Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of the immune system in osteoarthritis: mechanisms, challenges and future directions

Abstract

Osteoarthritis (OA) is a chronic joint disease that has long been considered a simple wear-and-tear condition. Over the past decade, research has revealed that various inflammatory features of OA, such as low-grade peripheral inflammation and synovitis, contribute substantially to the pathophysiology of the disease. Technological advances in the past 5 years have revealed a large diversity of innate and adaptive immune cells in the joints, particularly in the synovium and infrapatellar fat pad. Notably, the presence of synovial lymphoid structures, circulating autoantibodies and alterations in memory T cell and B cell populations have been documented in OA. These data indicate a potential contribution of self-reactivity to the disease pathogenesis, blurring the often narrow and inaccurate line between chronic inflammatory and autoimmune diseases. The diverse immune changes associated with OA pathogenesis can vary across disease phenotypes, and a better characterization of their underlying molecular endotypes will be key to stratifying patients, designing novel therapeutic approaches and ultimately ameliorating treatment allocation. Furthermore, examining both articular and systemic alterations, including changes in the gut–joint axis and microbial dysbiosis, could open up novel avenues for OA management.

Key points

  • Technological advances, such as single-cell RNA sequencing, have revealed an unexpected diversity of immune cells within joint tissues in osteoarthritis (OA), particularly in the synovium and infrapatellar fat pad.

  • At advanced stages of OA, aggregates that comprise B cells and T cells surrounded by plasma cells are observed in synovial tissues.

  • The presence of circulating autoantibodies and alterations in memory T cell and B cell populations that are reported in OA indicate a potential contribution of self-reactivity to disease pathogenesis.

  • Immune changes in OA contribute to both articular and systemic low-grade inflammation, the underlying mechanisms of which might vary depending on the OA phenotype, representing potential clinically relevant therapeutic targets.

  • The gut microbiota and associated immune responses have a role in OA pathophysiology, and potentially represent novel therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immune cells in the synovium and infrapatellar fat pad in health and osteoarthritis.
Fig. 2: The influence of the immune system on the joint and the periphery in osteoarthritis.
Fig. 3: Towards personalized medicine in osteoarthritis.

Similar content being viewed by others

References

  1. Safiri, S. et al. Global, regional and national burden of osteoarthritis 1990–2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann. Rheum. Dis. 79, 819–828 (2020).

    Article  PubMed  Google Scholar 

  2. Price, A. J. et al. Knee replacement. Lancet 392, 1672–1682 (2018).

    Article  PubMed  Google Scholar 

  3. Ferguson, R. J. et al. Hip replacement. Lancet 392, 1662–1671 (2018).

    Article  PubMed  Google Scholar 

  4. Osteoarthritis Research Society International. Osteoarthritis: A Serious Disease, Submitted to the U.S. Food and Drug Administration White Paper (OARSI, 2016).

  5. Sanchez-Lopez, E., Coras, R., Torres, A., Lane, N. E. & Guma, M. Synovial inflammation in osteoarthritis progression. Nat. Rev. Rheumatol. 18, 258–275 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stephenson, W. et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat. Commun. 9, 791 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Mandelin, A. M. et al. Transcriptional profiling of synovial macrophages using minimally invasive ultrasound-guided synovial biopsies in rheumatoid arthritis. Arthritis Rheumatol. 70, 841–854 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kelly, S. et al. Ultrasound-guided synovial biopsy: a safe, well-tolerated and reliable technique for obtaining high-quality synovial tissue from both large and small joints in early arthritis patients. Ann. Rheum. Dis. 74, 611–617 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, F. et al. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature 623, 616–624 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Accelerating Medicines Partnership Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) Consortium. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  Google Scholar 

  13. Smith, M. H. et al. Drivers of heterogeneity in synovial fibroblasts in rheumatoid arthritis. Nat. Immunol. 24, 1200–1210 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wood, M. J. et al. Macrophage proliferation distinguishes 2 subgroups of knee osteoarthritis patients. JCI Insight 4, e125325 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Knights, A. J. et al. Synovial macrophage diversity and activation of M-CSF signaling in post-traumatic osteoarthritis. Preprint at bioRxiv https://doi.org/10.1101/2023.10.03.559514 (2023).

  19. Sebastian, A. et al. Single-cell RNA-Seq reveals changes in immune landscape in post-traumatic osteoarthritis. Front. Immunol. 13, 938075 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Herrero-Beaumont, G. et al. Systemic osteoarthritis: the difficulty of categorically naming a continuous condition. Aging Clin. Exp. Res. 36, 45 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  21. McAlindon, T. E. et al. Associations of inflammatory and metabolic biomarkers with incident erosive hand osteoarthritis in the osteoarthritis initiative cohort. Osteoarthr. Cartil. 32, 592–600 (2024).

    Article  Google Scholar 

  22. Wang, Q. et al. Identification of a central role for complement in osteoarthritis. Nat. Med. 17, 1674–1679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Silva Santos Ribeiro, P., Willemen, H. L. D. M., Versteeg, S., Martin Gil, C. & Eijkelkamp, N. NLRP3 inflammasome activation in sensory neurons promotes chronic inflammatory and osteoarthritis pain. Immunother. Adv. 3, ltad022 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Miller, R. J., Malfait, A.-M. & Miller, R. E. The innate immune response as a mediator of osteoarthritis pain. Osteoarthr. Cartil. 28, 562–571 (2020).

    Article  CAS  Google Scholar 

  25. Hannani, M. T. et al. From biochemical markers to molecular endotypes of osteoarthritis: a review on validated biomarkers. Expert. Rev. Mol. Diagnostics 24, 23–38 (2024).

    Article  CAS  Google Scholar 

  26. Atukorala, I. et al. Synovitis in knee osteoarthritis: a precursor of disease? Ann. Rheum. Dis. 75, 390–395 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Conaghan, P. G. et al. Clinical and ultrasonographic predictors of joint replacement for knee osteoarthritis: results from a large, 3-year, prospective EULAR study. Ann. Rheum. Dis. 69, 644–647 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Eitner, A. et al. Pain sensation in human osteoarthritic knee joints is strongly enhanced by diabetes mellitus. Pain 158, 1743–1753 (2017).

    Article  PubMed  Google Scholar 

  29. Zhang, H. et al. Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2. Ann. Rheum. Dis. 77, 1524–1534 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Raghu, H. et al. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis. Ann. Rheum. Dis. 76, 914–922 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Sakurai, Y. et al. Contribution of synovial macrophages to rat advanced osteoarthritis pain resistant to cyclooxygenase inhibitors. Pain 160, 895–907 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Blom, A. B. et al. Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3. Arthritis Rheum. 56, 147–157 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Chou, C.-H. et al. Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci. Rep. 10, 10868 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, C. et al. Transcriptomic profiling of osteoarthritis synovial macrophages reveals a tolerized phenotype compounded by a weak corticosteroid response. Rheumatology 64, 860–869 (2024).

  35. Macchi, V. et al. The infrapatellar fat pad and the synovial membrane: an anatomo‐functional unit. J. Anat. 233, 146–154 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tang, S. et al. Single-cell atlas of human infrapatellar fat pad and synovium implicates APOE signaling in osteoarthritis pathology. Sci. Transl. Med. 16, eadf4590 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. South, S. M. et al. Imaging mass cytometry reveals tissue-specific cellular immune phenotypes in the mouse knee following ACL injury. Osteoarthr. Cartil. Open. 5, 100416 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Peters, H. et al. Cell and transcriptomic diversity of infrapatellar fat pad during knee osteoarthritis. Ann. Rheum. Dis. 84, 351–367 (2025).

  39. Blackler, G. et al. Targeting STAT6-mediated synovial macrophage activation improves pain in experimental knee osteoarthritis. Arthritis Res. Ther. 26, 73 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Philpott, H. T. et al. Synovial innate immune exhaustion is associated with worse pain in knee osteoarthritis. Arthritis Rheumatol. https://doi.org/10.1002/art.43089 (2024).

  41. Fang, C. et al. TREM2 promotes macrophage polarization from M1 to M2 and suppresses osteoarthritis through the NF-κB/CXCL3 axis. Int. J. Biol. Sci. 20, 1992–2007 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raoof, R. et al. Dorsal root ganglia macrophages maintain osteoarthritis pain. J. Neurosci. 41, 8249–8261 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martin Gil, C. et al. Myostatin and CXCL11 promote nervous tissue macrophages to maintain osteoarthritis pain. Brain Behav. Immun. 116, 203–215 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Geraghty, T. et al. Age‐associated changes in knee osteoarthritis, pain‐related behaviors, and dorsal root ganglia immunophenotyping of male and female mice. Arthritis Rheumatol. 75, 1770–1780 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Domoto, R., Sekiguchi, F., Tsubota, M. & Kawabata, A. Macrophage as a peripheral pain regulator. Cells 10, 1881 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nigrovic, P. A. & Lee, D. M. Mast cells in inflammatory arthritis. Arthritis Res. Ther. 7, 1–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Mehta, B. et al. Machine learning identification of thresholds to discriminate osteoarthritis and rheumatoid arthritis synovial inflammation. Arthritis Res. Ther. 25, 31 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Das, N. et al. Tryptase β regulation of joint lubrication and inflammation via proteoglycan-4 in osteoarthritis. Nat. Commun. 14, 1910 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, Q. et al. IgE-mediated mast cell activation promotes inflammation and cartilage destruction in osteoarthritis. eLife 8, e39905 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Baker, M. C., Robinson, W. H. & Ostrom, Q. Genetic association between atopic disease and osteoarthritis. Osteoarthr. Cartil. 32, 220–225 (2024).

    Article  Google Scholar 

  51. Wilkinson, D. J. et al. Matrix metalloproteinase‐13 is fully activated by neutrophil elastase and inactivates its serpin inhibitor, alpha‐1 antitrypsin: implications for osteoarthritis. FEBS J. 289, 121–139 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Mehrani, Y. et al. The importance of neutrophils in osteoarthritis: current concepts and therapeutic perspectives. Immuno 3, 250–272 (2023).

    Article  Google Scholar 

  53. Luan, T. et al. Identification and analysis of neutrophil extracellular trap-related genes in osteoarthritis by bioinformatics and experimental verification. J. Inflamm. Res. 16, 3837–3852 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Manukyan, G. et al. Phenotypic and functional characterisation of synovial fluid-derived neutrophils in knee osteoarthritis and knee infection. Osteoarthr. Cartil. 31, 72–82 (2023).

    Article  CAS  Google Scholar 

  55. Tchitchek, N. et al. Deep immunophenotyping reveals that autoimmune and autoinflammatory disorders are spread along two immunological axes capturing disease inflammation levels and types. Ann. Rheum. Dis. 83, 638–650 (2024).

    Article  CAS  PubMed  Google Scholar 

  56. Huss, R. S., Huddleston, J. I., Goodman, S. B., Butcher, E. C. & Zabel, B. A. Synovial tissue-infiltrating natural killer cells in osteoarthritis and periprosthetic inflammation: NK cells in degenerative joint disease. Arthritis Rheum. 62, 3799–3805 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Kraus, V. B. et al. An osteoarthritis pathophysiological continuum revealed by molecular biomarkers. Sci. Adv. 10, eadj6814 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Loukov, D., Karampatos, S., Maly, M. R. & Bowdish, D. M. E. Monocyte activation is elevated in women with knee-osteoarthritis and associated with inflammation, BMI and pain. Osteoarthr. Cartil. 26, 255–263 (2018).

    Article  CAS  Google Scholar 

  60. Zhao, X. et al. CCL3/CCR1 mediates CD14+CD16 circulating monocyte recruitment in knee osteoarthritis progression. Osteoarthr. Cartil. 28, 613–625 (2020).

    Article  CAS  Google Scholar 

  61. Dong Kim, K. et al. Adaptive immune cells temper initial innate responses. Nat. Med. 13, 1248–1252 (2007).

    Article  PubMed Central  Google Scholar 

  62. Kumar, B. V., Connors, T. J. & Farber, D. L. Human T cell development, localization, and function throughout life. Immunity 48, 202–213 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rosshirt, N. et al. Proinflammatory T cell polarization is already present in patients with early knee osteoarthritis. Arthritis Res. Ther. 23, 37 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shen, P.-C. et al. T helper cells promote disease progression of osteoarthritis by inducing macrophage inflammatory protein-1γ. Osteoarthr. Cartil. 19, 728–736 (2011).

    Article  Google Scholar 

  65. Nees, T. A. et al. T helper cell infiltration in osteoarthritis-related knee pain and disability. J. Clin. Med. 9, 2423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wheeler, T. A. et al. Mechanical loading of joint modulates T cells in lymph nodes to regulate osteoarthritis. Osteoarthr. Cartil. 32, 287–298 (2024).

    Article  Google Scholar 

  67. Nees, T. A. et al. Infiltration profile of regulatory T cells in osteoarthritis-related pain and disability. Biomedicines 10, 2111 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ponchel, F. et al. Changes in peripheral blood immune cell composition in osteoarthritis. Osteoarthr. Cartil. 23, 1870–1878 (2015).

    Article  CAS  Google Scholar 

  69. Xie, X., Doody, G. M., Shuweihdi, F., Conaghan, P. G. & Ponchel, F. B-cell capacity for expansion and differentiation into plasma cells are altered in osteoarthritis. Osteoarthr. Cartil. 31, 1176–1188 (2023).

    Article  Google Scholar 

  70. Platzer, H. et al. CD8+ T cells in OA knee joints are differentiated into subsets depending on OA stage and compartment. J. Clin. Med. 11, 2814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Trajerova, M. et al. Knee osteoarthritis phenotypes based on synovial fluid immune cells correlate with clinical outcome trajectories. Osteoarthr. Cartil. 30, 1583–1592 (2022).

    Article  CAS  Google Scholar 

  72. Burt, K. G. & Scanzello, C. R. B cells in osteoarthritis: simply a sign or a target for therapy? Osteoarthr. Cartil. 31, 1148–1151 (2023).

    Article  Google Scholar 

  73. Sun, H. et al. IgM+CD27+ B cells possessed regulatory function and represented the main source of B cell-derived IL-10 in the synovial fluid of osteoarthritis patients. Hum. Immunol. 80, 263–269 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J.-P. & Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7, 33–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Xie, X. et al. Auto-antibodies to post-translationally modified proteins in osteoarthritis. Osteoarthr. Cartil. 29, 924–933 (2021).

    Article  CAS  Google Scholar 

  76. Pacquelet, S. et al. Interleukin 17, a nitric oxide-producing cytokine with a peroxynitrite-independent inhibitory effect on proteoglycan synthesis. J. Rheumatol. 29, 2602–2610 (2002).

    CAS  PubMed  Google Scholar 

  77. Sun, W. et al. IL-17A exacerbates synovial inflammation in osteoarthritis via activation of endoplasmic reticulum stress. Int. Immunopharmacol. 145, 113733 (2025).

    Article  CAS  PubMed  Google Scholar 

  78. Sinkeviciute, D., Aspberg, A., He, Y., Bay-Jensen, A.-C. & Önnerfjord, P. Characterization of the interleukin-17 effect on articular cartilage in a translational model: an explorative study. BMC Rheumatol. 4, 30 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wisniewska, E. et al. Infrapatellar fat pad modulates osteoarthritis-associated cytokine and MMP expression in human articular chondrocytes. Cells 12, 2850 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zapata-Linares, N. et al. Systemic and joint adipose tissue lipids and their role in osteoarthritis. Biochimie 227, 130–138 (2024).

    Article  CAS  PubMed  Google Scholar 

  81. Apinun, J. et al. Immune mediators in osteoarthritis: infrapatellar fat pad-infiltrating CD8+ T cells are increased in osteoarthritic patients with higher clinical radiographic grading. Int. J. Rheumatol. 2016, 9525724 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Xu, C. et al. Causal associations between circulating immune cells and osteoarthritis: a bidirectional Mendelian randomization study. Int. Immunopharmacol. 142, 113156 (2024).

    Article  CAS  PubMed  Google Scholar 

  83. Zhu, W. et al. Alterations in peripheral T cell and B cell subsets in patients with osteoarthritis. Clin. Rheumatol. 39, 523–532 (2020).

    Article  PubMed  Google Scholar 

  84. Binvignat, M. et al. Immunological profiling in knee osteoarthritis: Treg dysfunction as key driver of pain. Preprint at bioRxiv https://doi.org/10.1101/2024.10.12.618016 (2024).

  85. Nakamura, H., Yoshino, S., Kato, T., Tsuruha, J. & Nishioka, K. T-cell mediated inflammatory pathway in osteoarthritis. Osteoarthr. Cartil. 7, 401–402 (1999).

    Article  CAS  Google Scholar 

  86. Kim, H.-Y. et al. Enhanced T cell proliferative response to type II collagen and synthetic peptide CII (255–274) in patients with rheumatoid arthritis. Arthritis Rheum. 42, 2085–2093 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Tsuruha, J.-I. et al. Autoimmunity against YKL-39, a human cartilage derived protein, in patients with osteoarthritis. J. Rheumatol. 29, 1459–1466 (2002).

    CAS  PubMed  Google Scholar 

  88. Sakata, M. et al. Osteoarthritic articular chondrocytes stimulate autologous T cell responses in vitro. Clin. Exp. Rheumatol. 21, 704–710 (2003).

    CAS  PubMed  Google Scholar 

  89. De Jong, H. et al. Cartilage proteoglycan aggrecan epitopes induce proinflammatory autoreactive T-cell responses in rheumatoid arthritis and osteoarthritis. Ann. Rheum. Dis. 69, 255–262 (2010).

    Article  PubMed  Google Scholar 

  90. Camacho-Encina, M. et al. Discovery of an autoantibody signature for the early diagnosis of knee osteoarthritis: data from the Osteoarthritis Initiative. Ann. Rheum. Dis. 78, 1699–1705 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Boutet, M.-A. et al. Comparative analysis of late-stage rheumatoid arthritis and osteoarthritis reveals shared histopathological features. Osteoarthr. Cartil. 32, 166–176 (2024).

    Article  Google Scholar 

  92. Favero, M. et al. Infrapatellar fat pad features in osteoarthritis: a histopathological and molecular study. Rheumatology 56, 1784–1793 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Marshall, D. A. et al. Existing comorbidities in people with osteoarthritis: a retrospective analysis of a population-based cohort in Alberta, Canada. BMJ Open. 9, e033334 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Visser, A. W. et al. The relative contribution of mechanical stress and systemic processes in different types of osteoarthritis: the NEO study. Ann. Rheum. Dis. 74, 1842–1847 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Jin, X. et al. Circulating C reactive protein in osteoarthritis: a systematic review and meta-analysis. Ann. Rheum. Dis. 74, 703–710 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Attur, M. et al. Plasma levels of interleukin-1 receptor antagonist (IL1Ra) predict radiographic progression of symptomatic knee osteoarthritis. Osteoarthr. Cartil. 23, 1915–1924 (2015).

    Article  CAS  Google Scholar 

  97. Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Fulop, T. et al. Immunology of aging: the birth of inflammaging. Clin. Rev. Allerg. Immunol. 64, 109–122 (2021).

    Article  Google Scholar 

  99. Courties, A., Berenbaum, F. & Sellam, J. The phenotypic approach to osteoarthritis: a look at metabolic syndrome-associated osteoarthritis. Jt Bone Spine 86, 725–730 (2019).

    Article  CAS  Google Scholar 

  100. Binvignat, M., Sellam, J., Berenbaum, F. & Felson, D. T. The role of obesity and adipose tissue dysfunction in osteoarthritis pain. Nat. Rev. Rheumatol. 20, 565–584 (2024).

    Article  PubMed  Google Scholar 

  101. Unamuno, X. et al. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur. J. Clin. Invest. 48, e12997 (2018).

    Article  PubMed  Google Scholar 

  102. Francisco, V. et al. Adipokines: linking metabolic syndrome, the immune system, and arthritic diseases. Biochem. Pharmacol. 165, 196–206 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Frühbeck, G., Catalán, V., Rodríguez, A. & Gómez-Ambrosi, J. Adiponectin-leptin ratio: a promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte 7, 57–62 (2018).

    Article  PubMed  Google Scholar 

  104. Sellam, J. et al. Pain in women with knee and/or hip osteoarthritis is related to systemic inflammation and to adipose tissue dysfunction: cross-sectional results of the KHOALA cohort. Semin. Arthritis Rheum. 51, 129–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. De Roover, A., Escribano-Núñez, A., Monteagudo, S. & Lories, R. Fundamentals of osteoarthritis: inflammatory mediators in osteoarthritis. Osteoarthr. Cartil. 31, 1303–1311 (2023).

    Article  Google Scholar 

  106. Swindell, W. R. et al. Robust shifts in S100a9 expression with aging: a novel mechanism for chronic inflammation. Sci. Rep. 3, 1215 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Greene, M. A. & Loeser, R. F. Aging-related inflammation in osteoarthritis. Osteoarthr. Cartil. 23, 1966–1971 (2015).

    Article  CAS  Google Scholar 

  108. Liu, Z. et al. Immunosenescence: molecular mechanisms and diseases. Sig. Transduct. Target. Ther. 8, 200 (2023).

    Article  CAS  Google Scholar 

  109. Khan, S. et al. B cells promote T cell immunosenescence and mammalian aging parameters. Preprint at bioRxiv https://doi.org/10.1101/2023.09.12.556363 (2023).

  110. Han, Z., Wang, K., Ding, S. & Zhang, M. Cross-talk of inflammation and cellular senescence: a new insight into the occurrence and progression of osteoarthritis. Bone Res. 12, 69 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, H., Liu, W. & Xie, J. Circulating interleukin-6 levels and cardiovascular and all-cause mortality in the elderly population: a meta-analysis. Arch. Gerontol. Geriatr. 73, 257–262 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Forcina, L., Franceschi, C. & Musarò, A. The hormetic and hermetic role of IL-6. Ageing Res. Rev. 80, 101697 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Widjaja, A. A. et al. Inhibition of IL-11 signalling extends mammalian healthspan and lifespan. Nature 632, 157–165 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Binvignat, M., Sokol, H., Mariotti-Ferrandiz, E., Berenbaum, F. & Sellam, J. Osteoarthritis and gut microbiome. Jt Bone Spine 88, 105203 (2021).

    Article  CAS  Google Scholar 

  115. Marietta, E., Rishi, A. & Taneja, V. Immunogenetic control of the intestinal microbiota. Immunology 145, 313–322 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Guan, Z. et al. Gut microbiome dysbiosis alleviates the progression of osteoarthritis in mice. Clin. Sci. 134, 3159–3174 (2020).

    Article  Google Scholar 

  117. Ulici, V. et al. Osteoarthritis induced by destabilization of the medial meniscus is reduced in germ-free mice. Osteoarthr. Cartil. 26, 1098–1109 (2018).

    Article  CAS  Google Scholar 

  118. Schott, E. M. et al. Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight 3, e95997 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Huang, Z. Y., Stabler, T., Pei, F. X. & Kraus, V. B. Both systemic and local lipopolysaccharide (LPS) burden are associated with knee OA severity and inflammation. Osteoarthr. Cartil. 24, 1769–1775 (2016).

    Article  CAS  Google Scholar 

  120. Boer, C. G. et al. Intestinal microbiome composition and its relation to joint pain and inflammation. Nat. Commun. 10, 4881 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dunn, C. M. et al. Identification of cartilage microbial DNA signatures and associations with knee and hip osteoarthritis. Arthritis Rheumatol. 72, 1111–1122 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Huang, Z. Y. et al. Biomarkers of inflammation — LBP and TLR — predict progression of knee osteoarthritis in the DOXY clinical trial. Osteoarthr. Cartil. 26, 1658–1665 (2018).

    Article  CAS  Google Scholar 

  123. Wei, J. et al. Association between gut microbiota and symptomatic hand osteoarthritis: data from the Xiangya Osteoarthritis Study. Arthritis Rheumatol. 73, 1656–1662 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Binvignat, M. et al. Serum tryptophan metabolites are associated with erosive hand osteoarthritis and pain: results from the DIGICOD cohort. Osteoarthr. Cartil. 31, 1132–1143 (2023).

    Article  CAS  Google Scholar 

  125. Binvignat, M. et al. Serum intestinal permeability biomarkers are associated with erosive hand osteoarthritis and radiographic severity: results from the DIGICOD cohort. Osteoarthr. Cartil. 32, 747 (2024).

    Article  Google Scholar 

  126. Moulin, D. et al. Counteracting tryptophan metabolism alterations as a new therapeutic strategy for rheumatoid arthritis. Ann. Rheum. Dis. 83, 312–323 (2024).

    Article  CAS  PubMed  Google Scholar 

  127. Cho, K.-H. et al. Lactobacillus (LA-1) and butyrate inhibit osteoarthritis by controlling autophagy and inflammatory cell death of chondrocytes. Front. Immunol. 13, 930511 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Huang, Z. et al. Faecal microbiota transplantation from metabolically compromised human donors accelerates osteoarthritis in mice. Ann. Rheum. Dis. 79, 646–656 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Kamps, A. et al. Occurrence of comorbidity following osteoarthritis diagnosis: a cohort study in the Netherlands. Osteoarthr. Cartil. 31, 519–528 (2023).

    Article  CAS  Google Scholar 

  130. Magnusson, K., Turkiewicz, A., Dell’Isola, A. & Englund, M. Shared genetic factors between osteoarthritis and cardiovascular disease may underlie common etiology. Nat. Commun. 15, 9569 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Weber, A. et al. Association between osteoarthritis and increased risk of dementia: a systemic review and meta-analysis. Medicine 98, e14355 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kyrkanides, S. et al. Osteoarthritis accelerates and exacerbates Alzheimer’s disease pathology in mice. J. Neuroinflammation 8, 112 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Favero, M. et al. Erosive hand osteoarthritis: latest findings and outlook. Nat. Rev. Rheumatol. 18, 171–183 (2022).

    Article  PubMed  Google Scholar 

  134. Kloppenburg, M. et al. Etanercept in patients with inflammatory hand osteoarthritis (EHOA): a multicentre, randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 77, 1757–1764 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Chevalier, X. et al. Adalimumab in patients with hand osteoarthritis refractory to analgesics and NSAIDs: a randomised, multicentre, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 74, 1697–1705 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Richette, P. et al. Efficacy of tocilizumab in patients with hand osteoarthritis: double blind, randomised, placebo-controlled, multicentre trial. Ann. Rheum. Dis. 80, 349–355 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Schett, G. et al. Anti-granulocyte-macrophage colony-stimulating factor antibody otilimab in patients with hand osteoarthritis: a phase 2a randomised trial. Lancet Rheumatol. 2, e623–e632 (2020).

    Article  PubMed  Google Scholar 

  138. Fleischmann, R. M. et al. A phase II trial of lutikizumab, an anti-interleukin‐1α/β dual variable domain immunoglobulin, in knee osteoarthritis patients with synovitis. Arthritis Rheumatol. 71, 1056–1069 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Kloppenburg, M. et al. Phase IIa, placebo-controlled, randomised study of lutikizumab, an anti-interleukin-1α and anti-interleukin-1β dual variable domain immunoglobulin, in patients with erosive hand osteoarthritis. Ann. Rheum. Dis. 78, 413–420 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Schieker, M. et al. Effects of interleukin-1β inhibition on incident hip and knee replacement: exploratory analyses from a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 173, 509–515 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Wittoek, R., Verbruggen, G., Vanhaverbeke, T., Colman, R. & Elewaut, D. RANKL blockade for erosive hand osteoarthritis: a randomized placebo-controlled phase 2a trial. Nat. Med. 30, 829–836 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kingsbury, S. R. et al. Pain reduction with oral methotrexate in knee osteoarthritis: a randomized, placebo-controlled clinical trial. Ann. Intern. Med. 177, 1145–1156 (2024).

    Article  PubMed  Google Scholar 

  143. Wang, Y. et al. Methotrexate to treat hand osteoarthritis with synovitis (METHODS): an Australian, multisite, parallel-group, double-blind, randomised, placebo-controlled trial. Lancet 402, 1764–1772 (2023).

  144. Ferrero, S. et al. Methotrexate treatment in hand osteoarthritis refractory to usual treatments: a randomised, double-blind, placebo-controlled trial. Semin. Arthritis Rheum. 51, 831–838 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Najm, A., Alunno, A., Gwinnutt, J. M., Weill, C. & Berenbaum, F. Efficacy of intra-articular corticosteroid injections in knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Jt Bone Spine 88, 105198 (2021).

    Article  CAS  Google Scholar 

  146. Guermazi, A., Hunter, D. J. & Kloppenburg, M. Debate: intra-articular steroid injections for osteoarthritis — harmful or helpful? Osteoarthr. Imaging 3, 100163 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Kroon, F. P. B. et al. Results of a 6-week treatment with 10 mg prednisolone in patients with hand osteoarthritis (HOPE): a double-blind, randomised, placebo-controlled trial. Lancet 394, 1993–2001 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Døssing, A. et al. Colchicine twice a day for hand osteoarthritis (COLOR): a double-blind, randomised, placebo-controlled trial. Lancet Rheumatol. 5, e254–e262 (2023).

    Article  PubMed  Google Scholar 

  149. Heijman, M. W. J. et al. Association of low-dose colchicine with incidence of knee and hip replacements: exploratory analyses from a randomized, controlled, double-blind trial. Ann. Intern. Med. 176, 737–742 (2023).

    Article  PubMed  Google Scholar 

  150. Kingsbury, S. R. et al. Hydroxychloroquine effectiveness in reducing symptoms of hand osteoarthritis: a randomized trial. Ann. Intern. Med. 168, 385 (2018).

    Article  PubMed  Google Scholar 

  151. Wang, Y. et al. Effect of atorvastatin on knee cartilage volume in patients with symptomatic knee osteoarthritis: results from a randomized placebo‐controlled trial. Arthritis Rheumatol. 73, 2035–2043 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Grigsby, E. et al. XT-150 — a novel immunomodulatory gene therapy for osteoarthritis pain in phase 2b development. Osteoarthr. Cartil. 29, S12 (2021).

    Article  Google Scholar 

  153. Meurot, C. et al. Liraglutide, a glucagon-like peptide 1 receptor agonist, exerts analgesic, anti-inflammatory and anti-degradative actions in osteoarthritis. Sci. Rep. 12, 1567 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Remst, D. F. G. et al. Gene expression analysis of murine and human osteoarthritis synovium reveals elevation of transforming growth factor β-responsive genes in osteoarthritis‐related fibrosis. Arthritis Rheumatol. 66, 647–656 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Yan, J. et al. Nintedanib ameliorates osteoarthritis in mice by inhibiting synovial inflammation and fibrosis caused by M1 polarization of synovial macrophages via the MAPK / PI3K-AKT pathway. FASEB J. 37, e23177 (2023).

    Article  CAS  PubMed  Google Scholar 

  156. Pers, Y.-M. et al. Recommendations from the French Societies of Rheumatology and Physical Medicine and Rehabilitation on the non-pharmacological management of knee osteoarthritis. Ann. Phys. Rehabil. Med. 67, 101883 (2024).

    Article  PubMed  Google Scholar 

  157. Walrabenstein, W. et al. A multidisciplinary lifestyle program for metabolic syndrome-associated osteoarthritis: the ‘Plants for Joints’ randomized controlled trial. Osteoarthr. Cartil. 31, 1491–1500 (2023).

    Article  Google Scholar 

  158. Mobasheri, A. & Loeser, R. Clinical phenotypes, molecular endotypes and theratypes in OA therapeutic development. Nat. Rev. Rheumatol. 20, 525–526 (2024).

    Article  PubMed  Google Scholar 

  159. Angelini, F. et al. Osteoarthritis endotype discovery via clustering of biochemical marker data. Ann. Rheum. Dis. 81, 666–675 (2022).

    Article  PubMed  Google Scholar 

  160. Siaton, B. C., Hogans, B. H. & Hochberg, M. C. Precision medicine in osteoarthritis: not yet ready for prime time. Expert. Rev. Precis. Med. Drug. Dev. 6, 5–8 (2021).

    Article  Google Scholar 

  161. Barry, F. & Murphy, M. Mesenchymal stem cells in joint disease and repair. Nat. Rev. Rheumatol. 9, 584–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Ankrum, J. A., Ong, J. F. & Karp, J. M. Mesenchymal stem cells: immune evasive, not immune privileged. Nat. Biotechnol. 32, 252–260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Moll, G. et al. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses. PLoS ONE 6, e21703 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chen, C.-F. et al. Treatment of knee osteoarthritis with intra-articular injection of allogeneic adipose-derived stem cells (ADSCs) ELIXCYTE®: a phase I/II, randomized, active-control, single-blind, multiple-center clinical trial. Stem Cell Res. Ther. 12, 562 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Bertolino, G. M., Maumus, M., Jorgensen, C. & Noël, D. Therapeutic potential in rheumatic diseases of extracellular vesicles derived from mesenchymal stromal cells. Nat. Rev. Rheumatol. 19, 682–694 (2023).

    Article  PubMed  Google Scholar 

  166. Najar, M. et al. Mesenchymal stromal cells and immunomodulation: a gathering of regulatory immune cells. Cytotherapy 18, 160–171 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Wang, Y., Fang, J., Liu, B., Shao, C. & Shi, Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell 29, 1515–1530 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Le Blanc, K. et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371, 1579–1586 (2008).

    Article  PubMed  Google Scholar 

  169. Giri, J., Das, R., Nylen, E., Chinnadurai, R. & Galipeau, J. CCL2 and CXCL12 derived from mesenchymal stromal cells cooperatively polarize IL-10+ tissue macrophages to mitigate gut injury. Cell Rep. 30, 1923–1934.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chiesa, S. et al. Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proc. Natl Acad. Sci. USA 108, 17384–17389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Abbasi, B., Shamsasenjan, K., Ahmadi, M., Beheshti, S. A. & Saleh, M. Mesenchymal stem cells and natural killer cells interaction mechanisms and potential clinical applications. Stem Cell Res. Ther. 13, 97 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W.-F. & Dazzi, F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105, 2821–2827 (2005).

    Article  CAS  PubMed  Google Scholar 

  173. Hagmann, S. et al. The influence of bone marrow- and synovium-derived mesenchymal stromal cells from osteoarthritis patients on regulatory T cells in co-culture. Clin. Exp. Immunol. 173, 454–462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Corcione, A. et al. Human mesenchymal stem cells modulate B-cell functions. Blood 107, 367–372 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Copp, G., Robb, K. P. & Viswanathan, S. Culture-expanded mesenchymal stromal cell therapy: does it work in knee osteoarthritis? A pathway to clinical success. Cell Mol. Immunol. 20, 626–650 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mautner, K. et al. Cell-based versus corticosteroid injections for knee pain in osteoarthritis: a randomized phase 3 trial. Nat. Med. 29, 3120–3126 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lagneau, N. et al. Harnessing cell-material interactions to control stem cell secretion for osteoarthritis treatment. Biomaterials 296, 122091 (2023).

    Article  CAS  PubMed  Google Scholar 

  178. Cherian, J. J. et al. Preliminary results of a phase II randomized study to determine the efficacy and safety of genetically engineered allogeneic human chondrocytes expressing TGF-β1 in patients with grade 3 chronic degenerative joint disease of the knee. Osteoarthr. Cartil. 23, 2109–2118 (2015).

    Article  CAS  Google Scholar 

  179. Chuang, C.-H. et al. Enriched peripheral blood-derived mononuclear cells for treating knee osteoarthritis. Cell Transpl. 32, 09636897221149445 (2023).

    Article  Google Scholar 

  180. Liang, C. et al. Engineered M2a macrophages for the treatment of osteoarthritis. Front. Immunol. 13, 1054938 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Song, X. et al. An injectable thermosensitive hydrogel delivering M2 macrophage-derived exosomes alleviates osteoarthritis by promoting synovial lymphangiogenesis. Acta Biomater. 189, 130–142 (2024).

    Article  CAS  PubMed  Google Scholar 

  182. Ma, Y. et al. Artificial M2 macrophages for disease-modifying osteoarthritis therapeutics. Biomaterials 274, 120865 (2021).

    Article  CAS  PubMed  Google Scholar 

  183. Craft, A. M. et al. Generation of articular chondrocytes from human pluripotent stem cells. Nat. Biotechnol. 33, 638–645 (2015).

    Article  CAS  PubMed  Google Scholar 

  184. Tiwari, S. K., Wong, W. J., Moreira, M., Pasqualini, C. & Ginhoux, F. Induced pluripotent stem cell-derived macrophages as a platform for modelling human disease. Nat. Rev. Immunol. 25, 108–124 (2025).

    Article  CAS  PubMed  Google Scholar 

  185. Kelly, K. et al. Two-year safety outcomes of iPS cell-derived mesenchymal stromal cells in acute steroid-resistant graft-versus-host disease. Nat. Med. 30, 1556–1558 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Byron, S. A., Van Keuren-Jensen, K. R., Engelthaler, D. M., Carpten, J. D. & Craig, D. W. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat. Rev. Genet. 17, 257–271 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mobasheri, A. et al. Recent advances in understanding the phenotypes of osteoarthritis. F1000Res 8, 2091 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We particularly would like to thank A. Cardon and C. Morizot for their involvement in the preparation of the Review outline and for sharing their suggestions related to the preparation of this manuscript. We would also like to thank the following funding sources for their support: Fondation pour la recherche médicale (grant number ARF202004011786 to M.-A.B.; EQU202303016276 to J.G. and M.-A.B. and PFG-P 2022 to J.G.), Inserm (ATIP-Avenir program to M.-A.B.), Region Grand Est (FRCR TARGET to D.M.), Agence Nationale de la Recherche (ANR-18-CE18-0010 PPAROA to J.G., ANR-23-CE18-0018 TrypENGINE to D.M.), Fondation Arthritis (Projet labellisé TRYPTHERA to D.M.; and Projet émergent SPOTT to M.-A.B.), Going Inside Osteoarthritis-Related Pain Phenotyping (GO-PAIN) ERA-NET NEURON grant (to J.S.) and Pfizer ADVANCE 2020 grant (to J.S. and F.B.).

Author information

Authors and Affiliations

Authors

Contributions

M.-A.B., D.M., J.G., J.S., and F.B. researched data for the article and wrote the article. All authors contributed substantially to discussion of the content and/or edited the manuscript before submission.

Corresponding authors

Correspondence to David Moulin or Marie-Astrid Boutet.

Ethics declarations

Competing interests

F.B. received an institutional grant from TRB Chemedica and Pfizer and consulting fees from AstraZeneca, Boehringer Ingelheim, Bone Therapeutics, Cellprothera, Galapagos, Gilead, Grunenthal, GSK, Lilly, MerckSerono, MSD, Nordic Bioscience, Novartis, Pfizer, Roche, Sandoz, Sanofi, Servier, UCB, Peptinov, 4 P Pharma and 4Moving Biotech. J.S. reports personal fees from MSD, Pfizer, AbbVie, Fresenius Kabi, BMS, Lilly, Novartis, Galapagos, AstraZeneca, UCB, Grunenthal and Janssen and research grants from Pfizer and Schwa Medico. J.G. received consulting fees from BMS, Graftys, PKmed, HTL biotechnology, Cellprothera, GSK, Peptinov and CEVA.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Mary Goldring; Mohit Kapoor, who co-reviewed with Jason Rockel and Yusheng Li for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

A search of PubMed for original relevant and high-quality articles published between 2005 and 2024 (a few older and original studies are also cited in the text where relevant) that focus on the diversity and role of innate and adaptive immune cells in OA. Search terms included “OSTEOARTHRITIS”, “IMMUNE CELLS”, “IMMUNITY”, “MICROBIOTA” and “TREATMENT”, alone and in combination. All articles identified were English-language, full-text papers. We also searched the reference lists of identified articles for additional relevant papers.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moulin, D., Sellam, J., Berenbaum, F. et al. The role of the immune system in osteoarthritis: mechanisms, challenges and future directions. Nat Rev Rheumatol 21, 221–236 (2025). https://doi.org/10.1038/s41584-025-01223-y

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-025-01223-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing