–840 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  366. Smallwood, J. & Schooler, J. W. The science of mind wandering: empirically navigating the stream of consciousness. Annu. Rev. Psychol. 66, 487–518 (2015).

    Article  PubMed  Google Scholar 

  367. Xia, C. H. et al. Linked dimensions of psychopathology and connectivity in functional brain networks. Nat. Commun. 9, 3003 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Medical Research Council grant MC-A060-5PR00 (M.C.A.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission. M.C.A. wrote the article.

Corresponding author

Correspondence to Michael C. Anderson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Default mode network

(DMN). A group of functionally connected brain regions (including the hippocampus) that are more active when the brain is in a resting state, not focused on external tasks, and engaged in internally oriented thoughts.

Effective connectivity

An estimate of the influence that one brain region exerts over another, often assessed with model-based connectivity approaches such as dynamic causal modelling to determine the direction and strength of causal interactions between brain regions.

Fear extinction

A learning process through which a conditioned fear response diminishes after repeated exposure to the conditioned stimulus without the aversive outcome.

Functional connectivity

The level of statistical dependence over time (for example, correlations) of the activity of different brain regions, putatively reflecting the degree to which those regions may be communicating and working together in coordinated fashion.

Inhibitory control

A core cognitive control function that enables organisms to suppress dominant motor, cognitive or affective responses to stimuli if circumstances or goals require those responses to be stopped.

Intrusive thoughts

Involuntarily retrieved ideas, images or memories that interrupt ongoing thought and that are often distressing and repeated.

Multiple-demand control network

A group of brain regions, primarily in the frontal and parietal cortex, that are activated across a wide range of cognitively demanding tasks, suggesting a role in flexible cognitive control and integration.

Pattern completion

A key mechanism of memory retrieval, supported by the hippocampus, which allows an organism to retrieve a full event, by reinstating the full pattern of activity across neurons representing the event, when a subset of those neurons are activated by cue input.

Representations

A pattern of neural activity that encodes information about stimuli, events, concepts or actions, allowing the brain to interpret, store and manipulate information to guide perception, thought and behaviour.

Stop-signal action-stopping task

A task that quantifies motor response inhibition speed by having participants respond as quickly as possible to ‘go’ stimuli and then, on a small fraction of trials, withhold that response when a ‘stop’ signal tone occurs. By progressively increasing the delay after motor preparation begins at which the stop tone occurs, the challenge of stopping the response increases, and an estimate of the speed of the underlying stopping process can be derived.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, M.C., Crespo-Garcia, M. & Subbulakshmi, S. Brain mechanisms underlying the inhibitory control of thought. Nat. Rev. Neurosci. 26, 415–437 (2025). https://doi.org/10.1038/s41583-025-00929-y

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-025-00929-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing