Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stem cell-mediated recovery in stroke: partnering with the immune system

Abstract

Stroke remains a leading cause of disability owing to the irreversible neuronal loss that it causes and the limited regenerative capacity of the CNS. Although reperfusion therapies such as thrombolysis and mechanical thrombectomy can restore blood flow after stroke, their stringent eligibility criteria leave many patients without treatment options. The immune response, involving complex interactions between brain-resident and peripheral immune cells, has a critical role in stroke recovery. Stem cell-based therapies, particularly those involving neural stem cells and mesenchymal stem cells, may be able to reshape the inflammatory microenvironment after stroke, mitigating secondary injury and promoting tissue repair. However, the precise mechanisms driving their effects remain incompletely understood, hindering clinical translation. In this Review, we highlight the bidirectional crosstalk between stem cells and immune cells (including microglia, T cells and peripheral immune cells) and discuss how these interactions influence neuroinflammation, neural plasticity and circuit remodelling in stroke recovery. We examine key determinants of stem cell therapy efficacy, emphasizing the role of stem cell–immune cell interactions, and discuss targeted strategies to enhance immune modulation and neuroprotection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the post-ischaemic inflammatory response in stroke.
Fig. 2: Comparison of select stem cell delivery methods.
Fig. 3: Overview of the potential immune-based mechanisms of stem cell therapy for ischaemic stroke.

Similar content being viewed by others

References

  1. Tsao, C. W. et al. Heart disease and stroke statistics — 2023 update: a report from the American Heart Association. Circulation 147, e93–e621 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Iadecola, C., Buckwalter, M. S. & Anrather, J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J. Clin. Invest. 130, 2777–2788 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Man, S. et al. Trends in stroke thrombolysis care metrics and outcomes by race and ethnicity, 2003–2021. JAMA Netw. Open 7, e2352927 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kamel, H. et al. Access to mechanical thrombectomy for ischemic stroke in the United States. Stroke 52, 2554–2561 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ganesh, A. et al. From three-months to five-years: sustaining long-term benefits of endovascular therapy for ischemic stroke. Front. Neurol. 12, 2021 (2021).

    Article  Google Scholar 

  6. Rajkovic, O., Potjewyd, G. & Pinteaux, E. Regenerative medicine therapies for targeting neuroinflammation after stroke. Front. Neurol. 9, 734 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Duan, M., Xu, Y., Li, Y., Feng, H. & Chen, Y. Targeting brain-peripheral immune responses for secondary brain injury after ischemic and hemorrhagic stroke. J. Neuroinflammation 21, 102 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liesz, A. et al. FTY720 reduces post-ischemic brain lymphocyte influx but does not improve outcome in permanent murine cerebral ischemia. PLoS ONE 6, e21312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qin, C. et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 7, 215 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fu, Y., Liu, Q., Anrather, J. & Shi, F. D. Immune interventions in stroke. Nat. Rev. Neurol. 11, 524–535 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tan, N., Xin, W., Huang, M. & Mao, Y. Mesenchymal stem cell therapy for ischemic stroke: novel insight into the crosstalk with immune cells. Front. Neurol. 13, 1048113 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nie, L. et al. Directional induction of neural stem cells, a new therapy for neurodegenerative diseases and ischemic stroke. Cell Death Discov. 9, 215 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Satani, N. et al. World-wide efficacy of bone marrow derived mesenchymal stromal cells in preclinical ischemic stroke models: systematic review and meta-analysis. Front. Neurol. 10, 405 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Baker, E. W., Kinder, H. A. & West, F. D. Neural stem cell therapy for stroke: a multimechanistic approach to restoring neurological function. Brain Behav. 9, e01214 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Anthony, S., Cabantan, D., Monsour, M. & Borlongan, C. V. Neuroinflammation, stem cells, and stroke. Stroke 53, 1460–1472 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martino, G. & Pluchino, S. The therapeutic potential of neural stem cells. Nat. Rev. Neurosci. 7, 395–406 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Eckert, A. et al. Bystander effect fuels human induced pluripotent stem cell-derived neural stem cells to quickly attenuate early stage neurological deficits after stroke. Stem Cell Transl. Med. 4, 841–851 (2015).

    Article  Google Scholar 

  18. Crosio, C., Valle, C., Casciati, A., Iaccarino, C. & Carrì, M. T. Astroglial inhibition of NF-κB does not ameliorate disease onset and progression in a mouse model for amyotrophic lateral sclerosis (ALS). PLoS ONE 6, e17187 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zeng, J. et al. The mechanism of microglia-mediated immune inflammation in ischemic stroke and the role of natural botanical components in regulating microglia: a review. Front. Immunol. 13, 1047550 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Fan, P.-l, Wang, S.-s, Chu, S.-F & Chen, N.-H. Time-dependent dual effect of microglia in ischemic stroke. Neurochem. Int. 169, 105584 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. D’Mello, C., Le, T. & Swain, M. G. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J. Neurosci. 29, 2089–2102 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chiarini, A., Gui, L., Viviani, C., Armato, U. & Dal Prà, I. NLRP3 inflammasome’s activation in acute and chronic brain diseases — an update on pathogenetic mechanisms and therapeutic perspectives with respect to other inflammasomes. Biomedicines 11, 999 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma, Y., Liu, Y., Zhang, Z. & Yang, G. Y. Significance of complement system in ischemic stroke: a comprehensive review. Aging Dis. 10, 429–462 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Justicia, C. et al. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. J. Cereb. Blood Flow Metab. 23, 1430–1440 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Han, D., Liu, H. & Gao, Y. The role of peripheral monocytes and macrophages in ischemic stroke. Neurol. Sci. 41, 3589–3607 (2020).

    Article  PubMed  Google Scholar 

  26. Li, L. et al. The specific role of reactive astrocytes in stroke. Front. Cell Neurosci. 16, 850866 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Llovera, G. et al. The choroid plexus is a key cerebral invasion route for T cells after stroke. Acta Neuropathol. 134, 851–868 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Felger, J. C. et al. Brain dendritic cells in ischemic stroke: time course, activation state, and origin. Brain Behav. Immun. 24, 724–737 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Jin, W. N. et al. Brain ischemia induces diversified neuroantigen-specific T-cell responses that exacerbate brain injury. Stroke 49, 1471–1478 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fassbender, K., Bertsch, T., Mielke, O., Mühlhauser, F. & Hennerici, M. Adhesion molecules in cerebrovascular diseases. Stroke 30, 1647–1650 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Yan, J. et al. Frequency and function of regulatory T cells after ischaemic stroke in humans. J. Neuroimmunol. 243, 89–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Liesz, A. et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 15, 192–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, Y. et al. Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke. Biomed. Res. Int. 2014, 297241 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Monsour, M. & Borlongan, C. V. The central role of peripheral inflammation in ischemic stroke. J. Cereb. Blood Flow Metab. 43, 622–641 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xie, L., He, M., Ying, C. & Chu, H. Mechanisms of inflammation after ischemic stroke in brain-peripheral crosstalk. Front. Mol. Neurosci. 17, 1400808 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ziebell, J. M. & Morganti-Kossmann, M. C. Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 7, 22–30 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, Y. & Zhang, J. Animal models of stroke. Anim. Model. Exp. Med. 4, 204–219 (2021).

    Article  Google Scholar 

  38. GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 20, 795–820 (2021).

    Article  Google Scholar 

  39. Oh, J., Lee, Y. D. & Wagers, A. J. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat. Med. 20, 870–880 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Finger, C. E., Moreno-Gonzalez, I., Gutierrez, A., Moruno-Manchon, J. F. & McCullough, L. D. Age-related immune alterations and cerebrovascular inflammation. Mol. Psychiatry 27, 803–818 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Shi, L. et al. Genome-wide transcriptomic analysis of microglia reveals impaired responses in aged mice after cerebral ischemia. J. Cereb. Blood Flow Metab. 40, S49–s66 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wlodarek, L., Alibhai, F. J., Wu, J., Li, S. H. & Li, R. K. Stroke-induced neurological dysfunction in aged mice is attenuated by preconditioning with young Sca-1+ stem cells. Stem Cell 40, 564–576 (2022).

    Article  Google Scholar 

  43. Khamaisi, M. & Balanson, S. E. Stem cells for diabetes complications: a future potential cure. Rambam Maimonides Med. J. 8, e0008 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xu, J. & Zuo, C. The fate status of stem cells in diabetes and its role in the occurrence of diabetic complications. Front. Mol. Biosci. 8, 745035 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khullar, M., Mittal, A. & Randhawa, H. K. in Hypertension — An Update (ed. M. Khullar) (IntechOpen, 2022).

  46. Lombardo, M. F. et al. Effects of aging on endothelial progenitor cells (EPCs) subpopulations in peripheral blood: a possible rationale for age-associated vascular dysfunction. BMC Geriatr. 10, A110 (2010).

    Article  PubMed Central  Google Scholar 

  47. Pabón, M. M., Ji, X. M., Fernandez, J. W. & Borlongan, C. V. Gender-linked stem cell alterations in stroke and postpartum depression. CNS Neurosci. Ther. 21, 348–356 (2015).

    Article  PubMed  Google Scholar 

  48. Heslop, J. A. et al. Concise review: workshop review: understanding and assessing the risks of stem cell-based therapies. Stem Cell Transl. Med. 4, 389–400 (2015).

    Article  CAS  Google Scholar 

  49. Tang, Y., Yu, P. & Cheng, L. Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis. 8, e3108–e3108 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, Y. et al. Unveiling the immunogenicity of allogeneic mesenchymal stromal cells: challenges and strategies for enhanced therapeutic efficacy. Biomed. Pharmacother. 180, 117537 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Hernández, R. et al. Differentiation of human mesenchymal stem cells towards neuronal lineage: clinical trials in nervous system disorders. Biomol. Ther. 28, 34–44 (2020).

    Article  Google Scholar 

  52. Krueger, T. E. G., Thorek, D. L. J., Denmeade, S. R., Isaacs, J. T. & Brennen, W. N. Concise review: mesenchymal stem cell-based drug delivery: the good, the bad, the ugly, and the promise. Stem Cells Transl. Med. 7, 651–663 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pluchino, S., Smith, J. A. & Peruzzotti-Jametti, L. Promises and limitations of neural stem cell therapies for progressive multiple sclerosis. Trends Mol. Med. 26, 898–912 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Tuazon, J. P. et al. Neural stem cells. Adv. Exp. Med. Biol. 1201, 79–91 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Toma, C., Wagner, W. R., Bowry, S., Schwartz, A. & Villanueva, F. Fate of culture-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics. Circ. Res. 104, 398–402 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Okano, H. et al. Steps toward safe cell therapy using induced pluripotent stem cells. Circ. Res. 112, 523–533 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Herberts, C. A., Kwa, M. S. G. & Hermsen, H. P. H. Risk factors in the development of stem cell therapy. J. Transl. Med. 9, 29 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sun, L. et al. Co-transplantation of human umbilical cord mesenchymal stem cells and human neural stem cells improves the outcome in rats with spinal cord injury. Cell Transplant. 28, 893–906 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kaminska, A., Radoszkiewicz, K., Rybkowska, P., Wedzinska, A. & Sarnowska, A. Interaction of neural stem cells (NSCs) and mesenchymal stem cells (MSCs) as a promising approach in brain study and nerve regeneration. Cells 11, 1464 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hosseini, S. M. et al. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats. Int. J. Stem Cell 8, 99–105 (2015).

    Article  CAS  Google Scholar 

  61. Urrutia, D. N. et al. Comparative study of the neural differentiation capacity of mesenchymal stromal cells from different tissue sources: an approach for their use in neural regeneration therapies. PLoS ONE 14, e0213032 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qiao, L.-Y. et al. A two-year follow-up study of cotransplantation with neural stem/progenitor cells and mesenchymal stromal cells in ischemic stroke patients. Cell Transplant. 23, 65–72 (2014).

    Article  Google Scholar 

  63. Wang, L. et al. IFN-γ and TNF-α synergistically induce mesenchymal stem cell impairment and tumorigenesis via NFκB signaling. Stem Cell 31, 1383–1395 (2013).

    Article  CAS  Google Scholar 

  64. Hess, D. C. et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 16, 360–368 (2017).

    Article  PubMed  Google Scholar 

  65. Houkin, K. et al. Allogeneic stem cell therapy for acute ischemic stroke: the phase 2/3 TREASURE randomized clinical trial. JAMA Neurol. 81, 154–162 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang, L. Q. et al. Timing and dose regimens of marrow mesenchymal stem cell transplantation affect the outcomes and neuroinflammatory response after ischemic stroke. CNS Neurosci. Ther. 20, 317–326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Doeppner, T. R. et al. Effects of acute versus post-acute systemic delivery of neural progenitor cells on neurological recovery and brain remodeling after focal cerebral ischemia in mice. Cell Death Dis. 5, e1386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yavagal, D. R. et al. Efficacy and dose-dependent safety of intra-arterial delivery of mesenchymal stem cells in a rodent stroke model. PLoS ONE 9, e93735 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yang, M. et al. Changes in host blood factors and brain glia accompanying the functional recovery after systemic administration of bone marrow stem cells in ischemic stroke rats. Cell Transpl. 19, 1073–1084 (2010).

    Article  Google Scholar 

  70. Mine, Y. et al. Grafted human neural stem cells enhance several steps of endogenous neurogenesis and improve behavioral recovery after middle cerebral artery occlusion in rats. Neurobiol. Dis. 52, 191–203 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Darsalia, V. et al. Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain. J. Cereb. Blood Flow Metab. 31, 235–242 (2011).

    Article  PubMed  Google Scholar 

  72. Chen, L., Zhang, G., Gu, Y. & Guo, X. Meta-analysis and systematic review of neural stem cells therapy for experimental ischemia stroke in preclinical studies. Sci. Rep. 6, 32291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hill, W. D. et al. SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J. Neuropathol. Exp. Neurol. 63, 84–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Abe, K. Therapeutic potential of neurotrophic factors and neural stem cells against ischemic brain injury. J. Cereb. Blood Flow Metab. 20, 1393–1408 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Jiao, Y., Liu, Y. W., Chen, W. G. & Liu, J. Neuroregeneration and functional recovery after stroke: advancing neural stem cell therapy toward clinical application. Neural Regen. Res. 16, 80–92 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Rodríguez-Frutos, B. et al. Stem cell therapy and administration routes after stroke. Transl. Stroke Res. 7, 378–387 (2016).

    Article  PubMed  Google Scholar 

  77. Li, Y., Chen, J., Wang, L., Lu, M. & Chopp, M. Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 56, 1666–1672 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Kamiya, N. et al. Intra-arterial transplantation of bone marrow mononuclear cells immediately after reperfusion decreases brain injury after focal ischemia in rats. Life Sci. 83, 433–437 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Misra, V., Ritchie, M. M., Stone, L. L., Low, W. C. & Janardhan, V. Stem cell therapy in ischemic stroke: role of IV and intra-arterial therapy. Neurology 79, S207–S212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee, S. T. et al. Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131, 616–629 (2008).

    Article  PubMed  Google Scholar 

  81. Doeppner, T. R. et al. Post-stroke transplantation of adult subventricular zone derived neural progenitor cells — a comprehensive analysis of cell delivery routes and their underlying mechanisms. Exp. Neurol. 273, 45–56 (2015).

    Article  PubMed  Google Scholar 

  82. Zhang, H.-l et al. Comparisons of the therapeutic effects of three different routes of bone marrow mesenchymal stem cell transplantation in cerebral ischemic rats. Brain Res. 1680, 143–154 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Gutiérrez-Fernández, M. et al. Functional recovery after hematic administration of allogenic mesenchymal stem cells in acute ischemic stroke in rats. Neuroscience 175, 394–405 (2011).

    Article  PubMed  Google Scholar 

  84. Jin, K. et al. Comparison of ischemia-directed migration of neural precursor cells after intrastriatal, intraventricular, or intravenous transplantation in the rat. Neurobiol. Dis. 18, 366–374 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Savitz, S. I., Dinsmore, J. H., Wechsler, L. R., Rosenbaum, D. M. & Caplan, L. R. Cell therapy for stroke. Neurotherapeutics 1, 406–414 (2004).

    Article  Google Scholar 

  86. Li, L. et al. Effects of administration route on migration and distribution of neural progenitor cells transplanted into rats with focal cerebral ischemia, an MRI study. J. Cereb. Blood Flow Metab. 30, 653–662 (2010).

    Article  PubMed  Google Scholar 

  87. Walczak, P. et al. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 39, 1569–1574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chua, J. Y. et al. Intra-arterial injection of neural stem cells using a microneedle technique does not cause microembolic strokes. J. Cereb. Blood Flow Metab. 31, 1263–1271 (2011).

    Article  PubMed  Google Scholar 

  89. Burgess, A. et al. Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood–brain barrier. PLoS ONE 6, e27877 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cheng, Y. et al. Intravenously delivered neural stem cells migrate into ischemic brain, differentiate and improve functional recovery after transient ischemic stroke in adult rats. Int. J. Clin. Exp. Pathol. 8, 2928–2936 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Yoo, S. W. et al. Immune following suppression mesenchymal stem cell transplantation in the ischemic brain is mediated by TGF-β. Neurobiol. Dis. 58, 249–257 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Cheng, Q. et al. Human umbilical cord mesenchymal stem cells protect against ischemic brain injury in mouse by regulating peripheral immunoinflammation. Brain Res. 1594, 293–304 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Łukowicz, K., Grygier, B. & Basta-Kaim, A. Emerging role of neural stem/progenitor cell secretome in brain inflammatory response modulation. Pharmacol. Rep. 77, 907–920 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wang, Y. et al. Mechanism of inflammatory response and therapeutic effects of stem cells in ischemic stroke: current evidence and future perspectives. Neural Regen. Res. 20, 67–81 (2025).

    Article  PubMed  Google Scholar 

  95. Zhu, P. et al. Potential mechanism and perspectives of mesenchymal stem cell therapy for ischemic stroke: a review. Glob. Med. Genet. 11, 278–284 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sheikh, A. M. et al. Mesenchymal stem cell transplantation modulates neuroinflammation in focal cerebral ischemia: contribution of fractalkine and IL-5. Neurobiol. Dis. 41, 717–724 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Liu, Y. et al. Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6. J. Neuroinflammation 11, 135 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Schäfer, R. et al. Modulating endothelial adhesion and migration impacts stem cell therapies efficacy. EBioMedicine 60, 102987 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Huang, L., Wong, S., Snyder, E. Y., Hamblin, M. H. & Lee, J. P. Human neural stem cells rapidly ameliorate symptomatic inflammation in early-stage ischemic-reperfusion cerebral injury. Stem Cell Res. Ther. 5, 129 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wang, X. et al. SDF-1 secreted by mesenchymal stem cells promotes the migration of endothelial progenitor cells via CXCR4/PI3K/AKT pathway. J. Mol. Histol. 52, 1155–1164 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Liu, Y. et al. AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages. EBioMedicine 36, 140–150 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Capone, C. et al. Neurosphere-derived cells exert a neuroprotective action by changing the ischemic microenvironment. PLoS ONE 2, e373 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lu, P., Jones, L. L., Snyder, E. Y. & Tuszynski, M. H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp. Neurol. 181, 115–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Li, X. et al. Intravenously delivered allogeneic mesenchymal stem cells bidirectionally regulate inflammation and induce neurotrophic effects in distal middle cerebral artery occlusion rats within the first 7 days after stroke. Cell Physiol. Biochem. 46, 1951–1970 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Yoshida, Y. et al. Intravenous administration of human amniotic mesenchymal stem cells in the subacute phase of cerebral infarction in a mouse model ameliorates neurological disturbance by suppressing blood brain barrier disruption and apoptosis via immunomodulation. Cell Transpl. 30, 9636897211024183 (2021).

    Article  Google Scholar 

  106. Tobin, M. K. et al. Activated mesenchymal stem cells induce recovery following stroke via regulation of inflammation and oligodendrogenesis. J. Am. Heart Assoc. 9, e013583 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wang, Z. et al. The spleen may be an important target of stem cell therapy for stroke. J. Neuroinflammation 16, 20 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rust, R. et al. Brain repair mechanisms after cell therapy for stroke. Brain 147, 3286–3305 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hoseinzadeh, A. et al. Fate and long-lasting therapeutic effects of mesenchymal stromal/stem-like cells: mechanistic insights. Stem Cell Res. Ther. 16, 33 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Slama, Y. et al. The dual role of mesenchymal stem cells in cancer pathophysiology: pro-tumorigenic effects versus therapeutic potential. Int. J. Mol. Sci. 24, 13511 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Boshuizen, M. C. S. & Steinberg, G. K. Stem cell-based immunomodulation after stroke. Stroke 49, 1563–1570 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Liu, N. et al. Expression of IL-10 and TNF-α in rats with cerebral infarction after transplantation with mesenchymal stem cells. Cell Mol. Immunol. 6, 207–213 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Li, W. et al. Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ. 19, 1505–1513 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Duijvestein, M. et al. Pretreatment with interferon-γ enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis. Stem Cell 29, 1549–1558 (2011).

    Article  CAS  Google Scholar 

  115. Di Vincenzo, M. & Orciani, M. Special issue “The role of mesenchymal stem cells on inflammatory and fibrotic diseases”. Int. J. Mol. Sci. 24, 8578 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wu, J.-P., Kuo, J.-S., Liu, Y.-L. & Tzeng, S.-F. Tumor necrosis factor-α modulates the proliferation of neural progenitors in the subventricular/ventricular zone of adult rat brain. Neurosci. Lett. 292, 203–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Heindl, S. et al. Automated morphological analysis of microglia after stroke. Front. Cell Neurosci. 12, 106 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Benkő, S. & Dénes, Á Microglial inflammatory mechanisms in stroke: the jury is still out. Neuroscience 550, 43–52 (2024).

    Article  PubMed  Google Scholar 

  119. Hu, X. et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43, 3063–3070 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Xin, Q., Zhu, W., He, C., Liu, T. & Wang, H. The effect of different sources of mesenchymal stem cells on microglia states. Front. Aging Neurosci. 15, 1237532 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chen, Y. et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging 12, 18274–18296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bai, X. J., Hao, L., Guo, Y. E., Shi, X. B. & Wu, W. P. Bone marrow stromal cells reverse the microglia type from pro-inflammatory tumour necrosis factor a microglia to anti-inflammatory CD206 microglia of middle cerebral artery occlusion rats through triggering secretion of CX3CL1. Folia Neuropathol. 59, 20–31 (2021).

    Article  PubMed  Google Scholar 

  123. Liu, X. et al. Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes. Exp. Neurol. 341, 113700 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Ishizaka, S. et al. Intra-arterial cell transplantation provides timing-dependent cell distribution and functional recovery after stroke. Stroke 44, 720–726 (2013).

    Article  PubMed  Google Scholar 

  125. Gao, T., Huang, F., Wang, W., Xie, Y. & Wang, B. Interleukin-10 genetically modified clinical-grade mesenchymal stromal cells markedly reinforced functional recovery after spinal cord injury via directing alternative activation of macrophages. Cell Mol. Biol. Lett. 27, 27 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Song, Y. et al. M2 microglia extracellular vesicle miR-124 regulates neural stem cell differentiation in ischemic stroke via AAK1/NOTCH. Stroke 54, 2629–2639 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Vasandan, A. B. et al. Human mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Sci. Rep. 6, 38308 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Osman, A. M. et al. The secretome of microglia regulate neural stem cell function. Neuroscience 405, 92–102 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Matsui, T. K. & Mori, E. Microglia support neural stem cell maintenance and growth. Biochem. Biophys. Res. Commun. 503, 1880–1884 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Popova, G. et al. Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell 28, 2153–2166.e2156 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Yu, B., Sondag, G. R., Malcuit, C., Kim, M. H. & Safadi, F. F. Macrophage-associated osteoactivin/GPNMB mediates mesenchymal stem cell survival, proliferation, and migration via a CD44-dependent mechanism. J. Cell Biochem. 117, 1511–1521 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Xia, Y. et al. Exosomes derived from M0, M1 and M2 macrophages exert distinct influences on the proliferation and differentiation of mesenchymal stem cells. PeerJ 8, e8970 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Nath, S. et al. Interaction between subventricular zone microglia and neural stem cells impacts the neurogenic response in a mouse model of cortical ischemic stroke. Nat. Commun. 15, 9095 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jiang, X., Yi, S., Liu, Q. & Zhang, J. The secretome of microglia induced by IL-4 of IFN-γ differently regulate proliferation, differentiation and survival of adult neural stem/progenitor cell by targeting the PI3K–Akt pathway. Cytotechnology 74, 407–420 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Miró-Mur, F. et al. Antigen-dependent T cell response to neural peptides after human ischemic stroke. Front. Cell Neurosci. 14, 206 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Selvaraj, U. M. & Stowe, A. M. Long-term T cell responses in the brain after an ischemic stroke. Discov. Med. 24, 323–333 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Wang, Y.-R., Cui, W.-Q., Wu, H.-Y., Xu, X.-D. & Xu, X.-Q. The role of T cells in acute ischemic stroke. Brain Res. Bull. 196, 20–33 (2023).

    Article  CAS  PubMed  Google Scholar 

  138. Yilmaz, G., Arumugam, T. V., Stokes, K. Y. & Granger, D. N. Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation 113, 2105–2112 (2006).

    Article  PubMed  Google Scholar 

  139. Shichita, T. et al. Pivotal role of cerebral interleukin-17-producing γδT cells in the delayed phase of ischemic brain injury. Nat. Med. 15, 946–950 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Di Nicola, M. et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99, 3838–3843 (2002).

    Article  PubMed  Google Scholar 

  141. Bartholomew, A. et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 30, 42–48 (2002).

    Article  PubMed  Google Scholar 

  142. Wang, D. et al. The regulation of the Treg/Th17 balance by mesenchymal stem cells in human systemic lupus erythematosus. Cell Mol. Immunol. 14, 423–431 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Bai, L. et al. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57, 1192–1203 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Yu, Y. Q. & Wang, H. Imbalance of Th1 and Th2 cytokines and stem cell therapy in pathological pain. CNS Neurol. Disord. Drug Targets 23, 88–101 (2024).

    Article  PubMed  Google Scholar 

  145. Xu, G., Zhang, Y., Zhang, L., Ren, G. & Shi, Y. The role of IL-6 in inhibition of lymphocyte apoptosis by mesenchymal stem cells. Biochem. Biophys. Res. Commun. 361, 745–750 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ren, G. et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2, 141–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Fan, L. et al. Interaction between mesenchymal stem cells and B-Cells. Int. J. Mol. Sci. 17, 650 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Chiesa, S. et al. Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proc. Natl Acad. Sci. USA 108, 17384–17389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liu, J., Liu, Q. & Chen, X. The immunomodulatory effects of mesenchymal stem cells on regulatory B cells. Front. Immunol. 11, 1843 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat. Neurosci. 9, 268–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Benakis, C. et al. T cells modulate the microglial response to brain ischemia. eLife 11, e82031 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Schroeter, M. & Jander, S. T-cell cytokines in injury-induced neural damage and repair. Neuromol. Med. 7, 183–195 (2005).

    Article  CAS  Google Scholar 

  154. Butovsky, O. et al. Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol. Cell Neurosci. 31, 149–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Caplan, H. W. et al. Human cord blood-derived regulatory T-cell therapy modulates the central and peripheral immune response after traumatic brain injury. Stem Cell Transl. Med. 9, 903–916 (2020).

    Article  Google Scholar 

  156. Sakaguchi, S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Curotto de Lafaille, M. A. & Lafaille, J. J. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30, 626–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Saino, O. et al. Immunodeficiency reduces neural stem/progenitor cell apoptosis and enhances neurogenesis in the cerebral cortex after stroke. J. Neurosci. Res. 88, 2385–2397 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Wang, J. et al. Activated regulatory T cell regulates neural stem cell proliferation in the subventricular zone of normal and ischemic mouse brain through interleukin 10. Front. Cell Neurosci. 9, 361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Perez-Asensio, F. J., Perpiñá, U., Planas, A. M. & Pozas, E. Interleukin-10 regulates progenitor differentiation and modulates neurogenesis in adult brain. J. Cell Sci. 126, 4208–4219 (2013).

    CAS  PubMed  Google Scholar 

  161. Brea, D. et al. Regulatory T cells modulate inflammation and reduce infarct volume in experimental brain ischaemia. J. Cell Mol. Med. 18, 1571–1579 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Na, S. Y., Mracsko, E., Liesz, A., Hünig, T. & Veltkamp, R. Amplification of regulatory T cells using a CD28 superagonist reduces brain damage after ischemic stroke in mice. Stroke 46, 212–220 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Li, P. et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann. Neurol. 74, 458–471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Liesz, A. et al. Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J. Neurosci. 33, 17350–17362 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kleinschnitz, C. et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood 121, 679–691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ren, X., Akiyoshi, K., Vandenbark, A. A., Hurn, P. D. & Offner, H. CD4+FoxP3+ regulatory T-cells in cerebral ischemic stroke. Metab. Brain Dis. 26, 87–90 (2011).

    Article  PubMed  Google Scholar 

  167. Xu, X., Li, M. & Jiang, Y. The paradox role of regulatory T cells in ischemic stroke. ScientificWorldJournal 2013, 174373 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Caplan, H. W. et al. Human-derived Treg and MSC combination therapy may augment immunosuppressive potency in vitro, but did not improve blood brain barrier integrity in an experimental rat traumatic brain injury model. PLoS ONE 16, e0251601 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Caplan, H. W. et al. Combination therapy with Treg and mesenchymal stromal cells enhances potency and attenuation of inflammation after traumatic brain injury compared to monotherapy. Stem Cell 39, 358–370 (2021).

    Article  CAS  Google Scholar 

  170. Lim, J. Y. et al. Enhanced immunoregulation of mesenchymal stem cells by IL-10-producing type 1 regulatory T cells in collagen-induced arthritis. Sci. Rep. 6, 26851 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Engela, A. U., Baan, C. C., Peeters, A. M., Weimar, W. & Hoogduijn, M. J. Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells. Cell Transpl. 22, 41–54 (2013).

    Article  Google Scholar 

  172. Camacho, V. et al. Bone marrow Tregs mediate stromal cell function and support hematopoiesis via IL-10. JCI Insight 5, e135681 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Laffer, B. et al. Loss of IL-10 promotes differentiation of microglia to a M1 phenotype. Front. Cell Neurosci. 13, 430 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lopes, R. L., Borges, T. J., Zanin, R. F. & Bonorino, C. IL-10 is required for polarization of macrophages to M2-like phenotype by mycobacterial DnaK (heat shock protein 70). Cytokine 85, 123–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Selmani, Z. et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cell 26, 212–222 (2008).

    Article  CAS  Google Scholar 

  176. Greilach, S. A. et al. Presentation of human neural stem cell antigens drives regulatory T cell induction. J. Immunol. 210, 1677–1686 (2023).

    Article  CAS  PubMed  Google Scholar 

  177. Izzy, S. et al. Nasal anti-CD3 mAb ameliorates TBI, enhances microglia phagocytosis, and reduces neuroinflammation via IL-10-dependent Treg–microglia crosstalk. Nat. Neurosci. 28, 499–516 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Le Blanc, K. & Mougiakakos, D. Multipotent mesenchymal stromal cells and the innate immune system. Nat. Rev. Immunol. 12, 383–396 (2012).

    Article  PubMed  Google Scholar 

  179. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Frenkel, D. et al. Nasal vaccination with myelin oligodendrocyte glycoprotein reduces stroke size by inducing IL-10-producing CD4+ T cells. J. Immunol. 171, 6549–6555 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Boroughs, A. C. et al. Chimeric antigen receptor costimulation domains modulate human regulatory T cell function. JCI Insight 5, e126194 (2019).

    Article  PubMed  Google Scholar 

  182. Baeten, P. et al. Rapamycin rescues loss of function in blood-brain barrier-interacting Tregs. JCI Insight 9, e167457 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Chandran, S. et al. Interleukin-6 blockade with tocilizumab increases Tregs and reduces T effector cytokines in renal graft inflammation: a randomized controlled trial. Am. J. Transplant. 21, 2543–2554 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Jung, M. K., Lee, J. S., Kwak, J. E. & Shin, E. C. Tumor necrosis factor and regulatory T Cells. Yonsei Med. J. 60, 126–131 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Shevach, E. M. Garp as a therapeutic target for modulation of T regulatory cell function. Expert Opin. Ther. Targets 21, 191–200 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Akkaya, B. et al. Regulatory T cells mediate specific suppression by depleting peptide–MHC class II from dendritic cells. Nat. Immunol. 20, 218–231 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zhang, H. et al. In vivo expansion of regulatory T cells with IL-2/IL-2 antibody complex protects against transient ischemic stroke. J. Neurosci. 38, 10168–10179 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Huang, J. et al. Postischemic cerebrovascular E-selectin expression mediates tissue injury in murine stroke. Stroke 31, 3047–3053 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Faustman, D. L. & Davis, M. Stem cells in the spleen: therapeutic potential for Sjogren’s syndrome, type I diabetes, and other disorders. Int. J. Biochem. Cell Biol. 42, 1576–1579 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Seifert, H. A. et al. A transient decrease in spleen size following stroke corresponds to splenocyte release into systemic circulation. J. Neuroimmune Pharmacol. 7, 1017–1024 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Seifert, H. A. et al. The spleen contributes to stroke induced neurodegeneration through interferon gamma signaling. Metab. Brain Dis. 27, 131–141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ran, Y. et al. Splenectomy fails to provide long-term protection against ischemic stroke. Aging Dis. 9, 467–479 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Zheng, D., Bhuvan, T., Payne, N. L. & Heng, T. S. P. Secondary lymphoid organs in mesenchymal stromal cell therapy: more than just a filter. Front. Immunol. 13, 892443 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Acosta, S. A., Tajiri, N., Hoover, J., Kaneko, Y. & Borlongan, C. V. Intravenous bone marrow stem cell grafts preferentially migrate to spleen and abrogate chronic inflammation in stroke. Stroke 46, 2616–2627 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Keimpema, E. et al. Early transient presence of implanted bone marrow stem cells reduces lesion size after cerebral ischaemia in adult rats. Neuropathol. Appl. Neurobiol. 35, 89–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. Yang, B. et al. Multipotent adult progenitor cells enhance recovery after stroke by modulating the immune response from the spleen. Stem Cell 35, 1290–1302 (2017).

    Article  CAS  Google Scholar 

  197. Snyder, E. Y., Yoon, C., Flax, J. D. & Macklis, J. D. Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc. Natl Acad. Sci. USA 94, 11663–11668 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Falkner, S. et al. Transplanted embryonic neurons integrate into adult neocortical circuits. Nature 539, 248–253 (2016).

    Article  PubMed  Google Scholar 

  199. Sakai, S. & Shichita, T. Inflammation and neural repair after ischemic brain injury. Neurochem. Int. 130, 104316 (2019).

    Article  CAS  PubMed  Google Scholar 

  200. Dai, J. et al. Migration of neural stem cells to ischemic brain regions in ischemic stroke in rats. Neurosci. Lett. 552, 124–128 (2013).

    Article  CAS  PubMed  Google Scholar 

  201. Palma-Tortosa, S. et al. Activity in grafted human iPS cell-derived cortical neurons integrated in stroke-injured rat brain regulates motor behavior. Proc. Natl Acad. Sci. USA 117, 9094–9100 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Green, C. et al. Sensorimotor functional and structural networks after intracerebral stem cell grafts in the ischemic mouse brain. J. Neurosci. 38, 1648–1661 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Tennstaedt, A. et al. Human neural stem cell intracerebral grafts show spontaneous early neuronal differentiation after several weeks. Biomaterials 44, 143–154 (2015).

    Article  CAS  PubMed  Google Scholar 

  204. Oki, K. et al. Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cell 30, 1120–1133 (2012).

    Article  CAS  Google Scholar 

  205. Tornero, D. et al. Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain 136, 3561–3577 (2013).

    Article  PubMed  Google Scholar 

  206. Wang, P. et al. Transplantation of human neural stem cells repairs neural circuits and restores neurological function in the stroke-injured brain. Neural Regen. Res. 21, 1162–1171 (2026).

    Article  PubMed  Google Scholar 

  207. Fesharaki, M. et al. Differentiation of human scalp adipose-derived mesenchymal stem cells into mature neural cells on electrospun nanofibrous scaffolds for nerve tissue engineering applications. Cell J. 20, 168–176 (2018).

    PubMed  PubMed Central  Google Scholar 

  208. Ma, Y. H. et al. Perineurium-like sheath derived from long-term surviving mesenchymal stem cells confers nerve protection to the injured spinal cord. Biomaterials 160, 37–55 (2018).

    Article  CAS  PubMed  Google Scholar 

  209. Zeng, X. et al. Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection. Biomaterials 53, 184–201 (2015).

    Article  CAS  PubMed  Google Scholar 

  210. Irisa, K. & Shichita, T. Neural repair mechanisms after ischemic stroke. Inflamm. Regen. 45, 7 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Stewart, A. N. et al. Nonresolving neuroinflammation regulates axon regeneration in chronic spinal cord injury. J. Neurosci. 45, e1017242024 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Freria, C. M. et al. Deletion of the Fractalkine receptor, CX3CR1, improves endogenous repair, axon sprouting, and synaptogenesis after spinal cord injury in mice. J. Neurosci. 37, 3568–3587 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Jakubs, K. et al. Inflammation regulates functional integration of neurons born in adult brain. J. Neurosci. 28, 12477–12488 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Solek, C. M. et al. Early inflammation dysregulates neuronal circuit formation in vivo via upregulation of IL-1β. J. Neurosci. 41, 6353–6366 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Wang, Y. et al. 3K3A-activated protein C stimulates postischemic neuronal repair by human neural stem cells in mice. Nat. Med. 22, 1050–1055 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ma, H., Yu, B., Kong, L., Zhang, Y. & Shi, Y. Neural stem cells over-expressing brain-derived neurotrophic factor (BDNF) stimulate synaptic protein expression and promote functional recovery following transplantation in rat model of traumatic brain injury. Neurochem. Res. 37, 69–83 (2012).

    Article  CAS  PubMed  Google Scholar 

  217. Korshunova, I. et al. Genetic modification increases the survival and the neuroregenerative properties of transplanted neural stem cells. JCI Insight 5, e126268 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Gantner, C. W. et al. Viral delivery of GDNF promotes functional integration of human stem cell grafts in Parkinson’s disease. Cell Stem Cell 26, 511–526.e515 (2020).

    Article  CAS  PubMed  Google Scholar 

  219. He, J., Zhang, N., Zhu, Y., Jin, R. & Wu, F. MSC spheroids-loaded collagen hydrogels simultaneously promote neuronal differentiation and suppress inflammatory reaction through PI3K–Akt signaling pathway. Biomaterials 265, 120448 (2021).

    Article  CAS  PubMed  Google Scholar 

  220. Revah, O. et al. Maturation and circuit integration of transplanted human cortical organoids. Nature 610, 319–326 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Lo, R. Y. et al. Allogeneic human umbilical cord blood for acute ischemic stroke: phase I clinical trial. Tzu Chi Med. J. 37, 321–327 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Phan, T. G. et al. Phase I trial outcome of amnion cell therapy in patients with ischemic stroke (I-ACT). Front. Neurosci. 17, 1153231 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Chen, S. et al. Umbilical mesenchymal stem cells mitigate T-cell compartments shift and Th17/Treg imbalance in acute ischemic stroke via mitochondrial transfer. Stem Cell Res. Ther. 16, 134 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Kondziolka, D. et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55, 565–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  225. Kondziolka, D. et al. Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J. Neurosurg. 103, 38–45 (2005).

    Article  PubMed  Google Scholar 

  226. Meltzer, C. C. et al. Serial [18F] fluorodeoxyglucose positron emission tomography after human neuronal implantation for stroke. Neurosurgery 49, 586–591 (2001).

    CAS  PubMed  Google Scholar 

  227. Nelson, P. T. et al. Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am. J. Pathol. 160, 1201–1206 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  228. de Celis-Ruiz, E. et al. Allogeneic adipose tissue-derived mesenchymal stem cells in ischaemic stroke (AMASCIS-02): a phase IIb, multicentre, double-blind, placebo-controlled clinical trial protocol. BMJ Open 11, e051790 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  229. US National library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03570450 (2025).

  230. Wheeler, M. A. & Quintana, F. J. The neuroimmune connectome in health and disease. Nature 638, 333–342 (2025).

    Article  CAS  PubMed  Google Scholar 

  231. Wang, Z. et al. Imaging of microglia in post-stroke inflammation. Nucl. Med. Biol. 118-119, 108336 (2023).

    Article  CAS  PubMed  Google Scholar 

  232. Cao, S.-Y. et al. Cerebral organoids transplantation repairs infarcted cortex and restores impaired function after stroke. npj Regen. Med. 8, 27 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Boufidis, D., Garg, R., Angelopoulos, E., Cullen, D. K. & Vitale, F. Bio-inspired electronics: Soft, biohybrid, and “living” neural interfaces. Nat. Commun. 16, 1861 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Cheng, M. Y. et al. Optogenetic neuronal stimulation promotes functional recovery after stroke. Proc. Natl Acad. Sci. USA 111, 12913–12918 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Li, P. et al. Engineered extracellular vesicles for ischemic stroke: a systematic review and meta-analysis of preclinical studies. J. Nanobiotechnol. 21, 396 (2023).

    Article  CAS  Google Scholar 

  236. Birch, L. A. Engineering extracellular vesicles for therapeutic delivery in ischaemic stroke. Nat. Rev. Cardiol. 22, 219–219 (2025).

    Article  PubMed  Google Scholar 

  237. Oliveira, J. M. et al. Hydrogel-based scaffolds to support intrathecal stem cell transplantation as a gateway to the spinal cord: clinical needs, biomaterials, and imaging technologies. npj Regen. Med. 3, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Cotrina, M. L., Lou, N., Tome-Garcia, J., Goldman, J. & Nedergaard, M. Direct comparison of microglial dynamics and inflammatory profile in photothrombotic and arterial occlusion evoked stroke. Neuroscience 343, 483–494 (2017).

    Article  CAS  PubMed  Google Scholar 

  239. Hou, B. et al. Exogenous neural stem cells transplantation as a potential therapy for photothrombotic ischemia stroke in kunming mice model. Mol. Neurobiol. 54, 1254–1262 (2017).

    Article  CAS  PubMed  Google Scholar 

  240. Abeysinghe, H. C., Bokhari, L., Dusting, G. J. & Roulston, C. L. Brain remodelling following endothelin-1 induced stroke in conscious rats. PLoS ONE 9, e97007 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Modo, M. M., Jolkkonen, J., Zille, M. & Boltze, J. Future of animal modeling for poststroke tissue repair. Stroke 49, 1099–1106 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Burns, T. C. & Steinberg, G. K. Stem cells and stroke: opportunities, challenges and strategies. Expert Opin. Biol. Ther. 11, 447–461 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Janowski, M., Walczak, P. & Date, I. Intravenous route of cell delivery for treatment of neurological disorders: a meta-analysis of preclinical results. Stem Cell Dev. 19, 5–16 (2010).

    Article  CAS  Google Scholar 

  244. Dharmasaroja, P. Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke. J. Clin. Neurosci. 16, 12–20 (2009).

    Article  PubMed  Google Scholar 

  245. Cerneckis, J., Cai, H. & Shi, Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct. Target. Ther. 9, 112 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Pereira, I. M., Marote, A., Salgado, A. J. & Silva, N. A. Filling the gap: neural stem cells as a promising therapy for spinal cord injury. Pharmaceuticals 12, 65 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Zhang, R. et al. NSC-derived exosomes enhance therapeutic effects of NSC transplantation on cerebral ischemia in mice. eLife 12, e84493 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Weber, R. Z. et al. Neural xenografts contribute to long-term recovery in stroke via molecular graft–host crosstalk. Nat. Commun. 16, 8224 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Zhang, W. et al. Poststroke intravenous transplantation of human mesenchymal stem cells improves brain repair dynamics and functional outcomes in aged mice. Stroke 54, 1088–1098 (2023).

    Article  CAS  PubMed  Google Scholar 

  250. Yang, Y. et al. Human umbilical cord derived mesenchymal stem cells overexpressing HO-1 attenuate neural injury and enhance functional recovery by inhibiting inflammation in stroke mice. CNS Neurosci. Ther. 30, e14412 (2024).

    Article  CAS  PubMed  Google Scholar 

  251. Horie, N. et al. Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cell 29, 274–285 (2011).

    Article  CAS  Google Scholar 

  252. Hassani, Z. et al. Human neural progenitor cell engraftment increases neurogenesis and microglial recruitment in the brain of rats with stroke. PLoS ONE 7, e50444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Chang, D.-J. et al. Contralaterally transplanted human embryonic stem cell-derived neural precursor cells (ENStem-A) migrate and improve brain functions in stroke-damaged rats. Exp. Mol. Med. 45, e53 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Chang, D.-J. et al. Therapeutic potential of human induced pluripotent stem cells in experimental stroke. Cell Transplant. 22, 1427–1440 (2013).

    Article  PubMed  Google Scholar 

  255. Watanabe, T. et al. A human neural stem cell line provides neuroprotection and improves neurological performance by early intervention of neuroinflammatory system. Brain Res. 1631, 194–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  256. Vendrame, M. et al. Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cell Dev. 14, 595–604 (2005).

    Article  CAS  Google Scholar 

  257. Li, Y. et al. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 49, 407–417 (2005).

    Article  PubMed  Google Scholar 

  258. Wei, L., Fraser, J. L., Lu, Z. Y., Hu, X. & Yu, S. P. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol. Dis. 46, 635–645 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. McGuckin, C. P. et al. Ischemic brain injury: a consortium analysis of key factors involved in mesenchymal stem cell-mediated inflammatory reduction. Arch. Biochem. Biophys. 534, 88–97 (2013).

    Article  CAS  PubMed  Google Scholar 

  260. Xin, H. et al. Multipotent mesenchymal stromal cells decrease transforming growth factor β1 expression in microglia/macrophages and down-regulate plasminogen activator inhibitor 1 expression in astrocytes after stroke. Neurosci. Lett. 542, 81–86 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Tsai, M. J. et al. Recovery of neurological function of ischemic stroke by application of conditioned medium of bone marrow mesenchymal stem cells derived from normal and cerebral ischemia rats. J. Biomed. Sci. 21, 5 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Lin, W. et al. Human umbilical cord mesenchymal stem cells preserve adult newborn neurons and reduce neurological injury after cerebral ischemia by reducing the number of hypertrophic microglia/macrophages. Cell Transpl. 26, 1798–1810 (2017).

    Article  Google Scholar 

  263. Nakajima, M. et al. Mesenchymal stem cells overexpressing interleukin-10 promote neuroprotection in experimental acute ischemic stroke. Mol. Ther. Methods Clin. Dev. 6, 102–111 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Jiang, M. et al. Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization. Cell Physiol. Biochem. 47, 864–878 (2018).

    Article  CAS  PubMed  Google Scholar 

  265. Kong, T. et al. Immunomodulatory effect of CD200-positive human placenta-derived stem cells in the early phase of stroke. Exp. Mol. Med. 50, e425 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Dabrowska, S. et al. Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. J. Neuroinflammation 16, 216 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Geng, W. et al. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. Am. J. Transl. Res. 11, 780–792 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Gómez-de Frutos, M. C. et al. Intravenous delivery of adipose tissue-derived mesenchymal stem cells improves brain repair in hyperglycemic stroke rats. Stem Cell Res. Ther. 10, 212 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Li, Z. et al. Bone marrow-mesenchymal stem cells modulate microglial activation in the peri-infarct area in rats during the acute phase of stroke. Brain Res. Bull. 153, 324–333 (2019).

    Article  CAS  PubMed  Google Scholar 

  270. Tatebayashi, K. et al. Adipose-derived stem cell therapy inhibits the deterioration of cerebral infarction by altering macrophage kinetics. Brain Res. 1712, 139–150 (2019).

    Article  CAS  PubMed  Google Scholar 

  271. Feng, Y. W. et al. hUCMSCs mitigate LPS-induced trained immunity in ischemic stroke. Front. Immunol. 11, 1746 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Yang, F. et al. Bone marrow mesenchymal stem cells induce M2 microglia polarization through PDGF–AA/MANF signaling. World J. Stem Cell 12, 633–658 (2020).

    Article  Google Scholar 

  273. Zhao, Y., Gan, Y., Xu, G., Hua, K. & Liu, D. Exosomes from MSCs overexpressing microRNA-223-3p attenuate cerebral ischemia through inhibiting microglial M1 polarization mediated inflammation. Life Sci. 260, 118403 (2020).

    Article  CAS  PubMed  Google Scholar 

  274. Hu, X. et al. Extracellular vesicles from adipose-derived stem cells promote microglia M2 polarization and neurological recovery in a mouse model of transient middle cerebral artery occlusion. Stem Cell Res. Ther. 13, 21 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Li, Y. et al. Three-dimensional cultured mesenchymal stem cells enhance repair of ischemic stroke through inhibition of microglia. Stem Cell Res. Ther. 12, 358 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Pathipati, P. et al. Mesenchymal stem cell (MSC)-derived extracellular vesicles protect from neonatal stroke by interacting with microglial cells. Neurotherapeutics 18, 1939–1952 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Zhang, Z. et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke. Aging 13, 3060–3079 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Figures were created with BioRender (https://www.biorender.com).

Author information

Authors and Affiliations

Authors

Contributions

N.M., A.M., P.K., T.Y., R.T. and S.I. researched data for the article. N.M., A.M., H.W., S.S., D.Y. and S.F. provided substantial contributions to the discussion of its content. The authors all contributed to writing the article and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Saef Izzy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Zaal Kokaia, who co-reviewed with Sara Palma-Tortosa, Jean-Pyo Lee and Fu-Dong Shi for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McMillan, N., McMillan, A., Kiliaan, P. et al. Stem cell-mediated recovery in stroke: partnering with the immune system. Nat. Rev. Neurosci. 27, 23–43 (2026). https://doi.org/10.1038/s41583-025-00985-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-025-00985-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing