Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rheumatic diseases and metabolism: where centre and periphery meet

Abstract

Over the past few decades, the connection between metabolism and various inflammatory and rheumatic diseases has been an area of active investigation. Nonetheless, the precise mechanisms underlying these relationships remain a topic of ongoing debate, owing in part to conflicting data. This discrepancy can be attributed to the predominant focus on peripheral mechanisms in research into the metabolic consequences of rheumatic diseases. However, a wealth of evidence supports the notion that the central nervous system, specifically the hypothalamus, has an important influence on metabolic homeostasis. Notably, links have been established between crucial hypothalamic mechanisms responsible for regulating energy balance (including food intake, thermogenesis, and glucose and lipid metabolism), such as AMP-activated protein kinase, and the pathophysiology of rheumatoid arthritis. This Review aims to comprehensively examine the current understanding of central metabolic control in rheumatic diseases and explore potential therapeutic options that target this pathophysiological mechanism.

Key points

  • A clear correlation exists between metabolism and rheumatic diseases; however, the molecular details of the association remain unclear.

  • Several areas of the central nervous system, such as the hypothalamus, have a major role in the regulation of energy metabolism.

  • Hypothalamic neuropeptides have been shown to be involved in the pathophysiology of rheumatic diseases.

  • Current evidence demonstrates that hypothalamic AMP-activated protein kinase has a role in the pathophysiology of rheumatic disease, by acting at both the metabolic and the inflammatory levels.

  • Overall, this evidence provides new mechanistic insights into the pathophysiology of rheumatic diseases, which might offer new alternatives to their clinical management and the treatment of associated comorbidities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rheumatic diseases affect whole-body metabolism.
Fig. 2: Hypothalamic and autonomic regulation of energy metabolism in rheumatic diseases.
Fig. 3: Targeting AMPK as a strategy to globally treat rheumatic diseases.

Similar content being viewed by others

References

  1. Nicolau, J., Lequerre, T., Bacquet, H. & Vittecoq, O. Rheumatoid arthritis, insulin resistance, and diabetes. Joint Bone Spine 84, 411–416 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Spies, C. M., Straub, R. H. & Buttgereit, F. Energy metabolism and rheumatic diseases: from cell to organism. Arthritis Res. Ther. 14, 216 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Francisco, V. et al. A new immunometabolic perspective of intervertebral disc degeneration. Nat. Rev. Rheumatol. 18, 47–60 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Mobasheri, A. et al. The role of metabolism in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 13, 302–311 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Abella, V. et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat. Rev. Rheumatol. 13, 100–109 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Huang, Z. & Kraus, V. B. Does lipopolysaccharide-mediated inflammation have a role in OA? Nat. Rev. Rheumatol. 12, 123–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Lackey, D. E. & Olefsky, J. M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol. 12, 15–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Kerekes, G. et al. Rheumatoid arthritis and metabolic syndrome. Nat. Rev. Rheumatol. 10, 691–696 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Zhuo, Q., Yang, W., Chen, J. & Wang, Y. Metabolic syndrome meets osteoarthritis. Nat. Rev. Rheumatol. 8, 729–737 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Straub, R. H. Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases. Arthritis Res. Ther. 16 (Suppl. 2), S4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lopez, M., Nogueiras, R., Tena-Sempere, M. & Dieguez, C. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat. Rev. Endocrinol. 12, 421–432 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Jais, A. & Bruning, J. C. Arcuate nucleus-dependent regulation of metabolism-pathways to obesity and diabetes mellitus. Endocr. Rev. 43, 314–328 (2022).

    Article  PubMed  Google Scholar 

  13. Quarta, C. et al. POMC neuronal heterogeneity in energy balance and beyond: an integrated view. Nat. Metab. 3, 299–308 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lopez, M. Hypothalamic AMPK as a possible target for energy balance-related diseases. Trends Pharmacol. Sci. 43, 546–556 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Lopez, M., Tena-Sempere, M. & Dieguez, C. Cross-talk between orexins (hypocretins) and the neuroendocrine axes (hypothalamic-pituitary axes). Front. Neuroendocrinol. 31, 113–127 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Loos, R. J. F. & Yeo, G. S. H. The genetics of obesity: from discovery to biology. Nat. Rev. Genet. 23, 120–133 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Muller, T. D., Bluher, M., Tschop, M. H. & DiMarchi, R. D. Anti-obesity drug discovery: advances and challenges. Nat. Rev. Drug. Discov. 21, 201–223 (2022).

    Article  PubMed  Google Scholar 

  18. Bruning, J. C. & Fenselau, H. Integrative neurocircuits that control metabolism and food intake. Science 381, eabl7398 (2023).

    Article  PubMed  Google Scholar 

  19. Levine, J. D., Goetzl, E. J. & Basbaum, A. I. Contribution of the nervous system to the pathophysiology of rheumatoid arthritis and other polyarthritides. Rheum. Dis. Clin. North. Am. 13, 369–383 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Levine, J. D., Collier, D. H., Basbaum, A. I., Moskowitz, M. A. & Helms, C. A. Hypothesis: the nervous system may contribute to the pathophysiology of rheumatoid arthritis. J. Rheumatol. 12, 406–411 (1985).

    CAS  PubMed  Google Scholar 

  21. Seoane-Collazo, P. et al. Activation of hypothalamic AMP-activated protein kinase ameliorates metabolic complications of experimental arthritis. Arthritis Rheumatol. 74, 212–222 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Kelly, M. The neurogenic factor in rheumatic inflammation. Med. J. Aust. 1, 859–864 (1951).

    Article  CAS  PubMed  Google Scholar 

  23. Taylor, C. T. & Colgan, S. P. Hypoxia and gastrointestinal disease. J. Mol. Med. 85, 1295–1300 (2007).

    Article  PubMed  Google Scholar 

  24. Lewis, J. S., Lee, J. A., Underwood, J. C., Harris, A. L. & Lewis, C. E. Macrophage responses to hypoxia: relevance to disease mechanisms. J. Leukoc. Biol. 66, 889–900 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Pirzgalska, R. M. & Domingos, A. I. Macrophages in obesity. Cell. Immunol. 330, 183–187 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Procaccini, C., Pucino, V., Mantzoros, C. S. & Matarese, G. Leptin in autoimmune diseases. Metabolism 64, 92–104 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. La Cava, A. Leptin in inflammation and autoimmunity. Cytokine 98, 51–58 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Carobbio, S., Pellegrinelli, V. & Vidal-Puig, A. Adipose tissue function and expandability as determinants of lipotoxicity and the metabolic syndrome. Adv. Exp. Med. Biol. 960, 161–196 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Francisco, V. et al. Adipokines and inflammation: is it a question of weight? Br. J. Pharmacol. 175, 1569–1579 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rohm, T. V., Meier, D. T., Olefsky, J. M. & Donath, M. Y. Inflammation in obesity, diabetes, and related disorders. Immunity 55, 31–55 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Larabee, C. M., Neely, O. C. & Domingos, A. I. Obesity: a neuroimmunometabolic perspective. Nat. Rev. Endocrinol. 16, 30–43 (2020).

    Article  PubMed  Google Scholar 

  32. Martinez-Sanchez, N. et al. The sympathetic nervous system in the 21st century: neuroimmune interactions in metabolic homeostasis and obesity. Neuron 110, 3597–3626 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O’Brien, C. J. O., Haberman, E. R. & Domingos, A. I. A tale of three systems: toward a neuroimmunoendocrine model of obesity. Annu. Rev. Cell Dev. Biol. 37, 549–573 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Straub, R. H. The brain and immune system prompt energy shortage in chronic inflammation and ageing. Nat. Rev. Rheumatol. 13, 743–751 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Farrag, Y. et al. Adipokines as potential pharmacological targets for immune inflammatory rheumatic diseases: focus on rheumatoid arthritis, osteoarthritis, and intervertebral disc degeneration. Pharmacol. Res. 205, 107219 (2024).

    Article  CAS  PubMed  Google Scholar 

  36. Gomez, R. et al. What’s new in our understanding of the role of adipokines in rheumatic diseases? Nat. Rev. Rheumatol. 7, 528–536 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Arshad, A., Rashid, R. & Benjamin, K. The effect of disease activity on fat-free mass and resting energy expenditure in patients with rheumatoid arthritis versus noninflammatory arthropathies/soft tissue rheumatism. Mod. Rheumatol. 17, 470–475 (2007).

    Article  PubMed  Google Scholar 

  38. Francisco, V. et al. Adipokines: linking metabolic syndrome, the immune system, and arthritic diseases. Biochem. Pharmacol. 165, 196–206 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Chin, S. H., Huang, W. L., Akter, S. & Binks, M. Obesity and pain: a systematic review. Int. J. Obes. 44, 969–979 (2020).

    Article  Google Scholar 

  40. Angelidi, A. M., Belanger, M. J., Kokkinos, A., Koliaki, C. C. & Mantzoros, C. S. Novel noninvasive approaches to the treatment of obesity: from pharmacotherapy to gene therapy. Endocr. Rev. 43, 507–557 (2022).

    Article  PubMed  Google Scholar 

  41. Dragano, N. R. V., Ferno, J., Dieguez, C., Lopez, M. & Milbank, E. Recent updates on obesity treatments: available drugs and future directions. Neuroscience 437, 215–239 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Müller, T. D. et al. Anti-obesity therapy: from rainbow pills to polyagonists. Pharmacol. Rev. 70, 712–746 (2018).

    Article  PubMed  Google Scholar 

  43. Hallajzadeh, J. et al. Metabolic syndrome and its components among rheumatoid arthritis patients: a comprehensive updated systematic review and meta-analysis. PLoS ONE 12, e0170361 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wolfe, F. & Michaud, K. Effect of body mass index on mortality and clinical status in rheumatoid arthritis. Arthritis Care Res. 64, 1471–1479 (2012).

    Article  Google Scholar 

  45. Ogden, C. L., Carroll, M. D., Kit, B. K. & Flegal, K. M. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA 311, 806–814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sattar, N. & McInnes, I. B. Rheumatoid arthritis: debunking the obesity-mortality paradox in RA. Nat. Rev. Rheumatol. 11, 445–446 (2015).

    Article  PubMed  Google Scholar 

  47. Baker, J. F. et al. Weight loss, the obesity paradox, and the risk of death in rheumatoid arthritis. Arthritis Rheumatol. 67, 1711–1717 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. George, M. D. & Baker, J. F. The obesity epidemic and consequences for rheumatoid arthritis care. Curr. Rheumatol. Rep. 18, 6 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mangnus, L. et al. Body mass index and extent of MRI-detected inflammation: opposite effects in rheumatoid arthritis versus other arthritides and asymptomatic persons. Arthritis Res. Ther. 18, 245 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Baker, J. F. et al. Obesity, weight loss, and progression of disability in rheumatoid arthritis. Arthritis Care Res. 70, 1740–1747 (2018).

    Article  CAS  Google Scholar 

  51. Lago, F., Dieguez, C., Gomez-Reino, J. & Gualillo, O. The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor. Rev. 18, 313–325 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Gonzalez-Rodriguez, M. et al. Adipokines as targets in musculoskeletal immune and inflammatory diseases. Drug. Discov. Today 27, 103352 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Karsenty, G. & Khosla, S. The crosstalk between bone remodeling and energy metabolism: a translational perspective. Cell Metab. 34, 805–817 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun, X. et al. Leptin-induced migration and angiogenesis in rheumatoid arthritis is mediated by reactive oxygen species. FEBS Open. Bio 7, 1899–1908 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. de Candia, P. et al. The pleiotropic roles of leptin in metabolism, immunity, and cancer. J. Exp. Med. 218, e20191593 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Conde, J. et al. Differential expression of adipokines in infrapatellar fat pad (IPFP) and synovium of osteoarthritis patients and healthy individuals. Ann. Rheum. Dis. 73, 631–633 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Scotece, M. et al. Adipokines induce pro-inflammatory factors in activated Cd4+ T cells from osteoarthritis patient. J. Orthop. Res. 35, 1299–1303 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Francisco, V. et al. Obesity, fat mass and immune system: role for leptin. Front. Physiol. 9, 640 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wang, Q. & Wu, H. T cells in adipose tissue: critical players in immunometabolism. Front. Immunol. 9, 2509 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kalin, S. et al. Hypothalamic innate immune reaction in obesity. Nat. Rev. Endocrinol. 11, 339–351 (2015).

    Article  PubMed  Google Scholar 

  61. Jais, A. & Bruning, J. C. Hypothalamic inflammation in obesity and metabolic disease. J. Clin. Invest. 127, 24–32 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dragano, N. R., Monfort-Pires, M. & Velloso, L. A. Mechanisms mediating the actions of fatty acids in the hypothalamus. Neuroscience 447, 15–27 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Otero, M. et al. Chronic inflammation modulates ghrelin levels in humans and rats. Rheumatology 43, 306–310 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Koca, S. S. et al. Ghrelin and obestatin levels in rheumatoid arthritis. Inflammation 31, 329–335 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Abella, V. et al. Adipokines, metabolic syndrome and rheumatic diseases. J. Immunol. Res. 2014, 343746 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Stofkova, A. et al. Enhanced expressions of mRNA for neuropeptide Y and interleukin 1 beta in hypothalamic arcuate nuclei during adjuvant arthritis-induced anorexia in Lewis rats. Neuroimmunomodulation 16, 377–384 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Gomez-SanMiguel, A. B. et al. Systemic α-melanocyte-stimulating hormone administration decreases arthritis-induced anorexia and muscle wasting. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R877–R886 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Grassel, S. & Muschter, D. Do neuroendocrine peptides and their receptors qualify as novel therapeutic targets in osteoarthritis? Int. J. Mol. Sci. 19, 367 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bohm, M. & Grassel, S. Role of proopiomelanocortin-derived peptides and their receptors in the osteoarticular system: from basic to translational research. Endocr. Rev. 33, 623–651 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gao, D., Gao, X., Yang, F. & Wang, Q. Neuroimmune crosstalk in rheumatoid arthritis. Int. J. Mol. Sci. 23, 8158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chikanza, I. C., Petrou, P. & Chrousos, G. Perturbations of arginine vasopressin secretion during inflammatory stress. Pathophysiologic implications. Ann. N. Y. Acad. Sci. 917, 825–834 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Cutolo, M., Foppiani, L. & Minuto, F. Hypothalamic-pituitary-adrenal axis impairment in the pathogenesis of rheumatoid arthritis and polymyalgia rheumatica. J. Endocrinol. Invest. 25, 19–23 (2002).

    CAS  PubMed  Google Scholar 

  73. Zhang, X. et al. Brain control of humoral immune responses amenable to behavioural modulation. Nature 581, 204–208 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Nishimura, H. et al. Acute mono-arthritis activates the neurohypophysial system and hypothalamo-pituitary adrenal axis in rats. Front. Endocrinol. 11, 43 (2020).

    Article  Google Scholar 

  75. Atzeni, F., Straub, R. H., Cutolo, M. & Sarzi-Puttini, P. Anti-TNF therapy restores the hypothalamic-pituitary-adrenal axis. Ann. N. Y. Acad. Sci. 1193, 179–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Straub, R. H., Bijlsma, J. W., Masi, A. & Cutolo, M. Role of neuroendocrine and neuroimmune mechanisms in chronic inflammatory rheumatic diseases – the 10-year update. Semin. Arthritis Rheum. 43, 392–404 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Seror, R., Nocturne, G. & Mariette, X. Current and future therapies for primary Sjögren syndrome. Nat. Rev. Rheumatol. 17, 475–486 (2021).

    Article  PubMed  Google Scholar 

  78. Vissink, A. & Bootsma, H. Connective tissue diseases: refining the classification criteria for primary Sjögren syndrome. Nat. Rev. Rheumatol. 13, 10–12 (2016).

    Article  PubMed  Google Scholar 

  79. Johnson, E. O., Kostandi, M. & Moutsopoulos, H. M. Hypothalamic-pituitary-adrenal axis function in Sjögren’s syndrome: mechanisms of neuroendocrine and immune system homeostasis. Ann. N. Y. Acad. Sci. 1088, 41–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Johnson, E. O., Vlachoyiannopoulos, P. G., Skopouli, F. N., Tzioufas, A. G. & Moutsopoulos, H. M. Hypofunction of the stress axis in Sjögren’s syndrome. J. Rheumatol. 25, 1508–1514 (1998).

    CAS  PubMed  Google Scholar 

  81. Thaler, J. P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Toth, K. et al. Synovial fluid β-endorphin level in avascular necrosis, rheumatoid arthritis, and osteoarthritis of the femoral head and knee. A controlled pilot study. Clin. Rheumatol. 30, 537–540 (2011).

    Article  PubMed  Google Scholar 

  83. Catania, A. et al. The anticytokine neuropeptide α-melanocyte-stimulating hormone in synovial fluid of patients with rheumatic diseases: comparisons with other anticytokine molecules. Neuroimmunomodulation 1, 321–328 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Bjurholm, A., Kreicbergs, A., Ahmed, M. & Schultzberg, M. Noradrenergic and peptidergic nerves in the synovial membrane of the Sprague-Dawley rat. Arthritis Rheum. 33, 859–865 (1990).

    Article  CAS  PubMed  Google Scholar 

  85. Larsson, J., Ekblom, A., Henriksson, K., Lundeberg, T. & Theodorsson, E. Concentration of substance P, neurokinin A, calcitonin gene-related peptide, neuropeptide Y and vasoactive intestinal polypeptide in synovial fluid from knee joints in patients suffering from rheumatoid arthritis. Scand. J. Rheumatol. 20, 326–335 (1991).

    Article  CAS  PubMed  Google Scholar 

  86. Ferreira-Gomes, J., Adaes, S., Sousa, R. M., Mendonca, M. & Castro-Lopes, J. M. Dose-dependent expression of neuronal injury markers during experimental osteoarthritis induced by monoiodoacetate in the rat. Mol. Pain. 8, 50 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Juarranz, Y. et al. Differential expression of vasoactive intestinal peptide and its functional receptors in human osteoarthritic and rheumatoid synovial fibroblasts. Arthritis Rheum. 58, 1086–1095 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Grassel, S. et al. The melanocortin system in articular chondrocytes: melanocortin receptors, pro-opiomelanocortin, precursor proteases, and a regulatory effect of α-melanocyte-stimulating hormone on proinflammatory cytokines and extracellular matrix components. Arthritis Rheum. 60, 3017–3027 (2009).

    Article  PubMed  Google Scholar 

  89. Delgado, M., Abad, C., Martinez, C., Leceta, J. & Gomariz, R. P. Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease. Nat. Med. 7, 563–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Brzoska, T., Bohm, M., Lugering, A., Loser, K. & Luger, T. A. Terminal signal: anti-inflammatory effects of α-melanocyte-stimulating hormone related peptides beyond the pharmacophore. Adv. Exp. Med. Biol. 681, 107–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Wang, W., Guo, D. Y., Lin, Y. J. & Tao, Y. X. Melanocortin regulation of inflammation. Front. Endocrinol. 10, 683 (2019).

    Article  Google Scholar 

  92. Juhasz, T., Helgadottir, S. L., Tamas, A., Reglodi, D. & Zakany, R. PACAP and VIP signaling in chondrogenesis and osteogenesis. Peptides 66, 51–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Crofford, L. J. et al. Corticotropin-releasing hormone in synovial fluids and tissues of patients with rheumatoid arthritis and osteoarthritis. J. Immunol. 151, 1587–1596 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Miyazaki, S. et al. ACTH expression in synovium of patients with rheumatoid arthritis and Lewis rats with adjuvant arthritis. Mod. Rheumatol. 12, 206–212 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Getting, S. J., Christian, H. C., Flower, R. J. & Perretti, M. Activation of melanocortin type 3 receptor as a molecular mechanism for adrenocorticotropic hormone efficacy in gouty arthritis. Arthritis Rheum. 46, 2765–2775 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Milbank, E. & Lopez, M. Orexins/hypocretins: key regulators of energy homeostasis. Front. Endocrinol. 10, 830 (2019).

    Article  Google Scholar 

  97. Sun, M., Wang, W., Li, Q., Yuan, T. & Weng, W. Orexin A may suppress inflammatory response in fibroblast-like synoviocytes. Biomed. Pharmacother. 107, 763–768 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Seoane-Collazo, P. et al. Hypothalamic-autonomic control of energy homeostasis. Endocrine 50, 276–291 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Harlan, S. M. & Rahmouni, K. PI3K signaling: a key pathway in the control of sympathetic traffic and arterial pressure by leptin. Mol. Metab. 2, 69–73 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pongratz, G. & Straub, R. H. Role of peripheral nerve fibres in acute and chronic inflammation in arthritis. Nat. Rev. Rheumatol. 9, 117–126 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Waise, T. M. Z., Dranse, H. J. & Lam, T. K. T. The metabolic role of vagal afferent innervation. Nat. Rev. Gastroenterol. Hepatol. 15, 625–636 (2018).

    Article  PubMed  Google Scholar 

  102. Padmanabhan, S. & Dominiczak, A. F. Genomics of hypertension: the road to precision medicine. Nat. Rev. Cardiol. 18, 235–250 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Benarroch, E. E. The clinical approach to autonomic failure in neurological disorders. Nat. Rev. Neurol. 10, 396–407 (2014).

    Article  PubMed  Google Scholar 

  104. Espinosa-Medina, I. et al. The sacral autonomic outflow is sympathetic. Science 354, 893–897 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Espinosa-Medina, I., Saha, O., Boismoreau, F. & Brunet, J. F. The “sacral parasympathetic”: ontogeny and anatomy of a myth. Clin. Auton. Res. 28, 13–21 (2018).

    Article  PubMed  Google Scholar 

  106. Horn, J. P. The sacral autonomic outflow is parasympathetic: Langley got it right. Clin. Auton. Res. 28, 181–185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sivori, M. et al. The pelvic organs receive no parasympathetic innervation. eLife 12, e91576 (2024).

    Article  Google Scholar 

  108. Huang, Y. Y. et al. Neuroimmune crosstalk in central nervous system injury-induced infection and pharmacological intervention. Brain Res. Bull. 153, 232–238 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Harle, P., Mobius, D., Carr, D. J., Scholmerich, J. & Straub, R. H. An opposing time-dependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis. Arthritis Rheum. 52, 1305–1313 (2005).

    Article  PubMed  Google Scholar 

  110. Hart, F. D., Golding, J. R. & Mackenzie, D. H. Neuropathy in rheumatoid disease. Ann. Rheum. Dis. 16, 471–480 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pecanha, T. et al. Chronotropic incompetence and reduced heart rate recovery in rheumatoid arthritis. J. Clin. Rheumatol. 24, 375–380 (2018).

    Article  PubMed  Google Scholar 

  112. Adlan, A. M., Paton, J. F., Lip, G. Y., Kitas, G. D. & Fisher, J. P. Increased sympathetic nerve activity and reduced cardiac baroreflex sensitivity in rheumatoid arthritis. J. Physiol. 595, 967–981 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Goldstein, R. S. et al. Cholinergic anti-inflammatory pathway activity and High Mobility Group Box-1 (HMGB1) serum levels in patients with rheumatoid arthritis. Mol. Med. 13, 210–215 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Koopman, F. A., van Maanen, M. A., Vervoordeldonk, M. J. & Tak, P. P. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J. Intern. Med. 282, 64–75 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Ingegnoli, F. et al. The link between autonomic nervous system and rheumatoid arthritis: from bench to bedside. Front. Med. 7, 589079 (2020).

    Article  Google Scholar 

  116. van Maanen, M. A., Vervoordeldonk, M. J. & Tak, P. P. The cholinergic anti-inflammatory pathway: towards innovative treatment of rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 229–232 (2009).

    Article  PubMed  Google Scholar 

  117. van Maanen, M. A., Stoof, S. P., Larosa, G. J., Vervoordeldonk, M. J. & Tak, P. P. Role of the cholinergic nervous system in rheumatoid arthritis: aggravation of arthritis in nicotinic acetylcholine receptor α7 subunit gene knockout mice. Ann. Rheum. Dis. 69, 1717–1723 (2010).

    Article  PubMed  Google Scholar 

  118. Thanou, A. et al. Impact of heart rate variability, a marker for cardiac health, on lupus disease activity. Arthritis Res. Ther. 18, 197 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Maule, S. et al. Autonomic nervous dysfunction in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA): possible pathogenic role of autoantibodies to autonomic nervous structures. Clin. Exp. Immunol. 110, 423–427 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Stojanovich, L. et al. Cardiovascular autonomic dysfunction in systemic lupus, rheumatoid arthritis, primary Sjögren syndrome and other autoimmune diseases. Lupus 16, 181–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Pham, G. S., Wang, L. A. & Mathis, K. W. Pharmacological potentiation of the efferent vagus nerve attenuates blood pressure and renal injury in a murine model of systemic lupus erythematosus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315, R1261–R1271 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Fairley, A. S. & Mathis, K. W. Cholinergic agonists reduce blood pressure in a mouse model of systemic lupus erythematosus. Physiol. Rep. 5, e13213 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Aranow, C. et al. Transcutaneous auricular vagus nerve stimulation reduces pain and fatigue in patients with systemic lupus erythematosus: a randomised, double-blind, sham-controlled pilot trial. Ann. Rheum. Dis. 80, 203–208 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Pirzgalska, R. M. et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cutolo, M., Sulli, A., Pizzorni, C., Craviotto, C. & Straub, R. H. Hypothalamic-pituitary-adrenocortical and gonadal functions in rheumatoid arthritis. Ann. N. Y. Acad. Sci. 992, 107–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Cutolo, M. et al. The hypothalamic-pituitary-adrenocortical and gonadal axis function in rheumatoid arthritis. Z. Rheumatol. 59 (Suppl. 2), II65–II69 (2000).

    Article  Google Scholar 

  127. Straub, R. H., Cutolo, M., Buttgereit, F. & Pongratz, G. Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J. Intern. Med. 267, 543–560 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Elenkov, I. J., Wilder, R. L., Chrousos, G. P. & Vizi, E. S. The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52, 595–638 (2000).

    CAS  PubMed  Google Scholar 

  129. Straub, R. H., Buttgereit, F. & Cutolo, M. Alterations of the hypothalamic-pituitary-adrenal axis in systemic immune diseases - a role for misguided energy regulation. Clin. Exp. Rheumatol. 29, S23–S31 (2011).

    CAS  PubMed  Google Scholar 

  130. Lin, S. C. & Hardie, D. G. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 27, 299–313 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Steinberg, G. R. & Carling, D. AMP-activated protein kinase: the current landscape for drug development. Nat. Rev. Drug Discov. 18, 527–551 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Iwata, S. & Tanaka, Y. Therapeutic perspectives on the metabolism of lymphocytes in patients with rheumatoid arthritis and systemic lupus erythematosus. Expert. Rev. Clin. Immunol. 17, 1121–1130 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. McHugh, J. AMPK: a therapeutic target in RA? Nat. Rev. Rheumatol. 15, 188 (2019).

    Article  PubMed  Google Scholar 

  134. Liu, E. & Perl, A. Pathogenesis and treatment of autoimmune rheumatic diseases. Curr. Opin. Rheumatol. 31, 307–315 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yi, D. et al. AMPK signaling in energy control, cartilage biology, and osteoarthritis. Front. Cell Dev. Biol. 9, 696602 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Loeser, R. F., Collins, J. A. & Diekman, B. O. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 412–420 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu-Bryan, R. & Terkeltaub, R. Emerging regulators of the inflammatory process in osteoarthritis. Nat. Rev. Rheumatol. 11, 35–44 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Kim, J., Kim, Y. S. & Park, S. H. Metformin as a treatment strategy for Sjögren’s syndrome. Int. J. Mol. Sci. 22, 7231 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wen, Z. et al. N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nat. Immunol. 20, 313–325 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Speirs, C., Williams, J. J. L., Riches, K., Salt, I. P. & Palmer, T. M. Linking energy sensing to suppression of JAK-STAT signalling: a potential route for repurposing AMPK activators? Pharmacol. Res. 128, 88–100 (2018).

    Article  PubMed  Google Scholar 

  141. Cai, W. et al. The glycolysis inhibitor 2-deoxyglucose ameliorates adjuvant-induced arthritis by regulating macrophage polarization in an AMPK-dependent manner. Mol. Immunol. 140, 186–195 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Salvatore, T. et al. Metformin: a potential therapeutic tool for rheumatologists. Pharmaceuticals 13, 234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Thornton, C. C. et al. Methotrexate-mediated activation of an AMPK-CREB-dependent pathway: a novel mechanism for vascular protection in chronic systemic inflammation. Ann. Rheum. Dis. 75, 439–448 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Claret, M. et al. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J. Clin. Invest. 117, 2325–2336 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Okamoto, S. et al. Activation of AMPK-regulated CRH neurons in the PVH is sufficient and necessary to induce dietary preference for carbohydrate over fat. Cell Rep. 22, 706–721 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. López, M. et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab. 7, 389–399 (2008).

    Article  PubMed  Google Scholar 

  147. Xue, B. et al. Neuronal protein tyrosine phosphatase 1B deficiency results in inhibition of hypothalamic AMPK and isoform-specific activation of AMPK in peripheral tissues. Mol. Cell Biol. 29, 4563–4573 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Martinez-Sanchez, N. et al. Hypothalamic AMPK-ER stress-JNK1 axis mediates the central actions of thyroid hormones on energy balance. Cell Metab. 26, 212–229.e2 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. McCrimmon, R. J. et al. Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus. Diabetes 53, 1953–1958 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. McCrimmon, R. J. et al. Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes 57, 444–450 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Seoane-Collazo, P. et al. SF1-specific AMPKα1 deletion protects against diet-induced obesity. Diabetes 67, 2213–2226 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Martínez de Morentin, P. B. et al. Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase. Diabetes 61, 807–817 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Beiroa, D. et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63, 3346–3358 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Martins, L. et al. A functional link between AMPK and orexin mediates the effect of BMP8B on energy balance. Cell Rep. 16, 2231–2242 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Martinez-Sanchez, N. et al. Thyroid hormones induce browning of white fat. J. Endocrinol. 232, 351–362 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Martinez de Morentin, P. B. et al. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab. 20, 41–53 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lopez, M. et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat. Med. 16, 1001–1008 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Whittle, A. J. et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871–885 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Milbank, E. et al. Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation. Nat. Metab. 3, 1415–1431 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Milbank, E. et al. Small extracellular vesicle targeting of hypothalamic AMPKα1 promotes weight loss in leptin receptor deficient mice. Metabolism 139, 155350 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Binymin, K., Herrick, A., Carlson, G. & Hopkins, S. The effect of disease activity on body composition and resting energy expenditure in patients with rheumatoid arthritis. J. Inflamm. Res. 4, 61–66 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Choe, J. Y., Park, S. H., Lee, H., Kwon, H. H. & Kim, S. K. Resting energy expenditure is not associated with disease activity in women with rheumatoid arthritis: cross-sectional study. Korean J. Intern. Med. 29, 516–524 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Brooks, S. L., Neville, A. M., Rothwell, N. J., Stock, M. J. & Wilson, S. Sympathetic activation of brown-adipose-tissue thermogenesis in cachexia. Biosci. Rep. 1, 509–517 (1981).

    Article  CAS  PubMed  Google Scholar 

  164. Shellock, F. G., Riedinger, M. S. & Fishbein, M. C. Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia. J. Cancer Res. Clin. Oncol. 111, 82–85 (1986).

    Article  CAS  PubMed  Google Scholar 

  165. Bing, C. et al. Increased gene expression of brown fat uncoupling protein (UCP)1 and skeletal muscle UCP2 and UCP3 in MAC16-induced cancer cachexia. Cancer Res. 60, 2405–2410 (2000).

    CAS  PubMed  Google Scholar 

  166. Tsoli, M. et al. Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res. 72, 4372–4382 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Petruzzelli, M. et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20, 433–447 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Cano, G. et al. Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J. Comp. Neurol. 460, 303–326 (2003).

    Article  PubMed  Google Scholar 

  169. Morrison, S. F., Madden, C. J. & Tupone, D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Buttgereit, F. Views on glucocorticoid therapy in rheumatology: the age of convergence. Nat. Rev. Rheumatol. 16, 239–246 (2020).

    Article  CAS  PubMed  Google Scholar 

  171. Hardy, R. S., Raza, K. & Cooper, M. S. Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nat. Rev. Rheumatol. 16, 133–144 (2020).

    Article  PubMed  Google Scholar 

  172. Hench, P. S., Kendall, E. C., Slocumb, C. H. & Polley, H. F. The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone: compound E) and of pituitary adrenocortical hormone in arthritis: preliminary report. Ann. Rheum. Dis. 8, 97–104 (1949).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Magomedova, L. & Cummins, C. L. Glucocorticoids and metabolic control. Handb. Exp. Pharmacol. 233, 73–93 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Atzeni, F. et al. Cardiovascular effects of approved drugs for rheumatoid arthritis. Nat. Rev. Rheumatol. 17, 270–290 (2021).

    Article  PubMed  Google Scholar 

  175. Cronstein, B. N. & Aune, T. M. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat. Rev. Rheumatol. 16, 145–154 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Foretz, M., Guigas, B., Bertrand, L., Pollak, M. & Viollet, B. Metformin: from mechanisms of action to therapies. Cell Metab. 20, 953–966 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Latorre, J. et al. Compounds that modulate AMPK activity and hepatic steatosis impact the biosynthesis of microRNAs required to maintain lipid homeostasis in hepatocytes. EBioMedicine 53, 102697 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Kang, K. Y. et al. Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis. Int. Immunopharmacol. 16, 85–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Son, H. J. et al. Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg balance and osteoclastogenesis. Mediators Inflamm. 2014, 973986 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Sun, F. et al. Safety and efficacy of metformin in systemic lupus erythematosus: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Rheumatol. 2, E210–E216 (2020).

    Article  PubMed  Google Scholar 

  181. Abdallah, M. S. et al. The AMPK modulator metformin as adjunct to methotrexate in patients with rheumatoid arthritis: a proof-of-concept, randomized, double-blind, placebo-controlled trial. Int. Immunopharmacol. 95, 107575 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Li, J. et al. Metformin limits osteoarthritis development and progression through activation of AMPK signalling. Ann. Rheum. Dis. 79, 635–645 (2020).

    Article  CAS  PubMed  Google Scholar 

  183. Wang, C. et al. Metformin mitigates cartilage degradation by activating AMPK/SIRT1-mediated autophagy in a mouse osteoarthritis model. Front. Pharmacol. 11, 1114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lu, C. H. et al. Combination COX-2 inhibitor and metformin attenuate rate of joint replacement in osteoarthritis with diabetes: a nationwide, retrospective, matched-cohort study in Taiwan. PLoS ONE 13, e0191242 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Kim, J. W. et al. Metformin improves salivary gland inflammation and hypofunction in murine Sjögren’s syndrome. Arthritis Res. Ther. 21, 136 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Moller, A. & Lobb, R. J. The evolving translational potential of small extracellular vesicles in cancer. Nat. Rev. Cancer 20, 697–709 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article  PubMed  Google Scholar 

  188. Jafari, N., Llevenes, P. & Denis, G. V. Exosomes as novel biomarkers in metabolic disease and obesity-related cancers. Nat. Rev. Endocrinol. 18, 327–328 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Pegtel, D. M. & Gould, S. J. Exosomes. Annu. Rev. Biochem. 88, 487–514 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Mukherjee, S. et al. Understanding the effects of antipsychotics on appetite control. Front. Nutr. 8, 815456 (2021).

    Article  PubMed  Google Scholar 

  192. Alvarez-Crespo, M. et al. Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance. Mol. Metab. 5, 271–282 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tanida, M., Yamamoto, N., Shibamoto, T. & Rahmouni, K. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation. PLoS ONE 8, e56660 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Rial-Pensado, E. et al. Obesity induces resistance to central action of BMP8B through a mechanism involving the BBSome. Mol. Metab. 59, 101465 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work is supported by funding from Ministerio de Ciencia e Innovación of Spain co-funded by the European Regional Development Fund (FEDER) of the European Union (ML: PID2021-128145NB-I00 and PDC2022-133958-I00); Instituto de Salud Carlos III, European Union, European Commission and FEDER (OG: PI20/00902, PI23/00289 and RICORS Programme RD21/0002/0025); Xunta de Galicia, Consellería de Educación, Universidade e Formación Profesional and Consellería de Economía, Emprego e Industria (GAIN; OG: GPC IN607B2022/03); Sociedad Española de Columna Vertebral (GEER; OG: Becas Investigación GEER 2020 and 2023); and Fundación Asociación Española Contra el Cancer (AECC; ML: PRYGN234908LOPE). O.G. is member of Action CA21110 (Building an Open European Network on Osteoarthritis Research), funded by the European Union under the European Cooperation in Science and Technology Programme (COST).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Miguel López or Oreste Gualillo.

Ethics declarations

Competing interests

M.L. declares that he holds an International Patent Application entitled Populations of small extracellular vesicles for use in the treatment of obesity, PCT/EP2022/071463. O.G. declares no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, M., Gualillo, O. Rheumatic diseases and metabolism: where centre and periphery meet. Nat Rev Rheumatol 20, 783–794 (2024). https://doi.org/10.1038/s41584-024-01178-6

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-024-01178-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing