Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The pathogenesis, clinical presentations and treatment of monogenic systemic vasculitis

Abstract

Many monogenic autoinflammatory diseases, including DADA2 (deficiency of adenosine deaminase 2), HA20 (haploinsufficiency of A20), SAVI (STING-associated vasculopathy with onset in infancy), COPA syndrome, LAVLI (LYN kinase-associated vasculopathy and liver fibrosis) and VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome, present predominantly with vasculitis and constitute a substantial subgroup of vasculitic conditions associated with a ‘probable aetiology’. The spectrum of monogenic vasculitis encompasses all sizes and types of blood vessel, ranging from large vessels to medium-size and small vessels, and from the arterial side to the venous side of the vasculature. Monogenic vasculitis typically starts early in life during infancy or childhood; VEXAS syndrome, which presents in late adulthood, is an exception. The activation of myeloid cells via inflammasome and nuclear factor-κB pathways, type I interferon-enhanced autoimmune mechanisms and/or dysregulated adaptive immune responses have an important role in the development of immune-mediated endothelial dysfunction and vascular damage. Genetic testing is essential for the diagnosis of underlying monogenic autoinflammatory diseases; however, the penetrance of genetic variants can vary. Increased awareness and recognition of distinctive clinical findings could facilitate earlier diagnosis and allow for more-targeted treatments.

Key points

  • Monogenic vasculitis usually starts during early childhood, whereas VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome typically develops in late adulthood.

  • Early recognition of distinctive clinical findings (such as early strokes) might aid diagnosis.

  • Genetic diagnosis is crucial, but variable penetrance of variants should be kept in mind when interpreting findings and during genetic counselling.

  • Activation of myeloid cells, type I interferon-enhanced autoimmune responses and endothelial dysfunction contribute to vascular damage.

  • Increased awareness of these rare diseases could aid earlier diagnosis and initiation of targeted treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spectrum of vascular involvement in monogenic vasculitis.

Similar content being viewed by others

References

  1. Zhou, Q. et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N. Engl. J. Med. 370, 911–920 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Navon Elkan, P. et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N. Engl. J. Med. 370, 921–931 (2014).

    Article  PubMed  Google Scholar 

  3. Zhou, Q. et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat. Genet. 48, 67–73 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Jesus, A. A. et al. Constitutively active Lyn kinase causes a cutaneous small vessel vasculitis and liver fibrosis syndrome. Nat. Commun. 14, 1502 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Beck, D. B. et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 383, 2628–2638 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abbara, S., Grateau, G., Ducharme-Benard, S., Saadoun, D. & Georgin-Lavialle, S. Association of vasculitis and familial mediterranean fever. Front. Immunol. 10, 763 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Balci-Peynircioglu, B. et al. Comorbidities in familial Mediterranean fever: analysis of 2000 genetically confirmed patients. Rheumatology 59, 1372–1380 (2020).

    Article  PubMed  Google Scholar 

  9. Seyahi, E., Ugurlu, S., Amikishiyev, S. & Gul, A. Behcet disease, familial Mediterranean fever and MEFV variations: more than just an association. Clin. Immunol. 251, 109630 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Ozdogan, H. et al. Vasculitis in familial Mediterranean fever. J. Rheumatol. 24, 323–327 (1997).

    CAS  PubMed  Google Scholar 

  11. Kahr, W. H. et al. Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease. Nat. Commun. 8, 14816 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuijpers, T. W. et al. Combined immunodeficiency with severe inflammation and allergy caused by ARPC1B deficiency. J. Allergy Clin. Immunol. 140, 273–277 e210 (2017).

    Article  PubMed  Google Scholar 

  13. Burleigh, A. et al. Genetic testing of Behcet’s disease using next-generation sequencing to identify monogenic mimics and HLA-B*51. Rheumatology 63, 3457–3470 (2023).

    Article  PubMed Central  Google Scholar 

  14. Kone-Paut, I., Sanchez, E., Le Quellec, A., Manna, R. & Touitou, I. Autoinflammatory gene mutations in Behcet’s disease. Ann. Rheum. Dis. 66, 832–834 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thors, V. S. et al. Periodic fever in MVK deficiency: a patient initially diagnosed with incomplete Kawasaki disease. Pediatrics 133, e461–e465 (2014).

    Article  PubMed  Google Scholar 

  16. De Pieri, C. et al. Different presentations of mevalonate kinase deficiency: a case series. Clin. Exp. Rheumatol. 33, 437–442 (2015).

    PubMed  Google Scholar 

  17. Kusne, Y. et al. Venous and arterial thrombosis in patients with VEXAS syndrome. Blood 143, 2190–2200 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Watanabe, R., Kiji, M. & Hashimoto, M. Vasculitis associated with VEXAS syndrome: a literature review. Front. Med. 9, 983939 (2022).

    Article  Google Scholar 

  19. Jennette, J. C. et al. 2012 revised International Chapel Hill Consensus Conference nomenclature of vasculitides. Arthritis Rheum. 65, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Ozen, S. et al. A monogenic disease with a variety of phenotypes: deficiency of adenosine deaminase 2. J. Rheumatol. 47, 117–125 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Meyts, I. & Aksentijevich, I. Deficiency of adenosine deaminase 2 (DADA2): updates on the phenotype, genetics, pathogenesis, and treatment. J. Clin. Immunol. 38, 569–578 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, P. Y. et al. Evaluation and management of deficiency of adenosine deaminase 2: an international consensus statement. JAMA Netw. Open 6, e2315894 (2023).

    Article  PubMed  Google Scholar 

  23. Kasap Cuceoglu, M. et al. Systematic review of childhood-onset polyarteritis nodosa and DADA2. Semin. Arthritis Rheum. 51, 559–564 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, P. Y., Aksentijevich, I. & Zhou, Q. Mechanisms of vascular inflammation in deficiency of adenosine deaminase 2 (DADA2). Semin. Immunopathol. 44, 269–280 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Schepp, J. et al. Screening of 181 patients with antibody deficiency for deficiency of adenosine deaminase 2 sheds new light on the disease in adulthood. Arthritis Rheumatol. 69, 1689–1700 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Signa, S. et al. Adenosine deaminase 2 deficiency (DADA2): a crosstalk between innate and adaptive immunity. Front. Immunol. 13, 935957 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Belot, A. et al. Mutations in CECR1 associated with a neutrophil signature in peripheral blood. Pediatr. Rheumatol. Online J. 12, 44 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Carmona-Rivera, C. et al. Deficiency of adenosine deaminase 2 triggers adenosine-mediated NETosis and TNF production in patients with DADA2. Blood 134, 395–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brix, A. et al. ADA2 regulates inflammation and hematopoietic stem cell emergence via the A(2b)R pathway in zebrafish. Commun. Biol. 7, 615 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aksentijevich, I., Sampaio Moura, N. & Barron, K. Adenosine deaminase 2 deficiency. GeneReviews https://www.ncbi.nlm.nih.gov/books/NBK544951/ (2019).

  31. Grossi, A. et al. ADA2 deficiency due to a novel structural variation in 22q11.1. Clin. Genet. 95, 732–733 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Jee, H. et al. Comprehensive analysis of ADA2 genetic variants and estimation of carrier frequency driven by a function-based approach. J. Allergy Clin. Immunol. 149, 379–387 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, P. Y. et al. Genotype and functional correlates of disease phenotype in deficiency of adenosine deaminase 2 (DADA2). J. Allergy Clin. Immunol. 145, 1664–1672 e1610 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cooray, S. et al. Anti-tumour necrosis factor treatment for the prevention of ischaemic events in patients with deficiency of adenosine deaminase 2 (DADA2). Rheumatology 60, 4373–4378 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Ombrello, A. K. et al. Treatment strategies for deficiency of adenosine deaminase 2. N. Engl. J. Med. 380, 1582–1584 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zoccolillo, M. et al. Lentiviral correction of enzymatic activity restrains macrophage inflammation in adenosine deaminase 2 deficiency. Blood Adv. 5, 3174–3187 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aeschlimann, F. A. et al. A20 haploinsufficiency (HA20): clinical phenotypes and disease course of patients with a newly recognised NF-kB-mediated autoinflammatory disease. Ann. Rheum. Dis. 77, 728–735 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Karri, U., Harasimowicz, M., Carpio Tumba, M. & Schwartz, D. M. The complexity of being a20: from biological functions to genetic associations. J. Clin. Immunol. 44, 76 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Elhani, I. et al. A20 haploinsufficiency: a systematic review of 177 cases. J. Invest. Dermatol. 144, 1282–1294 e1288 (2024).

    Article  CAS  PubMed  Google Scholar 

  40. Gans, M. D., Wang, H., Moura, N. S., Aksentijevich, I. & Rubinstein, A. A20 haploinsufficiency presenting with a combined immunodeficiency. J. Clin. Immunol. 40, 1041–1044 (2020).

    Article  PubMed  Google Scholar 

  41. Bettiol, A. et al. Vascular Behcet syndrome: from pathogenesis to treatment. Nat. Rev. Rheumatol. 19, 111–126 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Niwano, T. et al. An adult case of suspected A20 haploinsufficiency mimicking polyarteritis nodosa. Rheumatology 61, e337–e340 (2022).

    Article  PubMed  Google Scholar 

  43. Kadowaki, T., Kadowaki, S. & Ohnishi, H. A20 haploinsufficiency in East Asia. Front. Immunol. 12, 780689 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma, A. & Malynn, B. A. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat. Rev. Immunol. 12, 774–785 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martens, A. & van Loo, G. A20 at the crossroads of cell death, inflammation, and autoimmunity. Cold Spring Harb. Perspect. Biol. 12, a036418 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martens, A. et al. Two distinct ubiquitin-binding motifs in A20 mediate its anti-inflammatory and cell-protective activities. Nat. Immunol. 21, 381–387 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Razani, B. et al. Non-catalytic ubiquitin binding by A20 prevents psoriatic arthritis-like disease and inflammation. Nat. Immunol. 21, 422–433 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Duncan, C. J. A. et al. Early-onset autoimmune disease due to a heterozygous loss-of-function mutation in TNFAIP3 (A20). Ann. Rheum. Dis. 77, 783–786 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Lin, B. & Goldbach-Mansky, R. Pathogenic insights from genetic causes of autoinflammatory inflammasomopathies and interferonopathies. J. Allergy Clin. Immunol. 149, 819–832 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Hofer, M. J. et al. The prototypical interferonopathy: Aicardi-Goutieres syndrome from bedside to bench. Immunol. Rev. 327, 83–99 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Jeremiah, N. et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J. Clin. Invest. 124, 5516–5520 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fremond, M. L. & Crow, Y. J. STING-mediated lung inflammation and beyond. J. Clin. Immunol. 41, 501–514 (2021).

    Article  PubMed  Google Scholar 

  53. Clarke, S. L. N. et al. Type 1 interferonopathy presenting as juvenile idiopathic arthritis with interstitial lung disease: report of a new phenotype. Pediatr. Rheumatol. Online J. 18, 37 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Anjani, G. et al. Deforming polyarthritis in a North Indian family-clinical expansion of STING-associated vasculopathy with onset in infancy (SAVI). J. Clin. Immunol. 41, 209–211 (2021).

    Article  PubMed  Google Scholar 

  55. Staels, F. et al. Adult-onset ANCA-associated vasculitis in SAVI: extension of the phenotypic spectrum, case report and review of the literature. Front. Immunol. 11, 575219 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Picard, C. et al. Severe pulmonary fibrosis as the first manifestation of interferonopathy (TMEM173 Mutation). Chest 150, e65–e71 (2016).

    Article  PubMed  Google Scholar 

  57. Konig, N. et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann. Rheum. Dis. 76, 468–472 (2017).

    Article  PubMed  Google Scholar 

  58. Keskitalo, S. et al. Novel TMEM173 mutation and the role of disease modifying alleles. Front. Immunol. 10, 2770 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, J., An, S. & Du, Z. Familial interstitial lung disease caused by mutation of the STING1 gene. Front. Pediatr. 8, 543 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lin, B. et al. A novel STING1 variant causes a recessive form of STING-associated vasculopathy with onset in infancy (SAVI). J. Allergy Clin. Immunol. 146, 1204–1208 e1206 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wan, R. et al. Phenotypic spectrum in recessive STING-associated vasculopathy with onset in infancy: four novel cases and analysis of previously reported cases. Front. Immunol. 13, 1029423 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alghamdi, M. A. et al. A novel biallelic STING1 gene variant causing SAVI in two siblings. Front. Immunol. 11, 599564 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Watkin, L. B. et al. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat. Genet. 47, 654–660 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lepelley, A. et al. Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling. J. Exp. Med. 217, e20200600 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Delafontaine, S. et al. Heterozygous mutations in the C-terminal domain of COPA underlie a complex autoin fl ammatory syndrome. J. Clin. Invest. 134, e163604 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Deng, Z. et al. A defect in COPI-mediated transport of STING causes immune dysregulation in COPA syndrome. J. Exp. Med. 217, e20201045 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tang, X. et al. STING-associated vasculopathy with onset in infancy in three children with new clinical aspect and unsatisfactory therapeutic responses to tofacitinib. J. Clin. Immunol. 40, 114–122 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Fremond, M. L. et al. Overview of STING-associated vasculopathy with onset in infancy (SAVI) among 21 patients. J. Allergy Clin. Immunol. Pract. 9, 803–818 e811 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Melki, I. et al. Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling. J. Allergy Clin. Immunol. 140, 543–552 e545 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Ma, M., Mazumder, S., Kwak, H., Adams, M. & Gregory, M. Case report: acute thrombotic microangiopathy in a patient with sting-associated vasculopathy with onset in infancy (SAVI). J. Clin. Immunol. 40, 1111–1115 (2020).

    Article  PubMed  Google Scholar 

  71. Abid, Q. et al. APOL1-associated collapsing focal segmental glomerulosclerosis in a patient with stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI). Am. J. Kidney Dis. 75, 287–290 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Gurnari, C. et al. Allogeneic hematopoietic cell transplantation for VEXAS syndrome: results of a multicenter study of the EBMT. Blood Adv. 8, 1444–1448 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Simchoni, N., Vogel, T. P. & Shum, A. K. COPA syndrome from diagnosis to treatment: a clinician’s guide. Rheum. Dis. Clin. North Am. 49, 789–804 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zheng, Y. et al. COPA syndrome caused by a novel p.Arg227Cys COPA gene variant. Mol. Genet. Genom. Med. 12, e2309 (2024).

    Article  CAS  Google Scholar 

  75. Yamazaki-Nakashimada, M. A. et al. Systemic autoimmunity in a patient with CANDLE syndrome. J. Investig. Allergol. Clin. Immunol. 29, 75–76 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Goldbach-Mansky, R., Alehashemi, S. & de Jesus, A. A. Emerging concepts and treatments in autoinflammatory interferonopathies and monogenic systemic lupus erythematosus. Nat. Rev. Rheumatol. 21, 22–45 (2025).

    Article  PubMed  Google Scholar 

  77. David, C. & Fremond, M. L. Lung inflammation in STING-associated vasculopathy with onset in infancy (SAVI). Cells 11, 318 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lodi, L. et al. Type I interferon-related kidney disorders. Kidney Int. 101, 1142–1159 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Sanchez, G. A. M. et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J. Clin. Invest. 128, 3041–3052 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mansilla-Polo, M. et al. Successful treatment of stimulator of interferon genes-associated vasculopathy of infantile onset SAVI syndrome with anifrolumab. JAMA Dermatol. 160, 899–901 (2024).

    Article  PubMed  Google Scholar 

  81. Kretzschmar, G. et al. Normalized interferon signatures and clinical improvements by IFNAR1 blocking antibody (Anifrolumab) in patients with type I interferonopathies. J. Clin. Immunol. 45, 31 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cetin Gedik, K. et al. The 2021 European Alliance of Associations for Rheumatology/American college of rheumatology points to consider for diagnosis and management of autoinflammatory type I interferonopathies: CANDLE/PRAAS, SAVI, and AGS. Arthritis Rheumatol. 74, 735–751 (2022).

    Article  PubMed  Google Scholar 

  83. Matucci-Cerinic, C. et al. Baricitinib treatment in children with COPA syndrome. J. Allergy Clin. Immunol. Pract. 12, 2201–2204 (2024).

    Article  CAS  PubMed  Google Scholar 

  84. Martinez, C. et al. HSCT corrects primary immunodeficiency and immune dysregulation in patients with POMP-related autoinflammatory disease. Blood 138, 1896–1901 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Verhoeven, D. et al. Hematopoietic stem cell transplantation in a patient with proteasome-associated autoinflammatory syndrome (PRAAS). J. Allergy Clin. Immunol. 149, 1120–1127 e1128 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Louvrier, C. et al. De novo gain-of-function variations in LYN associated with an early-onset systemic autoinflammatory disorder. Arthritis Rheumatol. 75, 468–474 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Kanderova, V. et al. Early-onset pulmonary and cutaneous vasculitis driven by constitutively active SRC-family kinase HCK. J. Allergy Clin. Immunol. 149, 1464–1472 e1463 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Ingley, E. Src family kinases: regulation of their activities, levels and identification of new pathways. Biochim. Biophys. Acta 1784, 56–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Keating, G. M. Dasatinib: a review in chronic myeloid leukaemia and Ph+ acute lymphoblastic leukaemia. Drugs 77, 85–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Masters, S. L., Simon, A., Aksentijevich, I. & Kastner, D. L. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol. 27, 621–668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Barzilai, A. et al. Erysipelas-like erythema of familial Mediterranean fever: clinicopathologic correlation. J. Am. Acad. Dermatol. 42, 791–795 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Dogan, C. S. et al. Prevalence and significance of the MEFV gene mutations in childhood Henoch-Schonlein purpura without FMF symptoms. Rheumatol. Int. 33, 377–380 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Abbara, S. et al. Vasculitis and familial Mediterranean fever: description of 22 French adults from the juvenile inflammatory rheumatism cohort. Front. Med. 9, 1000167 (2022).

    Article  Google Scholar 

  94. Ben-Chetrit, E. & Yazici, H. Non-thrombocytopenic purpura in familial Mediterranean fever-comorbidity with Henoch–Schonlein purpura or an additional rare manifestation of familial Mediterranean fever? Rheumatology 55, 1153–1158 (2016).

    Article  PubMed  Google Scholar 

  95. Ozen, S. et al. Polyarteritis nodosa in patients with familial Mediterranean fever (FMF): a concomitant disease or a feature of FMF? Semin. Arthritis Rheum. 30, 281–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Omoyinmi, E., Rowczenio, D., Sebire, N., Brogan, P. A. & Eleftheriou, D. Vasculitis in a patient with mevalonate kinase deficiency (MKD): a case report. Pediatr. Rheumatol. Online J. 19, 161 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhong, L. et al. Phenotype of Takayasu-like vasculitis and cardiopathy in patients with Blau syndrome. Clin. Rheumatol. 43, 1171–1181 (2024).

    Article  PubMed  Google Scholar 

  98. Khubchandani, R. P. et al. Blau arteritis resembling Takayasu disease with a novel NOD2 mutation. J. Rheumatol. 39, 1888–1892 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. An, J. W. et al. Case report: novel variants in RELA associated with familial Behcet’s-like disease. Front. Immunol. 14, 1127085 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Moriya, K. et al. Human RELA dominant-negative mutations underlie type I interferonopathy with autoinflammation and autoimmunity. J. Exp. Med. 220, e20212276 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Papa, R., Penco, F., Volpi, S. & Gattorno, M. Actin remodeling defects leading to autoinflammation and immune dysregulation. Front. Immunol. 11, 604206 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Vasquez-Echeverri, E. et al. Is your kid actin out? A series of six patients with inherited actin-related protein 2/3 complex subunit 1B deficiency and review of the literature. J. Allergy Clin. Immunol. Pract. 11, 1261–1280 e1268 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Giardino, S. et al. Hematopoietic stem cell transplantation in ARPC1B deficiency. J. Clin. Immunol. 42, 1535–1544 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Volpi, S. et al. A combined immunodeficiency with severe infections, inflammation, and allergy caused by ARPC1B deficiency. J. Allergy Clin. Immunol. 143, 2296–2299 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Taietti, I., Catamero, F., Lodi, L., Giovannini, M. & Castagnoli, R. Inborn errors of immunity with atopic phenotypes in the allergy and immunology clinic: a practical review. Curr. Opin. Allergy Clin. Immunol. https://doi.org/10.1097/ACI.0000000000001059 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Grayson, P. C., Patel, B. A. & Young, N. S. VEXAS syndrome. Blood 137, 3591–3594 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Grayson, P. C., Beck, D. B., Ferrada, M. A., Nigrovic, P. A. & Kastner, D. L. VEXAS syndrome and disease taxonomy in rheumatology. Arthritis Rheumatol. 74, 1733–1736 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Georgin-Lavialle, S. et al. Further characterization of clinical and laboratory features in VEXAS syndrome: large-scale analysis of a multicentre case series of 116 French patients. Br. J. Dermatol. 186, 564–574 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Ferrada, M. A. et al. Somatic mutations in UBA1 define a distinct subset of relapsing polychondritis patients with VEXAS. Arthritis Rheumatol. 73, 1886–1895 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Obiorah, I. E. et al. Benign and malignant hematologic manifestations in patients with VEXAS syndrome due to somatic mutations in UBA1. Blood Adv. 5, 3203–3215 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Borie, R. et al. Pleuropulmonary manifestations of vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome. Chest 163, 575–585 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Collins, J. C. et al. Shared and distinct mechanisms of UBA1 inactivation across different diseases. EMBO J. 43, 1919–1946 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ferrada, M. A. et al. Translation of cytoplasmic UBA1 contributes to VEXAS syndrome pathogenesis. Blood 140, 1496–1506 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wu, Z. et al. Early activation of inflammatory pathways in UBA1-mutated hematopoietic stem and progenitor cells in VEXAS. Cell Rep. Med. 4, 101160 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Beck, D. B. et al. Estimated prevalence and clinical manifestations of UBA1 variants associated with VEXAS syndrome in a clinical population. JAMA 329, 318–324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gutierrez-Rodrigues, F. et al. Clonal haematopoiesis across the age spectrum of vasculitis patients with Takayasu’s arteritis, ANCA-associated vasculitis and giant cell arteritis. Ann. Rheum. Dis. 83, 508–517 (2024).

    Article  CAS  PubMed  Google Scholar 

  117. Robinette, M. L. et al. Association of somatic TET2 mutations with giant cell arteritis. Arthritis Rheumatol. 76, 438–443 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gutierrez-Rodrigues, F. et al. Spectrum of clonal hematopoiesis in VEXAS syndrome. Blood 142, 244–259 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Koster, M. J. et al. VEXAS syndrome: clinical, hematologic features and a practical approach to diagnosis and management. Am. J. Hematol. 99, 284–299 (2024).

    Article  CAS  PubMed  Google Scholar 

  120. Hadjadj, J. et al. Efficacy and safety of targeted therapies in VEXAS syndrome: retrospective study from the FRENVEX. Ann. Rheum. Dis. 83, 1358–1367 (2024).

    Article  CAS  PubMed  Google Scholar 

  121. Zavialov, A. V., Yu, X., Spillmann, D., Lauvau, G. & Zavialov, A. V. Structural basis for the growth factor activity of human adenosine deaminase ADA2. J. Biol. Chem. 285, 12367–12377 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wouters, M. et al. Human ADA2 deficiency: ten years later. Curr. Allergy Asthma Rep. 24, 477–484 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chen, L. et al. Comparison of disease phenotypes and mechanistic insight on causal variants in patients with DADA2. J. Allergy Clin. Immunol. 152, 771–782 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Deuitch, N. T. et al. TNF inhibition in vasculitis management in adenosine deaminase 2 deficiency (DADA2). J. Allergy Clin. Immunol. 149, 1812–1816 e1816 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Lee, P. Y. et al. Adenosine deaminase 2 as a biomarker of macrophage activation syndrome in systemic juvenile idiopathic arthritis. Ann. Rheum. Dis. 79, 225–231 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Schnappauf, O. et al. Sequence-based screening of patients with idiopathic polyarteritis nodosa, granulomatosis with polyangiitis, and microscopic polyangiitis for deleterious genetic variants in ADA2. Arthritis Rheumatol. 73, 512–519 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Beck, D. B., Werner, A., Kastner, D. L. & Aksentijevich, I. Disorders of ubiquitylation: unchained inflammation. Nat. Rev. Rheumatol. 18, 435–447 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shembade, N., Ma, A. & Harhaj, E. W. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327, 1135–1139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Vande Walle, L. et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512, 69–73 (2014).

    Article  PubMed  Google Scholar 

  130. Adrianto, I. et al. Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat. Genet. 43, 253–258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Catrysse, L., Vereecke, L., Beyaert, R. & van Loo, G. A20 in inflammation and autoimmunity. Trends Immunol. 35, 22–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Kosmider, O. et al. VEXAS syndrome is characterized by inflammasome activation and monocyte dysregulation. Nat. Commun. 15, 910 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Balka, K. R. et al. TBK1 and IKKε act redundantly to mediate STING-induced NF-κB responses in myeloid cells. Cell Rep. 31, 107492 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Siedel, H., Roers, A., Rosen-Wolff, A. & Luksch, H. Type I interferon-independent T cell impairment in a Tmem173 N153S/WT mouse model of STING associated vasculopathy with onset in infancy (SAVI). Clin. Immunol. 216, 108466 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Deng, Z. et al. A defect in thymic tolerance causes T cell-mediated autoimmunity in a murine model of COPA syndrome. J. Immunol. 204, 2360–2373 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Gao, K. M. et al. Endothelial cell expression of a STING gain-of-function mutation initiates pulmonary lymphocytic infiltration. Cell Rep. 43, 114114 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Aksentijevich, I. & Schnappauf, O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat. Rev. Rheumatol. 17, 405–425 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Muratore, F. et al. VEXAS syndrome: a case series from a single-center cohort of italian patients with vasculitis. Arthritis Rheumatol. 74, 665–670 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hashem, H. et al. Hematopoietic cell transplantation cures adenosine deaminase 2 deficiency: report on 30 patients. J. Clin. Immunol. 41, 1633–1647 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ahmet Gül.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Pui Lee, Raju Khubchandani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gül, A., Aksentijevich, I., Brogan, P. et al. The pathogenesis, clinical presentations and treatment of monogenic systemic vasculitis. Nat Rev Rheumatol 21, 414–425 (2025). https://doi.org/10.1038/s41584-025-01250-9

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-025-01250-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing