Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stem and progenitor cells in the synovial joint as targets for regenerative therapy

Abstract

Damage to articular cartilage, tendons, ligaments and entheses as a result of trauma, degeneration or inflammation in rheumatic diseases is prevalent. Regenerative medicine offers promising strategies for repairing damaged tissues, with the aim of restoring both their structure and function. While these strategies have traditionally relied on tissue engineering approaches using exogenous cells, interventions based on the activation of endogenous repair mechanisms are an attractive alternative. Key to advancing such approaches is a comprehensive understanding of the diversity of the stem and progenitor cells that reside in the adult synovial joint and how they function to repair damaged tissues. Advances in developmental biology have provided a lens through which to understand the origins, identities and functions of these cells, and insights into the roles of stem and progenitor cells in joint tissue repair, as well as their complex relationship with fibroblasts, have emerged. Integration of knowledge obtained through studies using advanced single-cell technologies will be crucial to establishing unified models of cell populations, lineage hierarchies and their molecular regulation. Ultimately, a more complete understanding of how cells repair tissues in adult life will guide the development of innovative pro-regenerative drugs, which are poised to enter clinical practice in musculoskeletal medicine.

Key points

  • Joint tissues are susceptible to damage that often does not adequately heal without intervention and can predispose to osteoarthritis.

  • Understanding the regenerative biology of the synovial joint will guide the development of therapeutic strategies to activate endogenous repair mechanisms and improve outcomes.

  • In adult joint tissues, stem and progenitor cell niches are present in the synovial lining and sublining, the paratenon and tendon sheath, the superficial zone of cartilage and the subchondral bone marrow.

  • The identity and functions of the different stem and progenitor cell populations in adult joint tissues can be understood in the context of their diverse developmental origins.

  • The synovium could be a reservoir of joint-repairing cells, and cells from bone marrow can contribute to the repair of osteochondral defects.

  • Single-cell technologies offer the opportunity to establish integrated models of cell populations and lineage hierarchies and their molecular regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of limb development and synovial joint formation.
Fig. 2: Overview of skeletal stem and progenitor cell populations in the synovial joint.

Similar content being viewed by others

References

  1. Hjelle, K., Solheim, E., Strand, T., Muri, R. & Brittberg, M. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 18, 730–734 (2002).

    Article  PubMed  Google Scholar 

  2. Widuchowski, W., Widuchowski, J. & Trzaska, T. Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 14, 177–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Hunter, D. J. & Bierma-Zeinstra, S. Osteoarthritis. Lancet 393, 1745–1759 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Weng, Q. et al. Global burden of early-onset osteoarthritis, 1990–2019: results from the Global Burden of Disease Study 2019. Ann. Rheum. Dis. 83, 915–925 (2024).

    Article  PubMed  Google Scholar 

  5. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1545–1602 (2016).

    Article  Google Scholar 

  6. De Bari, C. & Roelofs, A. J. Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Curr. Opin. Pharmacol. 40, 74–80 (2018).

    Article  PubMed  Google Scholar 

  7. Dell’accio, F. & Vincent, T. L. Joint surface defects: clinical course and cellular response in spontaneous and experimental lesions. Eur. Cell Mater. 20, 210–217 (2010).

    Article  PubMed  Google Scholar 

  8. Jansen, M. P. & Mastbergen, S. C. Joint distraction for osteoarthritis: clinical evidence and molecular mechanisms. Nat. Rev. Rheumatol. 18, 35–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Eltawil, N. M., De Bari, C., Achan, P., Pitzalis, C. & Dell’accio, F. A novel in vivo murine model of cartilage regeneration. Age and strain-dependent outcome after joint surface injury. Osteoarthritis Cartilage 17, 695–704 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rai, M. F. et al. Heritability of articular cartilage regeneration and its association with ear wound healing in mice. Arthritis Rheum. 64, 2300–2310 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thorup, A.-S., Dell’Accio, F. & Eldridge, S. E. Lessons from joint development for cartilage repair in the clinic. Dev. Dyn. 250, 360–376 (2021).

    Article  PubMed  Google Scholar 

  12. Pineault, K. M. & Wellik, D. M. Hox genes and limb musculoskeletal development. Curr. Osteoporos. Rep. 12, 420–427 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pineault, K. M., Song, J. Y., Kozloff, K. M., Lucas, D. & Wellik, D. M. Hox11 expressing regional skeletal stem cells are progenitors for osteoblasts, chondrocytes and adipocytes throughout life. Nat. Commun. 10, 3168 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rux, D. R. et al. Regionally restricted Hox function in adult bone marrow multipotent mesenchymal stem/stromal cells. Dev. Cell 39, 653–666 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gronthos, S., Graves, S. E., Ohta, S. & Simmons, P. J. The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 84, 4164–4173 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Jones, E. A. et al. Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry B Clin. Cytom. 70, 391–399 (2006).

    Article  PubMed  Google Scholar 

  17. Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Pinho, S. et al. PDGFRα and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J. Exp. Med. 210, 1351–1367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chan, C. K. F. et al. Identification of the human skeletal stem cell. Cell 175, 43–56.e21 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morikawa, S. et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med. 206, 2483–2496 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Méndez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Isern, J. et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. Elife 3, e03696 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15, 154–168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Worthley, D. L. et al. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160, 269–284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kfoury, Y. & Scadden, D. T. Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 16, 239–253 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Chan, C. K. F. et al. Identification and specification of the mouse skeletal stem cell. Cell 160, 285–298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ambrosi, T. H. et al. Distinct skeletal stem cell types orchestrate long bone skeletogenesis. Elife 10, e66063 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shu, H. S. et al. Tracing the skeletal progenitor transition during postnatal bone formation. Cell Stem Cell 28, 2122–2136.e3 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Matsushita, Y. et al. Bone marrow endosteal stem cells dictate active osteogenesis and aggressive tumorigenesis. Nat. Commun. 14, 2383 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murphy, M. P. et al. Articular cartilage regeneration by activated skeletal stem cells. Nat. Med. 26, 1583–1592 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ambrosi, T. H. et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 597, 256–262 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mizoguchi, T. et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev. Cell 29, 340–349 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Massengale, M. et al. Adult Prg4+ progenitors repair long-term articular cartilage wounds in vivo. JCI Insight 8, e167858 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kurth, T. B. et al. Functional mesenchymal stem cell niches in adult mouse knee joint synovium in vivo. Arthritis Rheum. 63, 1289–1300 (2011).

    Article  PubMed  Google Scholar 

  36. Rountree, R. B. et al. BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol. 2, e355 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Koyama, E. et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev. Biol. 316, 62–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roelofs, A. J. et al. Joint morphogenetic cells in the adult mammalian synovium. Nat. Commun. 8, 15040 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Collins, F. L. et al. Taxonomy of fibroblasts and progenitors in the synovial joint at single-cell resolution. Ann. Rheum. Dis. 82, 428–437 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Decker, R. S., Koyama, E. & Pacifici, M. Genesis and morphogenesis of limb synovial joints and articular cartilage. Matrix Biol. 39, 5–10 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Shwartz, Y., Viukov, S., Krief, S. & Zelzer, E. Joint development involves a continuous influx of gdf5-positive cells. Cell Rep. 15, 2577–2587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, H. et al. Heads, shoulders, elbows, knees, and toes: modular Gdf5 enhancers control different joints in the vertebrate skeleton. PLoS Genet. 12, e1006454 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pregizer, S. K. et al. Impact of broad regulatory regions on Gdf5 expression and function in knee development and susceptibility to osteoarthritis. Ann. Rheum. Dis. 77, 450 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Kania, K. et al. Regulation of Gdf5 expression in joint remodelling, repair and osteoarthritis. Sci. Rep. 10, 157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dowthwaite, G. P. et al. The surface of articular cartilage contains a progenitor cell population. J. Cell Sci. 117, 889–897 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Kozhemyakina, E. et al. Identification of a Prg4-expressing articular cartilage progenitor cell population in mice. Arthritis Rheumatol. 67, 1261–1273 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, L. et al. Superficial cells are self-renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice. FASEB J. 31, 1067–1084 (2017).

    Article  PubMed  Google Scholar 

  48. Decker, R. S. et al. Cell origin, volume and arrangement are drivers of articular cartilage formation, morphogenesis and response to injury in mouse limbs. Dev. Biol. 426, 56–68 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roelofs, A. J. et al. Identification of the skeletal progenitor cells forming osteophytes in osteoarthritis. Ann. Rheum. Dis. 79, 1625–1634 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Debnath, S. et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562, 133–139 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bechtold, T. E. et al. Osteophyte formation and matrix mineralization in a TMJ osteoarthritis mouse model are associated with ectopic hedgehog signaling. Matrix Biol. 52–54, 339–354 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Maes, C. et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev. Cell 19, 329–344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xie, M. & Chagin, A. S. The epiphyseal secondary ossification center: evolution, development and function. Bone 142, 115701 (2021).

    Article  PubMed  Google Scholar 

  54. Tong, W. et al. Periarticular mesenchymal progenitors initiate and contribute to secondary ossification center formation during mouse long bone development. Stem Cell 37, 677–689 (2019).

    Article  CAS  Google Scholar 

  55. Schett, G. et al. Enthesitis: from pathophysiology to treatment. Nat. Rev. Rheumatol. 13, 731–741 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Blitz, E., Sharir, A., Akiyama, H. & Zelzer, E. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development 140, 2680–2690 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Sugimoto, Y. et al. Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament. Development 140, 2280–2288 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Eyal, S. et al. On the development of the patella. Development 142, 1831–1839 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Eyal, S. et al. Bone morphology is regulated modularly by global and regional genetic programs. Development 146, dev167882 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Eyal, S., Rubin, S., Krief, S., Levin, L. & Zelzer, E. Common cellular origin and diverging developmental programs for different sesamoid bones. Development 146, dev167452 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Blitz, E. et al. Bone ridge patterning during musculoskeletal assembly is mediated through SCX regulation of Bmp4 at the tendon-skeleton junction. Dev. Cell 17, 861–873 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Roberts, R. R. et al. FGF signaling patterns cell fate at the interface between tendon and bone. Development 146, dev170241 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ono, N. & Kronenberg, H. M. Mesenchymal progenitor cells for the osteogenic lineage. Curr. Mol. Biol. Rep. 1, 95–100 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Arostegui, M., Scott, R. W., Böse, K. & Underhill, T. M. Cellular taxonomy of Hic1+ mesenchymal progenitor derivatives in the limb: from embryo to adult. Nat. Commun. 13, 4989 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Arostegui, M., Scott, R. W. & Underhill, T. M. Hic1 identifies a specialized mesenchymal progenitor population in the embryonic limb responsible for bone superstructure formation. Cell Rep. 42, 112325 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Dyment, N. A. et al. Lineage tracing of resident tendon progenitor cells during growth and natural healing. PLoS ONE 9, e96113 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dyment, N. A. et al. Gdf5 progenitors give rise to fibrocartilage cells that mineralize via hedgehog signaling to form the zonal enthesis. Dev. Biol. 405, 96–107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schwartz, A. G., Long, F. & Thomopoulos, S. Enthesis fibrocartilage cells originate from a population of Hedgehog-responsive cells modulated by the loading environment. Development 142, 196–206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, T. et al. Single-cell RNA sequencing reveals cellular and molecular heterogeneity in fibrocartilaginous enthesis formation. Elife 12, e85873 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Liu, C.-F., Breidenbach, A., Aschbacher-Smith, L., Butler, D. & Wylie, C. A role for hedgehog signaling in the differentiation of the insertion site of the patellar tendon in the mouse. PLoS ONE 8, e65411 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Felsenthal, N. et al. Development of migrating tendon-bone attachments involves replacement of progenitor populations. Development 145, dev165381 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fang, F., Schwartz, A. G., Moore, E. R., Sup, M. E. & Thomopoulos, S. Primary cilia as the nexus of biophysical and hedgehog signaling at the tendon enthesis. Sci. Adv. 6, eabc1799 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schwartz, A. G., Galatz, L. M. & Thomopoulos, S. Enthesis regeneration: a role for Gli1+ progenitor cells. Development 144, 1159–1164 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fang, F., Xiao, Y., Zelzer, E., Leong, K. W. & Thomopoulos, S. A mineralizing pool of Gli1-expressing progenitors builds the tendon enthesis and demonstrates therapeutic potential. Cell Stem Cell 29, 1669–1684.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xiao, H. et al. Mechanical stimulation promotes enthesis injury repair by mobilizing Prrx1+ cells via ciliary TGF-β signaling. Elife 11, e73614 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bi, Y. et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat. Med. 13, 1219–1227 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Harvey, T., Flamenco, S. & Fan, C.-M. A Tppp3+Pdgfra+ tendon stem cell population contributes to regeneration and reveals a shared role for PDGF signalling in regeneration and fibrosis. Nat. Cell Biol. 21, 1490–1503 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tachibana, N. et al. RSPO2 defines a distinct undifferentiated progenitor in the tendon/ligament and suppresses ectopic ossification. Sci. Adv. 8, eabn2138 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, Y. et al. Osteocalcin expressing cells from tendon sheaths in mice contribute to tendon repair by activating Hedgehog signaling. Elife 6, e30474 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yea, J.-H. et al. Tppp3+ synovial/tendon sheath progenitor cells contribute to heterotopic bone after trauma. Bone Res. 11, 39 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dyment, N. A. et al. The paratenon contributes to scleraxis-expressing cells during patellar tendon healing. PLoS ONE 8, e59944 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sakabe, T. et al. Transcription factor scleraxis vitally contributes to progenitor lineage direction in wound healing of adult tendon in mice. J. Biol. Chem. 293, 5766–5780 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, W. et al. The atypical homeodomain transcription factor Mohawk controls tendon morphogenesis. Mol. Cell Biol. 30, 4797–4807 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Knights, A. J. et al. Synovial fibroblasts assume distinct functional identities and secrete R-spondin 2 in osteoarthritis. Ann. Rheum. Dis. 82, 272–282 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Li, J. et al. Synovium and infrapatellar fat pad share common mesenchymal progenitors and undergo coordinated changes in osteoarthritis. J. Bone Miner. Res. 39, 161–176 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tang, S. et al. Single-cell atlas of human infrapatellar fat pad and synovium implicates APOE signaling in osteoarthritis pathology. Sci. Transl. Med. 16, eadf4590 (2024).

    Article  CAS  PubMed  Google Scholar 

  88. Clevers, H. & Watt, F. M. Defining adult stem cells by function, not by phenotype. Annu. Rev. Biochem. 87, 1015–1027 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Ng, J. Q. et al. Loss of Grem1-lineage chondrogenic progenitor cells causes osteoarthritis. Nat. Commun. 14, 6909 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Matsuzaki, T. et al. FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci. Transl. Med. 10, eaan0746 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang, C., Shen, J., Ying, J., Xiao, D. & O’Keefe, R. J. FoxO1 is a crucial mediator of TGF-β/TAK1 signaling and protects against osteoarthritis by maintaining articular cartilage homeostasis. Proc. Natl Acad. Sci. USA 117, 30488–30497 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lefebvre, V. Roles and regulation of SOX transcription factors in skeletogenesis. Curr. Top. Dev. Biol. 133, 171–193 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. van Gastel, N. et al. Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature 579, 111–117 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vincent, T. L. Of mice and men: converging on a common molecular understanding of osteoarthritis. Lancet Rheumatol. 2, e633–e645 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lohmander, L. S. et al. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 66, 1820–1831 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Hochberg, M. C. et al. Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage thickness in patients with osteoarthritis: the FORWARD randomized clinical trial. JAMA 322, 1360–1370 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Guehring, H. et al. The effects of sprifermin on symptoms and structure in a subgroup at risk of progression in the FORWARD knee osteoarthritis trial. Semin. Arthritis Rheum. 51, 450–456 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Eckstein, F. et al. Long-term structural and symptomatic effects of intra-articular sprifermin in patients with knee osteoarthritis: 5-year results from the FORWARD study. Ann. Rheum. Dis. 80, 1062–1069 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Deshmukh, V. et al. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage 26, 18–27 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Yazici, Y. et al. A novel Wnt pathway inhibitor, SM04690, for the treatment of moderate to severe osteoarthritis of the knee: results of a 24-week, randomized, controlled, phase 1 study. Osteoarthritis Cartilage 25, 1598–1606 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Yazici, Y. et al. Lorecivivint, a novel intraarticular CDC-like kinase 2 and dual-specificity tyrosine phosphorylation-regulated kinase 1a inhibitor and Wnt pathway modulator for the treatment of knee osteoarthritis: a phase II randomized trial. Arthritis Rheumatol. 72, 1694–1706 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gerwin, N. et al. Angiopoietin-like 3-derivative LNA043 for cartilage regeneration in osteoarthritis: a randomized phase 1 trial. Nat. Med. 28, 2633–2645 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Eldridge, S. E. et al. Agrin induces long-term osteochondral regeneration by supporting repair morphogenesis. Sci. Transl. Med. 12, eaax9086 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Ruscitto, A. et al. Lgr5-expressing secretory cells form a Wnt inhibitory niche in cartilage critical for chondrocyte identity. Cell Stem Cell 30, 1179–1198.e7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zelinka, A., Roelofs, A. J., Kandel, R. A. & De Bari, C. Cellular therapy and tissue engineering for cartilage repair. Osteoarthritis Cartilage 30, 1547–1560 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Kunisaki, Y. et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637–643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Arranz, L. et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512, 78–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Shen, B. et al. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature 591, 438–444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mizuhashi, K. et al. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 563, 254–258 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Muruganandan, S. et al. A FoxA2+ long-term stem cell population is necessary for growth plate cartilage regeneration after injury. Nat. Commun. 13, 2515 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brittberg, M. et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331, 889–895 (1994).

    Article  CAS  PubMed  Google Scholar 

  113. Ogura, T., Mosier, B. A., Bryant, T. & Minas, T. A 20-year follow-up after first-generation autologous chondrocyte implantation. Am. J. Sports Med. 45, 2751–2761 (2017).

    Article  PubMed  Google Scholar 

  114. Steadman, J. R., Rodkey, W. G. & Rodrigo, J. J. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin. Orthop. Relat. Res. S362–S369 (2001).

  115. Saris, D. B. F. et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am. J. Sports Med. 36, 235–246 (2008).

    Article  PubMed  Google Scholar 

  116. Saris, D. B. F. et al. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am. J. Sports Med. 37, 10S–19S (2009).

    Article  PubMed  Google Scholar 

  117. Vanlauwe, J. et al. Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am. J. Sports Med. 39, 2566–2574 (2011).

    Article  PubMed  Google Scholar 

  118. Knutsen, G. et al. A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years. J. Bone Jt. Surg. Am. 98, 1332–1339 (2016).

    Article  Google Scholar 

  119. Hoburg, A. et al. Sustained superiority in KOOS subscores after matrix-associated chondrocyte implantation using spheroids compared to microfracture. Knee Surg. Sports Traumatol. Arthrosc. 31, 2482–2493 (2023).

    Article  PubMed  Google Scholar 

  120. Barry, F. & Murphy, M. Mesenchymal stem cells in joint disease and repair. Nat. Rev. Rheumatol. 9, 584–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, Y., Yang, H., He, F. & Zhu, X. Intra-articular injection choice for osteoarthritis: making sense of cell source-an updated systematic review and dual network meta-analysis. Arthritis Res. Ther. 24, 260 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mautner, K. et al. Cell-based versus corticosteroid injections for knee pain in osteoarthritis: a randomized phase 3 trial. Nat. Med. 29, 3120–3126 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for and wrote the article. C.D.B. and A.J.R. contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Cosimo De Bari.

Ethics declarations

Competing interests

A.J.R. and C.D.B. have received research grant funding through their institution from Biosplice Therapeutics (formerly Samumed). C.D.B. declares that he has received consultancy fees from Celltrion Healthcare, Galapagos and UCB. J.J.M. and E.A.H. declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Lucienne Vonk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roelofs, A.J., McClure, J.J., Hay, E.A. et al. Stem and progenitor cells in the synovial joint as targets for regenerative therapy. Nat Rev Rheumatol 21, 211–220 (2025). https://doi.org/10.1038/s41584-025-01222-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-025-01222-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing