Abstract
Over the past few decades, the connection between metabolism and various inflammatory and rheumatic diseases has been an area of active investigation. Nonetheless, the precise mechanisms underlying these relationships remain a topic of ongoing debate, owing in part to conflicting data. This discrepancy can be attributed to the predominant focus on peripheral mechanisms in research into the metabolic consequences of rheumatic diseases. However, a wealth of evidence supports the notion that the central nervous system, specifically the hypothalamus, has an important influence on metabolic homeostasis. Notably, links have been established between crucial hypothalamic mechanisms responsible for regulating energy balance (including food intake, thermogenesis, and glucose and lipid metabolism), such as AMP-activated protein kinase, and the pathophysiology of rheumatoid arthritis. This Review aims to comprehensively examine the current understanding of central metabolic control in rheumatic diseases and explore potential therapeutic options that target this pathophysiological mechanism.
Key points
-
A clear correlation exists between metabolism and rheumatic diseases; however, the molecular details of the association remain unclear.
-
Several areas of the central nervous system, such as the hypothalamus, have a major role in the regulation of energy metabolism.
-
Hypothalamic neuropeptides have been shown to be involved in the pathophysiology of rheumatic diseases.
-
Current evidence demonstrates that hypothalamic AMP-activated protein kinase has a role in the pathophysiology of rheumatic disease, by acting at both the metabolic and the inflammatory levels.
-
Overall, this evidence provides new mechanistic insights into the pathophysiology of rheumatic diseases, which might offer new alternatives to their clinical management and the treatment of associated comorbidities.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Nicolau, J., Lequerre, T., Bacquet, H. & Vittecoq, O. Rheumatoid arthritis, insulin resistance, and diabetes. Joint Bone Spine 84, 411–416 (2017).
Spies, C. M., Straub, R. H. & Buttgereit, F. Energy metabolism and rheumatic diseases: from cell to organism. Arthritis Res. Ther. 14, 216 (2012).
Francisco, V. et al. A new immunometabolic perspective of intervertebral disc degeneration. Nat. Rev. Rheumatol. 18, 47–60 (2022).
Mobasheri, A. et al. The role of metabolism in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 13, 302–311 (2017).
Abella, V. et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat. Rev. Rheumatol. 13, 100–109 (2017).
Huang, Z. & Kraus, V. B. Does lipopolysaccharide-mediated inflammation have a role in OA? Nat. Rev. Rheumatol. 12, 123–129 (2016).
Lackey, D. E. & Olefsky, J. M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol. 12, 15–28 (2016).
Kerekes, G. et al. Rheumatoid arthritis and metabolic syndrome. Nat. Rev. Rheumatol. 10, 691–696 (2014).
Zhuo, Q., Yang, W., Chen, J. & Wang, Y. Metabolic syndrome meets osteoarthritis. Nat. Rev. Rheumatol. 8, 729–737 (2012).
Straub, R. H. Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases. Arthritis Res. Ther. 16 (Suppl. 2), S4 (2014).
Lopez, M., Nogueiras, R., Tena-Sempere, M. & Dieguez, C. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat. Rev. Endocrinol. 12, 421–432 (2016).
Jais, A. & Bruning, J. C. Arcuate nucleus-dependent regulation of metabolism-pathways to obesity and diabetes mellitus. Endocr. Rev. 43, 314–328 (2022).
Quarta, C. et al. POMC neuronal heterogeneity in energy balance and beyond: an integrated view. Nat. Metab. 3, 299–308 (2021).
Lopez, M. Hypothalamic AMPK as a possible target for energy balance-related diseases. Trends Pharmacol. Sci. 43, 546–556 (2022).
Lopez, M., Tena-Sempere, M. & Dieguez, C. Cross-talk between orexins (hypocretins) and the neuroendocrine axes (hypothalamic-pituitary axes). Front. Neuroendocrinol. 31, 113–127 (2010).
Loos, R. J. F. & Yeo, G. S. H. The genetics of obesity: from discovery to biology. Nat. Rev. Genet. 23, 120–133 (2022).
Muller, T. D., Bluher, M., Tschop, M. H. & DiMarchi, R. D. Anti-obesity drug discovery: advances and challenges. Nat. Rev. Drug. Discov. 21, 201–223 (2022).
Bruning, J. C. & Fenselau, H. Integrative neurocircuits that control metabolism and food intake. Science 381, eabl7398 (2023).
Levine, J. D., Goetzl, E. J. & Basbaum, A. I. Contribution of the nervous system to the pathophysiology of rheumatoid arthritis and other polyarthritides. Rheum. Dis. Clin. North. Am. 13, 369–383 (1987).
Levine, J. D., Collier, D. H., Basbaum, A. I., Moskowitz, M. A. & Helms, C. A. Hypothesis: the nervous system may contribute to the pathophysiology of rheumatoid arthritis. J. Rheumatol. 12, 406–411 (1985).
Seoane-Collazo, P. et al. Activation of hypothalamic AMP-activated protein kinase ameliorates metabolic complications of experimental arthritis. Arthritis Rheumatol. 74, 212–222 (2022).
Kelly, M. The neurogenic factor in rheumatic inflammation. Med. J. Aust. 1, 859–864 (1951).
Taylor, C. T. & Colgan, S. P. Hypoxia and gastrointestinal disease. J. Mol. Med. 85, 1295–1300 (2007).
Lewis, J. S., Lee, J. A., Underwood, J. C., Harris, A. L. & Lewis, C. E. Macrophage responses to hypoxia: relevance to disease mechanisms. J. Leukoc. Biol. 66, 889–900 (1999).
Pirzgalska, R. M. & Domingos, A. I. Macrophages in obesity. Cell. Immunol. 330, 183–187 (2018).
Procaccini, C., Pucino, V., Mantzoros, C. S. & Matarese, G. Leptin in autoimmune diseases. Metabolism 64, 92–104 (2015).
La Cava, A. Leptin in inflammation and autoimmunity. Cytokine 98, 51–58 (2017).
Carobbio, S., Pellegrinelli, V. & Vidal-Puig, A. Adipose tissue function and expandability as determinants of lipotoxicity and the metabolic syndrome. Adv. Exp. Med. Biol. 960, 161–196 (2017).
Francisco, V. et al. Adipokines and inflammation: is it a question of weight? Br. J. Pharmacol. 175, 1569–1579 (2018).
Rohm, T. V., Meier, D. T., Olefsky, J. M. & Donath, M. Y. Inflammation in obesity, diabetes, and related disorders. Immunity 55, 31–55 (2022).
Larabee, C. M., Neely, O. C. & Domingos, A. I. Obesity: a neuroimmunometabolic perspective. Nat. Rev. Endocrinol. 16, 30–43 (2020).
Martinez-Sanchez, N. et al. The sympathetic nervous system in the 21st century: neuroimmune interactions in metabolic homeostasis and obesity. Neuron 110, 3597–3626 (2022).
O’Brien, C. J. O., Haberman, E. R. & Domingos, A. I. A tale of three systems: toward a neuroimmunoendocrine model of obesity. Annu. Rev. Cell Dev. Biol. 37, 549–573 (2021).
Straub, R. H. The brain and immune system prompt energy shortage in chronic inflammation and ageing. Nat. Rev. Rheumatol. 13, 743–751 (2017).
Farrag, Y. et al. Adipokines as potential pharmacological targets for immune inflammatory rheumatic diseases: focus on rheumatoid arthritis, osteoarthritis, and intervertebral disc degeneration. Pharmacol. Res. 205, 107219 (2024).
Gomez, R. et al. What’s new in our understanding of the role of adipokines in rheumatic diseases? Nat. Rev. Rheumatol. 7, 528–536 (2011).
Arshad, A., Rashid, R. & Benjamin, K. The effect of disease activity on fat-free mass and resting energy expenditure in patients with rheumatoid arthritis versus noninflammatory arthropathies/soft tissue rheumatism. Mod. Rheumatol. 17, 470–475 (2007).
Francisco, V. et al. Adipokines: linking metabolic syndrome, the immune system, and arthritic diseases. Biochem. Pharmacol. 165, 196–206 (2019).
Chin, S. H., Huang, W. L., Akter, S. & Binks, M. Obesity and pain: a systematic review. Int. J. Obes. 44, 969–979 (2020).
Angelidi, A. M., Belanger, M. J., Kokkinos, A., Koliaki, C. C. & Mantzoros, C. S. Novel noninvasive approaches to the treatment of obesity: from pharmacotherapy to gene therapy. Endocr. Rev. 43, 507–557 (2022).
Dragano, N. R. V., Ferno, J., Dieguez, C., Lopez, M. & Milbank, E. Recent updates on obesity treatments: available drugs and future directions. Neuroscience 437, 215–239 (2020).
Müller, T. D. et al. Anti-obesity therapy: from rainbow pills to polyagonists. Pharmacol. Rev. 70, 712–746 (2018).
Hallajzadeh, J. et al. Metabolic syndrome and its components among rheumatoid arthritis patients: a comprehensive updated systematic review and meta-analysis. PLoS ONE 12, e0170361 (2017).
Wolfe, F. & Michaud, K. Effect of body mass index on mortality and clinical status in rheumatoid arthritis. Arthritis Care Res. 64, 1471–1479 (2012).
Ogden, C. L., Carroll, M. D., Kit, B. K. & Flegal, K. M. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA 311, 806–814 (2014).
Sattar, N. & McInnes, I. B. Rheumatoid arthritis: debunking the obesity-mortality paradox in RA. Nat. Rev. Rheumatol. 11, 445–446 (2015).
Baker, J. F. et al. Weight loss, the obesity paradox, and the risk of death in rheumatoid arthritis. Arthritis Rheumatol. 67, 1711–1717 (2015).
George, M. D. & Baker, J. F. The obesity epidemic and consequences for rheumatoid arthritis care. Curr. Rheumatol. Rep. 18, 6 (2016).
Mangnus, L. et al. Body mass index and extent of MRI-detected inflammation: opposite effects in rheumatoid arthritis versus other arthritides and asymptomatic persons. Arthritis Res. Ther. 18, 245 (2016).
Baker, J. F. et al. Obesity, weight loss, and progression of disability in rheumatoid arthritis. Arthritis Care Res. 70, 1740–1747 (2018).
Lago, F., Dieguez, C., Gomez-Reino, J. & Gualillo, O. The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor. Rev. 18, 313–325 (2007).
Gonzalez-Rodriguez, M. et al. Adipokines as targets in musculoskeletal immune and inflammatory diseases. Drug. Discov. Today 27, 103352 (2022).
Karsenty, G. & Khosla, S. The crosstalk between bone remodeling and energy metabolism: a translational perspective. Cell Metab. 34, 805–817 (2022).
Sun, X. et al. Leptin-induced migration and angiogenesis in rheumatoid arthritis is mediated by reactive oxygen species. FEBS Open. Bio 7, 1899–1908 (2017).
de Candia, P. et al. The pleiotropic roles of leptin in metabolism, immunity, and cancer. J. Exp. Med. 218, e20191593 (2021).
Conde, J. et al. Differential expression of adipokines in infrapatellar fat pad (IPFP) and synovium of osteoarthritis patients and healthy individuals. Ann. Rheum. Dis. 73, 631–633 (2014).
Scotece, M. et al. Adipokines induce pro-inflammatory factors in activated Cd4+ T cells from osteoarthritis patient. J. Orthop. Res. 35, 1299–1303 (2017).
Francisco, V. et al. Obesity, fat mass and immune system: role for leptin. Front. Physiol. 9, 640 (2018).
Wang, Q. & Wu, H. T cells in adipose tissue: critical players in immunometabolism. Front. Immunol. 9, 2509 (2018).
Kalin, S. et al. Hypothalamic innate immune reaction in obesity. Nat. Rev. Endocrinol. 11, 339–351 (2015).
Jais, A. & Bruning, J. C. Hypothalamic inflammation in obesity and metabolic disease. J. Clin. Invest. 127, 24–32 (2017).
Dragano, N. R., Monfort-Pires, M. & Velloso, L. A. Mechanisms mediating the actions of fatty acids in the hypothalamus. Neuroscience 447, 15–27 (2020).
Otero, M. et al. Chronic inflammation modulates ghrelin levels in humans and rats. Rheumatology 43, 306–310 (2004).
Koca, S. S. et al. Ghrelin and obestatin levels in rheumatoid arthritis. Inflammation 31, 329–335 (2008).
Abella, V. et al. Adipokines, metabolic syndrome and rheumatic diseases. J. Immunol. Res. 2014, 343746 (2014).
Stofkova, A. et al. Enhanced expressions of mRNA for neuropeptide Y and interleukin 1 beta in hypothalamic arcuate nuclei during adjuvant arthritis-induced anorexia in Lewis rats. Neuroimmunomodulation 16, 377–384 (2009).
Gomez-SanMiguel, A. B. et al. Systemic α-melanocyte-stimulating hormone administration decreases arthritis-induced anorexia and muscle wasting. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R877–R886 (2013).
Grassel, S. & Muschter, D. Do neuroendocrine peptides and their receptors qualify as novel therapeutic targets in osteoarthritis? Int. J. Mol. Sci. 19, 367 (2018).
Bohm, M. & Grassel, S. Role of proopiomelanocortin-derived peptides and their receptors in the osteoarticular system: from basic to translational research. Endocr. Rev. 33, 623–651 (2012).
Gao, D., Gao, X., Yang, F. & Wang, Q. Neuroimmune crosstalk in rheumatoid arthritis. Int. J. Mol. Sci. 23, 8158 (2022).
Chikanza, I. C., Petrou, P. & Chrousos, G. Perturbations of arginine vasopressin secretion during inflammatory stress. Pathophysiologic implications. Ann. N. Y. Acad. Sci. 917, 825–834 (2000).
Cutolo, M., Foppiani, L. & Minuto, F. Hypothalamic-pituitary-adrenal axis impairment in the pathogenesis of rheumatoid arthritis and polymyalgia rheumatica. J. Endocrinol. Invest. 25, 19–23 (2002).
Zhang, X. et al. Brain control of humoral immune responses amenable to behavioural modulation. Nature 581, 204–208 (2020).
Nishimura, H. et al. Acute mono-arthritis activates the neurohypophysial system and hypothalamo-pituitary adrenal axis in rats. Front. Endocrinol. 11, 43 (2020).
Atzeni, F., Straub, R. H., Cutolo, M. & Sarzi-Puttini, P. Anti-TNF therapy restores the hypothalamic-pituitary-adrenal axis. Ann. N. Y. Acad. Sci. 1193, 179–181 (2010).
Straub, R. H., Bijlsma, J. W., Masi, A. & Cutolo, M. Role of neuroendocrine and neuroimmune mechanisms in chronic inflammatory rheumatic diseases – the 10-year update. Semin. Arthritis Rheum. 43, 392–404 (2013).
Seror, R., Nocturne, G. & Mariette, X. Current and future therapies for primary Sjögren syndrome. Nat. Rev. Rheumatol. 17, 475–486 (2021).
Vissink, A. & Bootsma, H. Connective tissue diseases: refining the classification criteria for primary Sjögren syndrome. Nat. Rev. Rheumatol. 13, 10–12 (2016).
Johnson, E. O., Kostandi, M. & Moutsopoulos, H. M. Hypothalamic-pituitary-adrenal axis function in Sjögren’s syndrome: mechanisms of neuroendocrine and immune system homeostasis. Ann. N. Y. Acad. Sci. 1088, 41–51 (2006).
Johnson, E. O., Vlachoyiannopoulos, P. G., Skopouli, F. N., Tzioufas, A. G. & Moutsopoulos, H. M. Hypofunction of the stress axis in Sjögren’s syndrome. J. Rheumatol. 25, 1508–1514 (1998).
Thaler, J. P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162 (2012).
Toth, K. et al. Synovial fluid β-endorphin level in avascular necrosis, rheumatoid arthritis, and osteoarthritis of the femoral head and knee. A controlled pilot study. Clin. Rheumatol. 30, 537–540 (2011).
Catania, A. et al. The anticytokine neuropeptide α-melanocyte-stimulating hormone in synovial fluid of patients with rheumatic diseases: comparisons with other anticytokine molecules. Neuroimmunomodulation 1, 321–328 (1994).
Bjurholm, A., Kreicbergs, A., Ahmed, M. & Schultzberg, M. Noradrenergic and peptidergic nerves in the synovial membrane of the Sprague-Dawley rat. Arthritis Rheum. 33, 859–865 (1990).
Larsson, J., Ekblom, A., Henriksson, K., Lundeberg, T. & Theodorsson, E. Concentration of substance P, neurokinin A, calcitonin gene-related peptide, neuropeptide Y and vasoactive intestinal polypeptide in synovial fluid from knee joints in patients suffering from rheumatoid arthritis. Scand. J. Rheumatol. 20, 326–335 (1991).
Ferreira-Gomes, J., Adaes, S., Sousa, R. M., Mendonca, M. & Castro-Lopes, J. M. Dose-dependent expression of neuronal injury markers during experimental osteoarthritis induced by monoiodoacetate in the rat. Mol. Pain. 8, 50 (2012).
Juarranz, Y. et al. Differential expression of vasoactive intestinal peptide and its functional receptors in human osteoarthritic and rheumatoid synovial fibroblasts. Arthritis Rheum. 58, 1086–1095 (2008).
Grassel, S. et al. The melanocortin system in articular chondrocytes: melanocortin receptors, pro-opiomelanocortin, precursor proteases, and a regulatory effect of α-melanocyte-stimulating hormone on proinflammatory cytokines and extracellular matrix components. Arthritis Rheum. 60, 3017–3027 (2009).
Delgado, M., Abad, C., Martinez, C., Leceta, J. & Gomariz, R. P. Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease. Nat. Med. 7, 563–568 (2001).
Brzoska, T., Bohm, M., Lugering, A., Loser, K. & Luger, T. A. Terminal signal: anti-inflammatory effects of α-melanocyte-stimulating hormone related peptides beyond the pharmacophore. Adv. Exp. Med. Biol. 681, 107–116 (2010).
Wang, W., Guo, D. Y., Lin, Y. J. & Tao, Y. X. Melanocortin regulation of inflammation. Front. Endocrinol. 10, 683 (2019).
Juhasz, T., Helgadottir, S. L., Tamas, A., Reglodi, D. & Zakany, R. PACAP and VIP signaling in chondrogenesis and osteogenesis. Peptides 66, 51–57 (2015).
Crofford, L. J. et al. Corticotropin-releasing hormone in synovial fluids and tissues of patients with rheumatoid arthritis and osteoarthritis. J. Immunol. 151, 1587–1596 (1993).
Miyazaki, S. et al. ACTH expression in synovium of patients with rheumatoid arthritis and Lewis rats with adjuvant arthritis. Mod. Rheumatol. 12, 206–212 (2002).
Getting, S. J., Christian, H. C., Flower, R. J. & Perretti, M. Activation of melanocortin type 3 receptor as a molecular mechanism for adrenocorticotropic hormone efficacy in gouty arthritis. Arthritis Rheum. 46, 2765–2775 (2002).
Milbank, E. & Lopez, M. Orexins/hypocretins: key regulators of energy homeostasis. Front. Endocrinol. 10, 830 (2019).
Sun, M., Wang, W., Li, Q., Yuan, T. & Weng, W. Orexin A may suppress inflammatory response in fibroblast-like synoviocytes. Biomed. Pharmacother. 107, 763–768 (2018).
Seoane-Collazo, P. et al. Hypothalamic-autonomic control of energy homeostasis. Endocrine 50, 276–291 (2015).
Harlan, S. M. & Rahmouni, K. PI3K signaling: a key pathway in the control of sympathetic traffic and arterial pressure by leptin. Mol. Metab. 2, 69–73 (2013).
Pongratz, G. & Straub, R. H. Role of peripheral nerve fibres in acute and chronic inflammation in arthritis. Nat. Rev. Rheumatol. 9, 117–126 (2013).
Waise, T. M. Z., Dranse, H. J. & Lam, T. K. T. The metabolic role of vagal afferent innervation. Nat. Rev. Gastroenterol. Hepatol. 15, 625–636 (2018).
Padmanabhan, S. & Dominiczak, A. F. Genomics of hypertension: the road to precision medicine. Nat. Rev. Cardiol. 18, 235–250 (2021).
Benarroch, E. E. The clinical approach to autonomic failure in neurological disorders. Nat. Rev. Neurol. 10, 396–407 (2014).
Espinosa-Medina, I. et al. The sacral autonomic outflow is sympathetic. Science 354, 893–897 (2016).
Espinosa-Medina, I., Saha, O., Boismoreau, F. & Brunet, J. F. The “sacral parasympathetic”: ontogeny and anatomy of a myth. Clin. Auton. Res. 28, 13–21 (2018).
Horn, J. P. The sacral autonomic outflow is parasympathetic: Langley got it right. Clin. Auton. Res. 28, 181–185 (2018).
Sivori, M. et al. The pelvic organs receive no parasympathetic innervation. eLife 12, e91576 (2024).
Huang, Y. Y. et al. Neuroimmune crosstalk in central nervous system injury-induced infection and pharmacological intervention. Brain Res. Bull. 153, 232–238 (2019).
Harle, P., Mobius, D., Carr, D. J., Scholmerich, J. & Straub, R. H. An opposing time-dependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis. Arthritis Rheum. 52, 1305–1313 (2005).
Hart, F. D., Golding, J. R. & Mackenzie, D. H. Neuropathy in rheumatoid disease. Ann. Rheum. Dis. 16, 471–480 (1957).
Pecanha, T. et al. Chronotropic incompetence and reduced heart rate recovery in rheumatoid arthritis. J. Clin. Rheumatol. 24, 375–380 (2018).
Adlan, A. M., Paton, J. F., Lip, G. Y., Kitas, G. D. & Fisher, J. P. Increased sympathetic nerve activity and reduced cardiac baroreflex sensitivity in rheumatoid arthritis. J. Physiol. 595, 967–981 (2017).
Goldstein, R. S. et al. Cholinergic anti-inflammatory pathway activity and High Mobility Group Box-1 (HMGB1) serum levels in patients with rheumatoid arthritis. Mol. Med. 13, 210–215 (2007).
Koopman, F. A., van Maanen, M. A., Vervoordeldonk, M. J. & Tak, P. P. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J. Intern. Med. 282, 64–75 (2017).
Ingegnoli, F. et al. The link between autonomic nervous system and rheumatoid arthritis: from bench to bedside. Front. Med. 7, 589079 (2020).
van Maanen, M. A., Vervoordeldonk, M. J. & Tak, P. P. The cholinergic anti-inflammatory pathway: towards innovative treatment of rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 229–232 (2009).
van Maanen, M. A., Stoof, S. P., Larosa, G. J., Vervoordeldonk, M. J. & Tak, P. P. Role of the cholinergic nervous system in rheumatoid arthritis: aggravation of arthritis in nicotinic acetylcholine receptor α7 subunit gene knockout mice. Ann. Rheum. Dis. 69, 1717–1723 (2010).
Thanou, A. et al. Impact of heart rate variability, a marker for cardiac health, on lupus disease activity. Arthritis Res. Ther. 18, 197 (2016).
Maule, S. et al. Autonomic nervous dysfunction in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA): possible pathogenic role of autoantibodies to autonomic nervous structures. Clin. Exp. Immunol. 110, 423–427 (1997).
Stojanovich, L. et al. Cardiovascular autonomic dysfunction in systemic lupus, rheumatoid arthritis, primary Sjögren syndrome and other autoimmune diseases. Lupus 16, 181–185 (2007).
Pham, G. S., Wang, L. A. & Mathis, K. W. Pharmacological potentiation of the efferent vagus nerve attenuates blood pressure and renal injury in a murine model of systemic lupus erythematosus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315, R1261–R1271 (2018).
Fairley, A. S. & Mathis, K. W. Cholinergic agonists reduce blood pressure in a mouse model of systemic lupus erythematosus. Physiol. Rep. 5, e13213 (2017).
Aranow, C. et al. Transcutaneous auricular vagus nerve stimulation reduces pain and fatigue in patients with systemic lupus erythematosus: a randomised, double-blind, sham-controlled pilot trial. Ann. Rheum. Dis. 80, 203–208 (2021).
Pirzgalska, R. M. et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017).
Cutolo, M., Sulli, A., Pizzorni, C., Craviotto, C. & Straub, R. H. Hypothalamic-pituitary-adrenocortical and gonadal functions in rheumatoid arthritis. Ann. N. Y. Acad. Sci. 992, 107–117 (2003).
Cutolo, M. et al. The hypothalamic-pituitary-adrenocortical and gonadal axis function in rheumatoid arthritis. Z. Rheumatol. 59 (Suppl. 2), II65–II69 (2000).
Straub, R. H., Cutolo, M., Buttgereit, F. & Pongratz, G. Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J. Intern. Med. 267, 543–560 (2010).
Elenkov, I. J., Wilder, R. L., Chrousos, G. P. & Vizi, E. S. The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52, 595–638 (2000).
Straub, R. H., Buttgereit, F. & Cutolo, M. Alterations of the hypothalamic-pituitary-adrenal axis in systemic immune diseases - a role for misguided energy regulation. Clin. Exp. Rheumatol. 29, S23–S31 (2011).
Lin, S. C. & Hardie, D. G. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 27, 299–313 (2018).
Steinberg, G. R. & Carling, D. AMP-activated protein kinase: the current landscape for drug development. Nat. Rev. Drug Discov. 18, 527–551 (2019).
Iwata, S. & Tanaka, Y. Therapeutic perspectives on the metabolism of lymphocytes in patients with rheumatoid arthritis and systemic lupus erythematosus. Expert. Rev. Clin. Immunol. 17, 1121–1130 (2021).
McHugh, J. AMPK: a therapeutic target in RA? Nat. Rev. Rheumatol. 15, 188 (2019).
Liu, E. & Perl, A. Pathogenesis and treatment of autoimmune rheumatic diseases. Curr. Opin. Rheumatol. 31, 307–315 (2019).
Yi, D. et al. AMPK signaling in energy control, cartilage biology, and osteoarthritis. Front. Cell Dev. Biol. 9, 696602 (2021).
Loeser, R. F., Collins, J. A. & Diekman, B. O. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 412–420 (2016).
Liu-Bryan, R. & Terkeltaub, R. Emerging regulators of the inflammatory process in osteoarthritis. Nat. Rev. Rheumatol. 11, 35–44 (2015).
Kim, J., Kim, Y. S. & Park, S. H. Metformin as a treatment strategy for Sjögren’s syndrome. Int. J. Mol. Sci. 22, 7231 (2021).
Wen, Z. et al. N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nat. Immunol. 20, 313–325 (2019).
Speirs, C., Williams, J. J. L., Riches, K., Salt, I. P. & Palmer, T. M. Linking energy sensing to suppression of JAK-STAT signalling: a potential route for repurposing AMPK activators? Pharmacol. Res. 128, 88–100 (2018).
Cai, W. et al. The glycolysis inhibitor 2-deoxyglucose ameliorates adjuvant-induced arthritis by regulating macrophage polarization in an AMPK-dependent manner. Mol. Immunol. 140, 186–195 (2021).
Salvatore, T. et al. Metformin: a potential therapeutic tool for rheumatologists. Pharmaceuticals 13, 234 (2020).
Thornton, C. C. et al. Methotrexate-mediated activation of an AMPK-CREB-dependent pathway: a novel mechanism for vascular protection in chronic systemic inflammation. Ann. Rheum. Dis. 75, 439–448 (2016).
Claret, M. et al. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J. Clin. Invest. 117, 2325–2336 (2007).
Okamoto, S. et al. Activation of AMPK-regulated CRH neurons in the PVH is sufficient and necessary to induce dietary preference for carbohydrate over fat. Cell Rep. 22, 706–721 (2018).
López, M. et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab. 7, 389–399 (2008).
Xue, B. et al. Neuronal protein tyrosine phosphatase 1B deficiency results in inhibition of hypothalamic AMPK and isoform-specific activation of AMPK in peripheral tissues. Mol. Cell Biol. 29, 4563–4573 (2009).
Martinez-Sanchez, N. et al. Hypothalamic AMPK-ER stress-JNK1 axis mediates the central actions of thyroid hormones on energy balance. Cell Metab. 26, 212–229.e2 (2017).
McCrimmon, R. J. et al. Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus. Diabetes 53, 1953–1958 (2004).
McCrimmon, R. J. et al. Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes 57, 444–450 (2008).
Seoane-Collazo, P. et al. SF1-specific AMPKα1 deletion protects against diet-induced obesity. Diabetes 67, 2213–2226 (2018).
Martínez de Morentin, P. B. et al. Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase. Diabetes 61, 807–817 (2012).
Beiroa, D. et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63, 3346–3358 (2014).
Martins, L. et al. A functional link between AMPK and orexin mediates the effect of BMP8B on energy balance. Cell Rep. 16, 2231–2242 (2016).
Martinez-Sanchez, N. et al. Thyroid hormones induce browning of white fat. J. Endocrinol. 232, 351–362 (2017).
Martinez de Morentin, P. B. et al. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab. 20, 41–53 (2014).
Lopez, M. et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat. Med. 16, 1001–1008 (2010).
Whittle, A. J. et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871–885 (2012).
Milbank, E. et al. Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation. Nat. Metab. 3, 1415–1431 (2021).
Milbank, E. et al. Small extracellular vesicle targeting of hypothalamic AMPKα1 promotes weight loss in leptin receptor deficient mice. Metabolism 139, 155350 (2023).
Binymin, K., Herrick, A., Carlson, G. & Hopkins, S. The effect of disease activity on body composition and resting energy expenditure in patients with rheumatoid arthritis. J. Inflamm. Res. 4, 61–66 (2011).
Choe, J. Y., Park, S. H., Lee, H., Kwon, H. H. & Kim, S. K. Resting energy expenditure is not associated with disease activity in women with rheumatoid arthritis: cross-sectional study. Korean J. Intern. Med. 29, 516–524 (2014).
Brooks, S. L., Neville, A. M., Rothwell, N. J., Stock, M. J. & Wilson, S. Sympathetic activation of brown-adipose-tissue thermogenesis in cachexia. Biosci. Rep. 1, 509–517 (1981).
Shellock, F. G., Riedinger, M. S. & Fishbein, M. C. Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia. J. Cancer Res. Clin. Oncol. 111, 82–85 (1986).
Bing, C. et al. Increased gene expression of brown fat uncoupling protein (UCP)1 and skeletal muscle UCP2 and UCP3 in MAC16-induced cancer cachexia. Cancer Res. 60, 2405–2410 (2000).
Tsoli, M. et al. Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res. 72, 4372–4382 (2012).
Petruzzelli, M. et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20, 433–447 (2014).
Cano, G. et al. Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J. Comp. Neurol. 460, 303–326 (2003).
Morrison, S. F., Madden, C. J. & Tupone, D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014).
Buttgereit, F. Views on glucocorticoid therapy in rheumatology: the age of convergence. Nat. Rev. Rheumatol. 16, 239–246 (2020).
Hardy, R. S., Raza, K. & Cooper, M. S. Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nat. Rev. Rheumatol. 16, 133–144 (2020).
Hench, P. S., Kendall, E. C., Slocumb, C. H. & Polley, H. F. The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone: compound E) and of pituitary adrenocortical hormone in arthritis: preliminary report. Ann. Rheum. Dis. 8, 97–104 (1949).
Magomedova, L. & Cummins, C. L. Glucocorticoids and metabolic control. Handb. Exp. Pharmacol. 233, 73–93 (2016).
Atzeni, F. et al. Cardiovascular effects of approved drugs for rheumatoid arthritis. Nat. Rev. Rheumatol. 17, 270–290 (2021).
Cronstein, B. N. & Aune, T. M. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat. Rev. Rheumatol. 16, 145–154 (2020).
Foretz, M., Guigas, B., Bertrand, L., Pollak, M. & Viollet, B. Metformin: from mechanisms of action to therapies. Cell Metab. 20, 953–966 (2014).
Latorre, J. et al. Compounds that modulate AMPK activity and hepatic steatosis impact the biosynthesis of microRNAs required to maintain lipid homeostasis in hepatocytes. EBioMedicine 53, 102697 (2020).
Kang, K. Y. et al. Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis. Int. Immunopharmacol. 16, 85–92 (2013).
Son, H. J. et al. Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg balance and osteoclastogenesis. Mediators Inflamm. 2014, 973986 (2014).
Sun, F. et al. Safety and efficacy of metformin in systemic lupus erythematosus: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Rheumatol. 2, E210–E216 (2020).
Abdallah, M. S. et al. The AMPK modulator metformin as adjunct to methotrexate in patients with rheumatoid arthritis: a proof-of-concept, randomized, double-blind, placebo-controlled trial. Int. Immunopharmacol. 95, 107575 (2021).
Li, J. et al. Metformin limits osteoarthritis development and progression through activation of AMPK signalling. Ann. Rheum. Dis. 79, 635–645 (2020).
Wang, C. et al. Metformin mitigates cartilage degradation by activating AMPK/SIRT1-mediated autophagy in a mouse osteoarthritis model. Front. Pharmacol. 11, 1114 (2020).
Lu, C. H. et al. Combination COX-2 inhibitor and metformin attenuate rate of joint replacement in osteoarthritis with diabetes: a nationwide, retrospective, matched-cohort study in Taiwan. PLoS ONE 13, e0191242 (2018).
Kim, J. W. et al. Metformin improves salivary gland inflammation and hypofunction in murine Sjögren’s syndrome. Arthritis Res. Ther. 21, 136 (2019).
Moller, A. & Lobb, R. J. The evolving translational potential of small extracellular vesicles in cancer. Nat. Rev. Cancer 20, 697–709 (2020).
van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).
Jafari, N., Llevenes, P. & Denis, G. V. Exosomes as novel biomarkers in metabolic disease and obesity-related cancers. Nat. Rev. Endocrinol. 18, 327–328 (2022).
Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).
Pegtel, D. M. & Gould, S. J. Exosomes. Annu. Rev. Biochem. 88, 487–514 (2019).
Mukherjee, S. et al. Understanding the effects of antipsychotics on appetite control. Front. Nutr. 8, 815456 (2021).
Alvarez-Crespo, M. et al. Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance. Mol. Metab. 5, 271–282 (2016).
Tanida, M., Yamamoto, N., Shibamoto, T. & Rahmouni, K. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation. PLoS ONE 8, e56660 (2013).
Rial-Pensado, E. et al. Obesity induces resistance to central action of BMP8B through a mechanism involving the BBSome. Mol. Metab. 59, 101465 (2022).
Acknowledgements
The authors’ work is supported by funding from Ministerio de Ciencia e Innovación of Spain co-funded by the European Regional Development Fund (FEDER) of the European Union (ML: PID2021-128145NB-I00 and PDC2022-133958-I00); Instituto de Salud Carlos III, European Union, European Commission and FEDER (OG: PI20/00902, PI23/00289 and RICORS Programme RD21/0002/0025); Xunta de Galicia, Consellería de Educación, Universidade e Formación Profesional and Consellería de Economía, Emprego e Industria (GAIN; OG: GPC IN607B2022/03); Sociedad Española de Columna Vertebral (GEER; OG: Becas Investigación GEER 2020 and 2023); and Fundación Asociación Española Contra el Cancer (AECC; ML: PRYGN234908LOPE). O.G. is member of Action CA21110 (Building an Open European Network on Osteoarthritis Research), funded by the European Union under the European Cooperation in Science and Technology Programme (COST).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
M.L. declares that he holds an International Patent Application entitled “Populations of small extracellular vesicles for use in the treatment of obesity”, PCT/EP2022/071463. O.G. declares no competing interests.
Peer review
Peer review information
Nature Reviews Rheumatology thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
López, M., Gualillo, O. Rheumatic diseases and metabolism: where centre and periphery meet. Nat Rev Rheumatol 20, 783–794 (2024). https://doi.org/10.1038/s41584-024-01178-6
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41584-024-01178-6


