Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Programmed axon degeneration: mechanism, inhibition and therapeutic potential

Abstract

Programmed axon degeneration (PAxD) is an evolutionarily conserved mechanism in the nervous system that is activated by axonal injury (axotomy) to execute the self-destruction of a severed distal axon. It can also be triggered by non-axotomy insults, resulting in the loss of axons connected to their cell bodies. PAxD is therefore a promising target for therapeutic intervention and drugs that inhibit it are currently being tested in clinical trials. In this Review, we summarize the molecular mechanism of PAxD, focusing on its regulation by nicotinamide adenine dinucleotide (NAD+) metabolism and how it dictates Ca2+-mediated axonal demise. We examine its involvement in human disease and its potential as a therapeutic target by dissecting its role in various non-axotomy disease models. Finally, we address key challenges for its clinical translation, including the need for relevant biomarkers and safety considerations. Further advancements in understanding PAxD will pave the way for new therapeutic strategies targeting human axonopathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PAxD is activated by axotomy and various non-axotomy insults.
Fig. 2: NAD+ metabolic control of PAxD.
Fig. 3: SARM1 structure, activation and enzymatic activity.
Fig. 4: Physiological function of PAxD signalling.

Similar content being viewed by others

References

  1. Neukomm, L. J. & Freeman, M. R. Diverse cellular and molecular modes of axon degeneration. Trends Cell Biol. 24, 515–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Burgess, R. W. & Crish, S. D. Editorial: axonopathy in neurodegenerative disease. Front. Neurosci. 12, 769 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Waller, A. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Phil. Trans. R. Soc. Lond. 140, 423–429 (1850).

    Google Scholar 

  4. Llobet Rosell, A. & Neukomm, L. J. Axon death signalling in Wallerian degeneration among species and in disease. Open Biol. 9, 190118 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Figley, M. D. & DiAntonio, A. The SARM1 axon degeneration pathway: control of the NAD+ metabolome regulates axon survival in health and disease. Curr. Opin. Neurobiol. 63, 59–66 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sambashivan, S. & Freeman, M. R. SARM1 signaling mechanisms in the injured nervous system. Curr. Opin. Neurobiol. 69, 247–255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coleman, M. P. & Höke, A. Programmed axon degeneration: from mouse to mechanism to medicine. Nat. Rev. Neurosci. 21, 183–196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Waller, T. J. & Collins, C. A. Multifaceted roles of SARM1 in axon degeneration and signaling. Front. Cell Neurosci. 16, 958900 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alexandris, A. & Koliatsos, V. E. NAD+, axonal maintenance, and neurological disease. Antioxid. Redox Signal. 39, 1167–1184 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McGuinness, H. Y., Gu, W., Shi, Y., Kobe, B. & Ve, T. SARM1-dependent axon degeneration: nucleotide signaling, neurodegenerative disorders, toxicity, and therapeutic opportunities. Neuroscientist 30, 473–492 (2024).

    Article  CAS  PubMed  Google Scholar 

  11. Loreto, A., Antoniou, C., Merlini, E., Gilley, J. & Coleman, M. P. NMN: the NAD precursor at the intersection between axon degeneration and anti-ageing therapies. Neurosci. Res. 197, 18–24 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Cao, Y., Wang, Y. & Yang, J. NAD+-dependent mechanism of pathological axon degeneration. Cell Insight 1, 100019 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Alberti, C. et al. Charcot-Marie-tooth disease type 2A: an update on pathogenesis and therapeutic perspectives. Neurobiol. Dis. 193, 106467 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Loreto, A., Merlini, E. & Coleman, M. P. Programmed axon death: a promising target for treating retinal and optic nerve disorders. Eye 38, 1802–1809 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tarasiuk, O., Molteni, L., Malacrida, A. & Nicolini, G. The role of NMNAT2/SARM1 in neuropathy development. Biology 13, 61 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park, S. B. et al. Axonal degeneration in chemotherapy-induced peripheral neurotoxicity: clinical and experimental evidence. J. Neurol. Neurosurg. Psychiatry 94, 962–972 (2023).

    Article  PubMed  Google Scholar 

  17. Merlini, E., Coleman, M. P. & Loreto, A. Mitochondrial dysfunction as a trigger of programmed axon death. Trends Neurosci. 45, 53–63 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Krauss, R., Bosanac, T., Devraj, R., Engber, T. & Hughes, R. O. Axons matter: the promise of treating neurodegenerative disorders by targeting SARM1-Mediated axonal degeneration. Trends Pharmacol. Sci. 41, 281–293 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Conforti, L., Gilley, J. & Coleman, M. P. Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat. Rev. Neurosci. 15, 394–409 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Di Stefano, M. et al. A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration. Cell Death Differ. 22, 731–742 (2015). This study demonstrates that NMN accumulates after axotomy and its rise drives axon degeneration.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang, Y. et al. The NAD+-mediated self-inhibition mechanism of pro-neurodegenerative SARM1. Nature 33, 245–246 (2020). This article reveals the cryo-electron microscopy structure of the full-length SARM1 protein and identified an NAD+-mediated self-inhibitory mechanism via binding to the ARM domain.

    Google Scholar 

  22. Figley, M. D. et al. SARM1 is a metabolic sensor activated by an increased NMN/NAD+ ratio to trigger axon degeneration. Neuron 109, 1118–1136.e11 (2021). This study demonstrates that SARM1, an inducible pro-degenerative NADase, is a metabolic sensor activated by an increase in the NMN-to-NAD+ ratio.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mori, V. et al. Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues. PLoS ONE 9, e113939 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gilley, J., Orsomando, G., Nascimento-Ferreira, I. & Coleman, M. P. Absence of SARM1 rescues development and survival of NMNAT2-deficient axons. Cell Rep. 10, 1974–1981 (2015). This report reveals that axon degeneration specifically induced by NMNAT2 depletion requires SARM1, suggesting a linear NMNAT2–SARM1 signalling pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sasaki, Y., Nakagawa, T., Mao, X., DiAntonio, A. & Milbrandt, J. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion. eLife 5, 1010 (2016).

    Article  Google Scholar 

  26. Llobet Rosell, A. et al. The NAD+ precursor NMN activates dSarm to trigger axon degeneration in Drosophila. eLife 11, e80245 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Imai, S.-I. Nicotinamide phosphoribosyltransferase (Nampt): a link between NAD biology, metabolism, and diseases. Curr. Pharm. Des. 15, 20–28 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ratajczak, J. et al. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat. Commun. 7, 13103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sasaki, Y., Araki, T. & Milbrandt, J. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J. Neurosci. 26, 8484–8491 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sasaki, Y. et al. Nicotinic acid mononucleotide is an allosteric SARM1 inhibitor promoting axonal protection. Exp. Neurol. 345, 113842 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berger, F., Lau, C., Dahlmann, M. & Ziegler, M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem. 280, 36334–36341 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Yan, T. et al. Nmnat2 delays axon degeneration in superior cervical ganglia dependent on its NAD synthesis activity. Neurochem. Int. 56, 101–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Summers, D. W., Milbrandt, J. & DiAntonio, A. Palmitoylation enables MAPK-dependent proteostasis of axon survival factors. Proc. Natl Acad. Sci. USA 11, E8746–E8754 (2018).

    Google Scholar 

  34. Yang, J. et al. Pathological axonal death through a MAPK cascade that triggers a local energy deficit. Cell 160, 161–176 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Walker, L. J. et al. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. eLife 6, 545 (2017).

    Article  Google Scholar 

  36. Miller, B. R. et al. A dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration. Nat. Neurosci. 12, 387–389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shin, J. E. et al. SCG10 is a JNK target in the axonal degeneration pathway. Proc. Natl Acad. Sci. USA 109, E3696–E3705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gilley, J. & Coleman, M. P. Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLoS Biol. 8, e1000300 (2010). This article reveals endogenous NMNAT2 as a labile axon survival factor whose constant replenishment by anterograde axonal transport is a limiting factor for axon survival.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xiong, X. et al. The highwire ubiquitin ligase promotes axonal degeneration by tuning levels of Nmnat protein. PLoS Biol. 10, e1001440 (2012). This study reveals that the evolutionarily conserved E3 ubiquitin ligase Highwire in Drosophila promotes axon degeneration by inducing the rapid degradation of the Nmnat protein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Babetto, E., Beirowski, B., Russler, E. V., Milbrandt, J. & DiAntonio, A. The Phr1 ubiquitin ligase promotes injury-induced axon self-destruction. Cell Rep. 3, 1422–1429 (2013). This article demonstrates that the mammalian E3 ubiquitin ligase MYCBP2 (also known as PHR1) promotes the rapid degradation of NMNAT2 in axons of the peripheral and central nervous system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Neukomm, L. J., Burdett, T. C., Gonzalez, M. A., Zuchner, S. & Freeman, M. R. Rapid in vivo forward genetic approach for identifying axon death genes in Drosophila. Proc. Natl Acad. Sci. USA 111, 9965–9970 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Desbois, M. et al. PAM forms an atypical SCF ubiquitin ligase complex that ubiquitinates and degrades NMNAT2. J. Biol. Chem. 293, 13897–13909 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamagishi, Y. & Tessier-Lavigne, M. An atypical SCF-like ubiquitin ligase complex promotes wallerian degeneration through regulation of axonal Nmnat2. Cell Rep. 17, 774–782 (2016). This study reveals that the E3 ubiquitin ligase component SKP1A regulates protein levels of NMNAT2 in axons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Milde, S., Gilley, J. & Coleman, M. P. Subcellular localization determines the stability and axon protective capacity of axon survival factor nmnat2. PLoS Biol. 11, e1001539 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Milde, S., Fox, A. N., Freeman, M. R. & Coleman, M. P. Deletions within its subcellular targeting domain enhance the axon protective capacity of Nmnat2 in vivo. Sci. Rep. 3, 2567 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Osterloh, J. M. et al. dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337, 481–484 (2012). This report identifies Sarm in Drosophila and SARM1 in mice as a executioner of axotomy-induced PAxD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gerdts, J., Summers, D. W., Sasaki, Y., DiAntonio, A. & Milbrandt, J. Sarm1-mediated axon degeneration requires both SAM and TIR interactions. J. Neurosci. 33, 13569–13580 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gerdts, J., Brace, E. J., Sasaki, Y., DiAntonio, A. & Milbrandt, J. SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science 348, 453–457 (2015). This study reveals that the dimerization of the SARM1 TIR domains initiates a rapid axonal breakdown of NAD+ after axotomy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Essuman, K. et al. The SARM1 Toll/interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration. Neuron 93, 1334–1343.e5 (2017). This article demonstrates that TIR domains of SARM1 have intrinsic NADase activity and deplete axonal NAD+ to induce pathological axon loss.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Neukomm, L. J. et al. Axon death pathways converge on axundead to promote functional and structural axon disassembly. Neuron 95, 78–91.e5 (2017). This study identifies Axundead as required for axotomy-induced axon degeneration downstream of Sarm and Nmnat in Drosophila.

    Article  CAS  PubMed  Google Scholar 

  51. Sporny, M. et al. Structural evidence for an octameric ring arrangement of SARM1. J. Mol. Biol. 431, 3591–3605 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Horsefield, S. et al. NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science 365, 793–799 (2019). This article reveals that NAD+ cleavage in the octameric SARM1 structure is mediated by TIR domain self-association both in animals and plants.

    Article  CAS  PubMed  Google Scholar 

  53. Bratkowski, M. et al. Structural and mechanistic regulation of the pro-degenerative NAD hydrolase SARM1. Cell Rep. 32, 107999 (2020). This report reveals mechanistic insights into the regulation of SARM1 activity by revealing cryo-electron microscopy structures of autoinhibited and activated SARM1.

    Article  CAS  PubMed  Google Scholar 

  54. Sporny, M. et al. Structural basis for SARM1 inhibition and activation under energetic stress. eLife 9, W344 (2020).

    Article  Google Scholar 

  55. Shen, C. et al. Multiple domain interfaces mediate SARM1 autoinhibition. Proc. Natl Acad. Sci. USA 118, e2023151118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shi, Y. et al. Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules. Mol. Cell 82, 1643–1659.e10 (2022). This study demonstrates that a base-exchange reaction underlies potent orthosteric inhibition of SARM1 by a series of isoquinoline compounds.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Angeletti, C. et al. SARM1 is a multi-functional NAD(P)ase with prominent base exchange activity, all regulated bymultiple physiologically relevant NAD metabolites. iScience 25, 103812 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Essuman, K. et al. TIR domain proteins are an ancient family of NAD+-consuming enzymes. Curr. Biol. 28, 421–430.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Parrish, A. B., Freel, C. D. & Kornbluth, S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb. Perspect. Biol. 5, a008672 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhao, Z. Y. et al. A cell-permeant mimetic of NMN activates SARM1 to produce cyclic ADP-ribose and induce non-apoptotic cell death. iScience 15, 452–466 (2019). This article demonstrates that CZ-48, a cell-permeant mimetic of NMN, activates SARM1 to induce non-apoptotic cell death.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, W. H. et al. Permeant fluorescent probes visualize the activation of SARM1 and uncover an anti-neurodegenerative drug candidate. eLife 10, e67381 (2021). This report identifies PC6 as a substrate of SARM1 that undergoes a large red fluorescent shift upon conversion into PAD6, enabling its use as a SARM1 activity reporter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. George, E. B., Glass, J. D. & Griffin, J. W. Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J. Neurosci. 15, 6445–6452 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schlaepfer, W. W. Calcium-induced degeneration of axoplasm in isolated segments of rat peripheral nerve. Brain Res. 69, 203–215 (1974).

    Article  CAS  PubMed  Google Scholar 

  64. Schlaepfer, W. W. Structural alterations of peripheral nerve induced by the calcium ionophore A23187. Brain Res. 136, 1–9 (1977).

    Article  CAS  PubMed  Google Scholar 

  65. Knöferle, J. et al. Mechanisms of acute axonal degeneration in the optic nerve in vivo. Proc. Natl Acad. Sci. USA 107, 6064–6069 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Adalbert, R. et al. Intra-axonal calcium changes after axotomy in wild-type and slow wallerian degeneration axons. Neuroscience 225, 44–54 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Avery, M. A. et al. WldS prevents axon degeneration through increased mitochondrial flux and enhanced mitochondrial Ca2+ buffering. Curr. Biol. 22, 596–600 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vargas, M. E., Yamagishi, Y., Tessier-Lavigne, M. & Sagasti, A. Live imaging of calcium dynamics during axon degeneration reveals two functionally distinct phases of calcium influx. J. Neurosci. 35, 15026–15038 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mishra, B., Carson, R., Hume, R. I. & Collins, C. A. Sodium and potassium currents influence wallerian degeneration of injured Drosophila axons. J. Neurosci. 33, 18728–18739 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Villegas, R. et al. Calcium release from intra-axonal endoplasmic reticulum leads to axon degeneration through mitochondrial dysfunction. J. Neurosci. 34, 7179–7189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Loreto, A., Di Stefano, M., Gering, M. & Conforti, L. Wallerian degeneration is executed by an NMN-SARM1-dependent late Ca2+ influx but only modestly influenced by mitochondria. Cell Rep. 13, 2539–2552 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Ko, K. W., DeVault, L., Sasaki, Y., Milbrandt, J. & DiAntonio, A. Live imaging reveals the cellular events downstream of SARM1 activation. eLife 10, e71148 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guse, A. H. Calcium mobilizing second messengers derived from NAD. Biochim. Biophys. Acta. 1854, 1132–1137 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Sasaki, Y. et al. cADPR is a gene dosage-sensitive biomarker of SARM1 activity in healthy, compromised, and degenerating axons. Exp. Neurol. 329, 113252 (2020). This study reveals that cADPR, a product of SARM1-dependent cleavage of NAD+, serves as a biomarker in cultured neurons, sciatic nerve and the brain in preclinical models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Garb, J. et al. The SARM1 TIR domain produces glycocyclic ADPR molecules as minor products. PLoS ONE 19, e0302251 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Blomgren, K. Calpastatin is upregulated and acts as a suicide substrate to calpains in neonatal rat hypoxia‐ischemia. Ann. NY Acad. Sci. 890, 270–271 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Yang, J. et al. Regulation of axon degeneration after injury and in development by the endogenous calpain inhibitor calpastatin. Neuron 80, 1175–1189 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Ma, M. et al. Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration. Neurobiol. Dis. 56, 34–46 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Macqueen, D. J. & Wilcox, A. H. Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses. Open Biol. 4, 130219 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bridge, P. M. et al. Nerve crush injuries — a model for axonotmesis. Exp. Neurol. 127, 284–290 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Maxwell, W. L., Bartlett, E. & Morgan, H. Wallerian degeneration in the optic nerve stretch-injury model of traumatic brain injury: a stereological analysis. J. Neurotrauma 32, 780–790 (2015).

    Article  PubMed  Google Scholar 

  82. Geisler, S. Augustus Waller’s foresight realized: SARM1 in peripheral neuropathies. Curr. Opin. Neurobiol. 87, 102884 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Griffin, J. W. et al. Macrophage responses and myelin clearance during Wallerian degeneration: relevance to immune-mediated demyelination. J. Neuroimmunol. 40, 153–165 (1992).

    Article  CAS  PubMed  Google Scholar 

  84. Vaquié, A. et al. Injured axons instruct schwann cells to build constricting actin spheres to accelerate axonal disintegration. Cell Rep. 27, 3152–3166.e7 (2019).

    Article  PubMed  Google Scholar 

  85. MacDonald, J. M. et al. The Drosophila cell corpse engulfment receptor draper mediates glial clearance of severed axons. Neuron 50, 869–881 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Sasaki, Y. & Milbrandt, J. Axonal degeneration is blocked by nicotinamide mononucleotide adenylyltransferase (Nmnat) protein transduction into transected axons. J. Biol. Chem. 285, 41211–41215 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hughes, R. O. et al. Small molecule SARM1 inhibitors recapitulate the SARM1/– phenotype and allow recovery of a metastable pool of axons fated to degenerate. Cell Rep. 34, 108588 (2021). This report describes a potent SMI of SARM1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mack, T. G. et al. Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat. Neurosci. 4, 1199–1206 (2001). This article reports that the Ube4b/Nmnat chimeric gene is necessary and sufficient to protect injured axons.

    Article  CAS  PubMed  Google Scholar 

  89. Lunn, E. R., Perry, V. H., Brown, M. C., Rosen, H. & Gordon, S. Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. Eur. J. Neurosci. 1, 27–33 (1989).

    Article  CAS  PubMed  Google Scholar 

  90. Paglione, M. et al. Local translatome sustains synaptic function in impaired Wallerian degeneration. EMBO Rep. 26, 61–83 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sasaki, Y., Vohra, B. P. S., Lund, F. E. & Milbrandt, J. Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide. J. Neurosci. 29, 5525–5535 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sasaki, Y., Vohra, B. P. S., Baloh, R. H. & Milbrandt, J. Transgenic mice expressing the Nmnat1 protein manifest robust delay in axonal degeneration in vivo. J. Neurosci. 29, 6526–6534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Feng, Y. et al. Overexpression of WldS or Nmnat2 in mauthner cells by single-cell electroporation delays axon degeneration in live Zebrafish. J. Neurosci. Res. 88, 3319–3327 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Avery, M. A., Sheehan, A. E., Kerr, K. S., Wang, J. & Freeman, M. R. Wld S requires Nmnat1 enzymatic activity and N16-VCP interactions to suppress Wallerian degeneration. J. Cell Biol. 184, 501–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Babetto, E. et al. Targeting NMNAT1 to axons and synapses transforms its neuroprotective potency in vivo. J. Neurosci. 30, 13291–13304 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Paglione, M., Llobet Rosell, A., Chatton, J.-Y. & Neukomm, L. J. Morphological and functional evaluation of axons and their synapses during axon death in Drosophila melanogaster. J. Vis. Exp. https://doi.org/10.3791/60865 (2020).

    Article  PubMed  Google Scholar 

  97. Fang, Y., Soares, L., Teng, X., Geary, M. & Bonini, N. M. A novel Drosophila model of nerve injury reveals an essential role of Nmnat in maintaining axonal integrity. Curr. Biol. 22, 590–595 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Di Stefano, M. et al. NMN deamidase delays Wallerian degeneration and rescues axonal defects caused by NMNAT2 deficiency in vivo. Curr. Biol. 27, 784–794 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Gould, S. A. et al. Sarm1 haploinsufficiency or low expression levels after antisense oligonucleotides delay programmed axon degeneration. Cell Rep. 37, 110108 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu, P. et al. Differential effects of SARM1 inhibition in traumatic glaucoma and EAE optic neuropathies. Mol. Ther. Nucleic Acids 32, 13–27 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Loreto, A. et al. SARM1 activation induces reversible mitochondrial dysfunction and can be prevented in human neurons by antisense oligonucleotides. Neurobiol. Dis. 213, 106986 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Geisler, S. et al. Gene therapy targeting SARM1 blocks pathological axon degeneration in mice. J. Exp. Med. 216, 294–303 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bratkowski, M. et al. Uncompetitive, adduct-forming SARM1 inhibitors are neuroprotective in preclinical models of nerve injury and disease. Neuron 110, 3711–3726.e16 (2022). This study reveals that BEIs are highly potent and confer compelling neuroprotection in pre-clinical models of neurological injury and disease.

    Article  CAS  PubMed  Google Scholar 

  104. Leahey, R. R. et al. Therapeutic safety implications of SARM1 active site inhibitors: subinhibitory concentrations cause neurodegeneration. npj Drug Discov. 2, 21 (2025). This study shows that subinhibitory concentrations of SARM1 BEIs, under mildly SARM1-activating conditions, paradoxically cause sustained SARM1 activation and toxicity.

    Article  Google Scholar 

  105. Giroud, M. et al. Discovery of a potent SARM1 base-exchange inhibitor with in vivo efficacy. J. Med. Chem. 68, 6558–6575 (2025).

    Article  CAS  PubMed  Google Scholar 

  106. Mani, A. et al. SARM1 base-exchange inhibitors induce SARM1 activation and neurodegeneration at low doses. npj Drug Discov. 2, 12 (2025).

    Article  Google Scholar 

  107. Bosanac, T. et al. Pharmacological SARM1 inhibition protects axon structure and function in paclitaxel-induced peripheral neuropathy. Brain 44, 3226–3238 (2021). This report demonstrates that potent and selective irreversible isothiazole inhibitors of SARM1 enzymatic activity protect axons in a mouse model of chemotherapy-induced peripheral neuropathy.

    Article  Google Scholar 

  108. Loring, H. S., Parelkar, S. S., Mondal, S. & Thompson, P. R. Identification of the first noncompetitive SARM1 inhibitors. Bioorganic Med. Chem. 28, 115644 (2020).

    Article  CAS  Google Scholar 

  109. Feldman, H. C. et al. Selective inhibitors of SARM1 targeting an allosteric cysteine in the autoregulatory ARM domain. Proc. Natl Acad. Sci. USA 119, e2208457119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Khazma, T. et al. A duplex structure of SARM1 octamers stabilized by a new inhibitor. Cell Mol. Life Sci. 80, 16 (2023).

    Article  CAS  Google Scholar 

  111. Schlaepfer, W. W. & Hasler, M. B. Characterization of the calcium-induced disruption of neurofilaments in rat peripheral nerve. Brain Res. 168, 299–309 (1979).

    Article  CAS  PubMed  Google Scholar 

  112. Jayaram, H. N., Kusumanchi, P. & Yalowitz, J. A. NMNAT expression and its relation to NAD metabolism. Curr. Med. Chem. 18, 1962–1972 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Yamamoto, M. et al. Nmnat3 is dispensable in mitochondrial NAD level maintenance in vivo. PLoS ONE 11, e0147037 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Gilley, J., Adalbert, R., Yu, G. & Coleman, M. P. Rescue of peripheral and CNS axon defects in mice lacking NMNAT2. J. Neurosci. 33, 13410–13424 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Loreto, A. et al. Mitochondrial impairment activates the Wallerian pathway through depletion of NMNAT2 leading to SARM1-dependent axon degeneration. Neurobiol. Dis. 134, 104678 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Geisler, S. et al. Vincristine and bortezomib use distinct upstream mechanisms to activate a common SARM1-dependent axon degeneration program. JCI Insight 4, e129920 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sasaki, Y. et al. SARM1 depletion rescues NMNAT1-dependent photoreceptor cell death and retinal degeneration. eLife 9, 817 (2020).

    Article  Google Scholar 

  118. Grozio, A. et al. Slc12a8 is a nicotinamide mononucleotide transporter. Nat. Metab. 1, 47–57 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Schmidt, M. S. & Brenner, C. Absence of evidence that Slc12a8 encodes a nicotinamide mononucleotide transporter. Nat. Metab. 1, 660–661 (2019).

    Article  PubMed  Google Scholar 

  120. Grozio, A. et al. Reply to: absence of evidence that Slc12a8 encodes a nicotinamide mononucleotide transporter. Nat. Metab. 1, 662–665 (2019).

    Article  PubMed  Google Scholar 

  121. Loreto, A. et al. Neurotoxin-mediated potent activation of the axon degeneration regulator SARM1. eLife 10, e72823 (2021). This study reveals that the neurotoxin vacor, metabolized by NAMPT into the NMN analogue VMN, also acts as a potent SARM1 activator.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wu, T. et al. Neurotoxins subvert the allosteric activation mechanism of SARM1 to induce neuronal loss. Cell Rep. 37, 109872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Huang, Y. et al. Stepwise activation of SARM1 for cell death and axon degeneration revealed by a biosynthetic NMN mimic. Proc. Natl. Acad. Sci. USA 122, e2424906122 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gilley, J. et al. Enrichment of SARM1 alleles encoding variants with constitutively hyperactive NADase in patients with ALS and other motor nerve disorders. eLife 10, e70905 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bloom, A. J. et al. Constitutively active SARM1 variants that induce neuropathy are enriched in ALS patients. Mol. Neurodegener. 17, 1 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhao, Y. J. et al. Acidic pH irreversibly activates the signaling enzyme SARM1. FEBS J. 288, 6783–6794 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Loring, H. S. et al. A phase transition enhances the catalytic activity of SARM1, an NAD+ glycohydrolase involved in neurodegeneration. eLife 10, e66694 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Icso, J. D. & Thompson, P. R. A phase transition reduces the threshold for nicotinamide mononucleotide-based activation of SARM1, an NAD(P) hydrolase, to physiologically relevant levels. J. Biol. Chem. 299, 105284 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tribble, J. R. et al. NMNAT2 is a druggable target to drive neuronal NAD production. Nat. Commun. 15, 6256 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fang, F. et al. NMNAT2 is downregulated in glaucomatous RGCs and RGC-specific gene therapy rescues neurodegeneration and visual function. Mol. Ther. 30, 1421–1431 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05492201 (2022). The phase I clinical trial using SARM1 SMIs in healthy participants.

  132. Australian New Zealand ClinicalTrials Registry. ANZCTR https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=385567 (2024). Successfully completed phase I clinical trial using SARM1 SMIs in healthy volunteers.

  133. Coleman, M. P. Axon biology in ALS: mechanisms of axon degeneration and prospects for therapy. Neurotherapeutics 19, 1133–1144 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Moss, K. R. & Höke, A. Targeting the programmed axon degeneration pathway as a potential therapeutic for Charcot-Marie-Tooth disease. Brain Res. 1727, 146539 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Herbosa, C. G., Perez, R., Jaeger, A., Dy, C. J. & Brogan, D. M. Inhibition of SARM1 reduces neuropathic pain in a spared nerve injury rodent model. Muscle Nerve 71, 670–679 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lukacs, M. et al. Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence. Exp. Neurol. 320, 112961 (2019). This report reveals severe biallelic LOF mutations in human NMNAT2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hicks, A. N., Campeau, L., Burmeister, D., Bishop, C. E. & Andersson, K. Lack of nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2): consequences for mouse bladder development and function. Neurourol. Urodyn. 32, 1130–1136 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dingwall, C. B. et al. Macrophage depletion blocks congenital SARM1-dependent neuropathy. J. Clin. Invest. 132, e159800 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Huppke, P. et al. Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia. Exp. Neurol. 320, 112958 (2019). The study reveals homozygous partial LOF mutations in human NMNAT2.

    Article  CAS  PubMed  Google Scholar 

  140. Chiang, P.-W. et al. Exome sequencing identifies NMNAT1 mutations as a cause of Leber congenital amaurosis. Nat. Genet. 44, 972–974 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Falk, M. J. et al. NMNAT1 mutations cause Leber congenital amaurosis. Nat. Genet. 44, 1040–1045 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Koenekoop, R. K. et al. Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration. Nat. Genet. 44, 1035–1039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Perrault, I. et al. Mutations in NMNAT1 cause Leber congenital amaurosis with early-onset severe macular and optic atrophy. Nat. Genet. 44, 975–977 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Yi, Z. et al. Clinical features and genetic spectrum of NMNAT1-associated retinal degeneration. Eye 36, 2279–2285 (2022).

    Article  CAS  PubMed  Google Scholar 

  145. Kumaran, N., Robson, A. G. & Michaelides, M. A novel case series of NMNAT1-associated early-onset retinal dystrophy: extending the phenotypic spectrum. Retin. Cases Brief Rep. 15, 139–144 (2021).

    Article  PubMed  Google Scholar 

  146. Sasaki, Y., Margolin, Z., Borgo, B., Havranek, J. J. & Milbrandt, J. Characterization of Leber congenital amaurosis-associated NMNAT1 mutants*. J. Biol. Chem. 290, 17228–17238 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ademi, M., Yang, X., Coleman, M. P. & Gilley, J. Natural variants of human SARM1 cause both intrinsic and dominant loss-of-function influencing axon survival. Sci. Rep. 12, 13846 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. van Rheenen, W. et al. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat. Genet. 48, 1043–1048 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Fogh, I. et al. A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Hum. Mol. Genet. 23, 2220–2231 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. LeWitt, P. A. The neurotoxicity of the rat poison vacor — a clinical study of 12 cases. N. Engl. J. Med. 302, 73–77 (1980).

    Article  CAS  PubMed  Google Scholar 

  151. Ling, Y. et al. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des. Dev. Ther. 15, 4289–4338 (2021).

    Article  CAS  Google Scholar 

  152. Antenor-Dorsey, J. A. V. & O’Malley, K. L. WldS but not Nmnat1 protects dopaminergic neurites from MPP+ neurotoxicity. Mol. Neurodegener. 7, 5 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Brazill, J. M., Cruz, B., Zhu, Y. & Zhai, R. G. Nmnat mitigates sensory dysfunction in a Drosophila model of paclitaxel-induced peripheral neuropathy. Dis. Model. Mech. 11, dmm032938 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Press, C. & Milbrandt, J. Nmnat delays axonal degeneration caused by mitochondrial and oxidative stress. J. Neurosci. 28, 4861–4871 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang, M. S. et al. The Wld S protein protects against axonal degeneration: a model of gene therapy for peripheral neuropathy. Ann. Neurol. 50, 773–779 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Wang, M.-S., Wu, Y., Culver, D. G. & Glass, J. D. The gene for slow Wallerian degeneration (Wlds) is also protective against vincristine neuropathy. Neurobiol. Dis. 8, 155–161 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Geisler, S. et al. Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain 139, 3092–3108 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Summers, D. W., Gibson, D. A., DiAntonio, A. & Milbrandt, J. SARM1-specific motifs in the TIR domain enable NAD+ loss and regulate injury-induced SARM1 activation. Proc. Natl Acad. Sci. USA 113, E6271–E6280 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Turkiew, E., Falconer, D., Reed, N. & Höke, A. Deletion of Sarm1 gene is neuroprotective in two models of peripheral neuropathy. J. Peripher. Nerv. Syst. 22, 162–171 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Gilley, J., Mayer, P. R., Yu, G. & Coleman, M. P. Low levels of NMNAT2 compromise axon development and survival. Hum. Mol. Genet. 28, 448–458 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Li, Y. et al. Sarm1 activation produces cADPR to increase intra-axonal Ca++ and promote axon degeneration in PIPN. J. Cell Biol. 221, e202106080 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Hinz, F. I. et al. Context-specific stress causes compartmentalized SARM1 activation and local degeneration in cortical neurons. J. Neurosci. 44, e2424232024 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chen, Y.-H., Sasaki, Y., DiAntonio, A. & Milbrandt, J. SARM1 is required in human derived sensory neurons for injury-induced and neurotoxic axon degeneration. Exp. Neurol. 339, 113636 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gomez-Deza, J., Slavutsky, A. L., Nebiyou, M. & Pichon, C. E. L. Local production of reactive oxygen species drives vincristine-induced axon degeneration. Cell Death Dis. 14, 807 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cetinkaya-Fisgin, A. et al. Cisplatin induced neurotoxicity is mediated by Sarm1 and calpain activation. Sci. Rep. 10, 21889 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gould, S. A. et al. Protection against oxaliplatin-induced mechanical and thermal hypersensitivity in Sarm1–/– mice. Exp. Neurol. 338, 113607 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Snavely, A. R. et al. Bortezomib-induced neurotoxicity in human neurons is the consequence of nicotinamide adenine dinucleotide depletion. Dis. Model. Mech. 15, dmm049358 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Klemmensen, M. M., Borrowman, S. H., Pearce, C., Pyles, B. & Chandra, B. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics 21, e00292 (2024).

    Article  CAS  PubMed  Google Scholar 

  169. Yamada, Y. et al. A SARM1/mitochondrial feedback loop drives neuropathogenesis in a Charcot-Marie-Tooth disease type 2A rat model. J. Clin. Invest. 132, e161566 (2022).

    Article  Google Scholar 

  170. Peters, O. M. et al. Loss of Sarm1 does not suppress motor neuron degeneration in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Hum. Mol. Genet. 11, 3761–3771 (2018).

    Article  Google Scholar 

  171. Collins, J. M. et al. Sarm1 knockout modifies biomarkers of neurodegeneration and spinal cord circuitry but not disease progression in the mSOD1G93A mouse model of ALS. Neurobiol. Dis. 172, 105821 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Velde, C. V., Garcia, M. L., Yin, X., Trapp, B. D. & Cleveland, D. W. The neuroprotective factor WldS does not attenuate mutant SOD1-mediated motor neuron disease. Neuromolecular Med. 5, 193–203 (2004).

    Article  Google Scholar 

  173. Fischer, L. R. et al. The WldS gene modestly prolongs survival in the SOD1G93A fALS mouse. Neurobiol. Dis. 19, 293–300 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. White, M. A. et al. Sarm1 deletion suppresses TDP-43-linked motor neuron degeneration and cortical spine loss. Acta Neuropathol. Commun. 7, 166 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Scotter, E. L., Chen, H.-J. & Shaw, C. E. TDP-43 proteinopathy and ALS: insights into disease mechanisms and therapeutic targets. Neurotherapeutics 12, 352–363 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Peters, O. M. et al. Genetic diversity of axon degenerative mechanisms in models of Parkinson’s disease. Neurobiol. Dis. 155, 105368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Antoniou, C. et al. Chronically low NMNAT2 expression causes Sub-lethal SARM1 activation and altered response to nicotinamide riboside in axons. Mol. Neurobiol. 62, 3903–3917 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Sun, Y. et al. Sarm1-mediated neurodegeneration within the enteric nervous system protects against local inflammation of the colon. Protein Cell 12, 621–638 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. He, S. et al. Targeting SARM1 as a novel neuroprotective therapy in neurotropic viral infections. J. Neuroinflammation 22, 113 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sundaramoorthy, V. et al. Novel role of SARM1 mediated axonal degeneration in the pathogenesis of rabies. PLoS Pathog. 16, e1008343 (2020). This study demonstrates that SARM1 is necessary for the rapid progression of rabies-induced axonal degeneration and that it hinders the spread of rabies virus among connected neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Xu, G. et al. PARP-1 mediated cell death is directly activated by ZIKV infection. Virology 537, 254–262 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Pang, H. et al. Aberrant NAD+ metabolism underlies Zika virus-induced microcephaly. Nat. Metab. 3, 1109–1124 (2021).

    Article  CAS  PubMed  Google Scholar 

  183. Crawford, C. L. et al. SARM1 depletion slows axon degeneration in a CNS model of neurotropic viral infection. Front. Mol. Neurosci. 15, 860410 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Szretter, K. J. et al. The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile virus pathogenesis. J. Virol. 83, 9329–9338 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Mukherjee, P., Woods, T. A., Moore, R. A. & Peterson, K. E. Activation of the innate signaling molecule MAVS by bunyavirus infection upregulates the adaptor protein SARM1, leading to neuronal death. Immunity 38, 705–716 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hou, Y.-J. et al. SARM is required for neuronal injury and cytokine production in response to central nervous system viral infection. J. Immunol. 191, 875–883 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Uccellini, M. B. et al. Passenger mutations confound phenotypes of SARM1-deficient mice. Cell Rep. 31, 107498 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Rouse, B. T. & Sehrawat, S. Immunity and immunopathology to viruses: what decides the outcome? Nat. Rev. Immunol. 10, 514–526 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhu, C., Li, B., Frontzek, K., Liu, Y. & Aguzzi, A. SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. J. Exp. Med. 216, 743–756 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Xiang, L. et al. SARM1 deletion in parvalbumin neurons is associated with autism-like behaviors in mice. Cell Death Dis. 13, 638 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Izadifar, A. et al. Axon morphogenesis and maintenance require an evolutionary conserved safeguard function of Wnk kinases antagonizing Sarm and Axed. Neuron 109, 2864–2883.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. Wu, C., Wairkar, Y. P., Collins, C. A. & DiAntonio, A. Highwire function at the Drosophila neuromuscular junction: spatial, structural, and temporal requirements. J. Neurosci. 25, 9557–9566 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wan, H. I. et al. Highwire regulates synaptic growth in Drosophila. Neuron 26, 313–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  194. Chen, C.-Y., Lin, C.-W., Chang, C.-Y., Jiang, S.-T. & Hsueh, Y.-P. Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology. J. Cell Biol. 193, 769–784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lin, C.-W., Liu, H.-Y., Chen, C.-Y. & Hsueh, Y.-P. Neuronally-expressed Sarm1 regulates expression of inflammatory and antiviral cytokines in brains. Innate Immun. 20, 161–172 (2013).

    Article  PubMed  Google Scholar 

  196. Lin, C.-W. & Hsueh, Y.-P. Sarm1, a neuronal inflammatory regulator, controls social interaction, associative memory and cognitive flexibility in mice. Brain Behav. Immun. 37, 142–151 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Lin, C.-W., Chen, C.-Y., Cheng, S.-J., Hu, H.-T. & Hsueh, Y.-P. Sarm1 deficiency impairs synaptic function and leads to behavioral deficits, which can be ameliorated by an mGluR allosteric modulator. Front. Cell. Neurosci. 8, 87 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Li, W., Zhu, W., Chen, J., Ali, T. & Li, S. SARM1 deficiency induced depressive-like behavior via AMPKα/p-eEF2 axis to synapse dysfunction. Neuropharmacology 262, 110206 (2025).

    Article  CAS  PubMed  Google Scholar 

  199. Green, S. A. et al. Optimization of brain penetrant SARM1 orthosteric inhibitors and discovery of their paradoxical subinhibitory activation. ACS Med. Chem. Lett. 16, 1147–1154 (2025).

    Article  CAS  PubMed  Google Scholar 

  200. Reardon, H. T. et al. Base exchange inhibitors of SARM1 form mononucleotide adducts and activate SARM1 in vivo. Preprint at bioRxiv https://doi.org/10.1101/2025.04.22.649875 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Zhang, W. et al. SARM1 activation promotes axonal degeneration via a two-step phase transition. Nat. Chem. Biol. https://doi.org/10.1038/s41589-025-02009-9 (2025). This article reveals that SARM1 BEIs form covalent inhibitor–ADPR conjugates within TIR dimers, acting as molecular glues to promote superhelical TIR filament-mediated SARM1 assemblies that condense into stable, phase-separated aggregates with full NADase activity.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Murata, H. et al. c-Jun N-terminal kinase (JNK)-mediated phosphorylation of SARM1 regulates NAD+ cleavage activity to inhibit mitochondrial respiration. J. Biol. Chem. 293, 18933–18943 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Murata, H. et al. Phosphorylated SARM1 is involved in the pathological process of rotenone-induced neurodegeneration. J. Biochem. 174, 533–548 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hopkins, E. L., Gu, W., Kobe, B. & Coleman, M. P. A novel NAD signaling mechanism in axon degeneration and its relationship to innate immunity. Front. Mol. Biosci. 8, 703532 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Avetisyan, A., Barria, R., Sheehan, A. & Freeman, M. R. An ionic sensor acts in parallel to dsarm to promote neurodegeneration. Preprint at bioRxiv https://doi.org/10.1101/2024.10.29.620922 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Zhu, W. J. et al. Gap junction intercellular communications regulates activation of SARM1 and protects against axonal degeneration. Cell Death Dis. 16, 13 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Dingwall, C. B. et al. Suppressing phagocyte activation by overexpressing the phosphatidylserine lipase ABHD12 preserves sarmopathic nerves. iScience 28, 112626 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Babetto, E., Wong, K. M. & Beirowski, B. A glycolytic shift in Schwann cells supports injured axons. Nat. Neurosci. 23, 1215–1228 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Mutschler, C. et al. Schwann cells are axo-protective after injury irrespective of myelination status in mouse Schwann cell/neuron cocultures. J. Cell Sci. 136, jcs261557 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Mariano, V., Domínguez-Iturza, N., Neukomm, L. J. & Bagni, C. Maintenance mechanisms of circuit-integrated axons. Curr. Opin. Neurobiol. 53, 162–173 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Salvadores, N., Sanhueza, M., Manque, P. & Court, F. A. Axonal degeneration during aging and its functional role in neurodegenerative disorders. Front. Neurosci. 11, 451 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Faust, T. E., Gunner, G. & Schafer, D. P. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat. Rev. Neurosci. 22, 657–673 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Furusawa, K. & Emoto, K. Spatiotemporal regulation of developmental neurite pruning: molecular and cellular insights from Drosophila models. Neurosci. Res. 167, 54–63 (2021).

    Article  CAS  PubMed  Google Scholar 

  214. Riccomagno, M. M. & Kolodkin, A. L. Sculpting neural circuits by axon and dendrite pruning. Annu. Rev. Cell Dev. Biol. 31, 779–805 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Schuldiner, O. & Yaron, A. Mechanisms of developmental neurite pruning. Cell. Mol. Life Sci. 72, 101–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  216. Knoerl, R. et al. Exploring clinical markers of Axon degeneration processes in chemotherapy-induced peripheral neuropathy among young adults receiving vincristine or paclitaxel. BMC Neurol. 24, 366 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Khalil, M. et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 14, 577–589 (2018).

    Article  CAS  PubMed  Google Scholar 

  218. Khalil, M. et al. Neurofilaments as biomarkers in neurological disorders — towards clinical application. Nat. Rev. Neurol. 20, 269–287 (2024).

    Article  PubMed  Google Scholar 

  219. Rosengren, L. E., Karlsson, J., Karlsson, J., Persson, L. I. & Wikkelsø, C. Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J. Neurochem. 67, 2013–2018 (1996).

    Article  CAS  PubMed  Google Scholar 

  220. Gisslén, M. et al. Plasma concentration of the Neurofilament Light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine 3, 135–140 (2016).

    Article  PubMed  Google Scholar 

  221. Kuhle, J. et al. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin. Chem. Lab. Med. 54, 1655–1661 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Fazal, S. V. et al. SARM1 detection in myelinating glia: sarm1/Sarm1 is dispensable for PNS and CNS myelination in zebrafish and mice. Front. Cell. Neurosci. 17, 1158388 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Huang, K. et al. Base-exchange enabling the visualization of SARM1 activities in sciatic nerve-injured mice. ACS Sens. 8, 767–773 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. DiAntonio, A. Höke, B. Kobe, G. Orsomando, J. Gilley, M. Coleman and Y. Sasaki for their constructive feedback on the manuscript. A.L. is supported by the Faculty of Medicine and Health and Save Sight Institute New Academic Staff Funding (University of Sydney) and the Snow Vision Accelerator (Snow Medical). L.J.N. is supported by two Swiss National Science Foundation (SNSF) Assistant Professor starting grants (PP00P3_176855 and PP00P3_211015), a SNSF project grant (320030-236186) and the University of Lausanne/Canton de Vaud.

Author information

Authors and Affiliations

Authors

Contributions

The authors both contributed to all aspects of the manuscript preparation.

Corresponding author

Correspondence to Lukas J. Neukomm.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Antisense oligonucleotides

Short synthetic strands of DNA or RNA designed to bind to specific target RNA molecules to block the RNA from producing a protein, altering its normal function or stability.

Axonopathies

Neurological disorders characterized by progressive axonal degeneration, leading to disrupted neuronal communication.

Base-exchange activity

The ability of an enzyme to swap one base for another within a larger molecule, often a nicotinamide adenine dinucleotide (NAD+)-related (or phospholipid) compound.

Base-exchange inhibitors

(BEIs). They work as a base within the catalytic site of sterile-α and TIR motif-containing protein 1 (SARM1) by replacing nicotinamide in the NAD+ substrate to form a stable base–adenosine diphosphate-ribose adduct, thereby blocking SARM1 NADase activity.

Glycohydrolase

An enzyme that breaks glycosidic bonds — using either water (hydrolysis) or alternative nucleophiles — thereby degrading complex substrates into simpler components.

Passenger mutations

In the context of genetically modified organisms, passenger mutations are unintended genetic differences from a donor’s genetic background that are inadvertently transferred to a recipient during the genetic engineering process, potentially causing experimental bias or an unexpected phenotype.

Phase transition

Reversible or irreversible changes in the physical state of proteins from liquid-like condensates into solid aggregates altering organization and function.

Transglycosidase

An enzyme whose activity transfers a glycosyl (sugar) group from one molecule to another rather than hydrolysing it.

Wallerian degeneration

The process of axotomy-induced distal axon degeneration and the clearance of the resulting debris by surrounding glia and immune cells, named after August Waller.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loreto, A., Neukomm, L.J. Programmed axon degeneration: mechanism, inhibition and therapeutic potential. Nat. Rev. Neurosci. 27, 44–60 (2026). https://doi.org/10.1038/s41583-025-00986-3

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41583-025-00986-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing