Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insights into the pathogenesis of childhood-onset SLE in the past decade

Abstract

Childhood-onset systemic lupus erythematosus (SLE) is associated with more active disease trajectories, increased cardiovascular risk, earlier development of organ damage (which commonly affects the kidney, central nervous and musculoskeletal systems) and increased use of glucocorticoids and immunosuppressive treatments than adult-onset SLE. However, the understanding of immunopathogenic mechanisms in childhood-onset SLE is far less established than in adult-onset disease. Technological advances over the past decade have accelerated progress in understanding the immune, genetic, epigenetic, metabolic and proteomic profiles of childhood-onset SLE, and have also established the mechanistic roles of immune dysregulation, interferon signalling, biological sex, gender and ethnicity in shaping disease heterogeneity. These insights have led to the elucidation of the mechanisms that drive the increased severity of childhood-onset SLE and point towards new pathways for personalized therapeutic approaches aimed at improving long-term outcomes and quality of life for patients.

Key points

  • Childhood-onset systemic lupus erythematosus (SLE) is more severe than adult-onset SLE, with earlier disease onset, more organ involvement, and higher morbidity and mortality.

  • Genetic and epigenetic studies in childhood-onset SLE have revealed age-enriched mechanisms, including monogenic and polygenic contributions, with heightened type I interferon signalling and impaired apoptotic body clearance having central roles.

  • Immune profiling technologies have enabled unique immune cell signatures and organ-specific inflammation patterns to be uncovered in childhood-onset SLE, advancing understanding of disease mechanisms and heterogeneity to guide future precision medicine strategies.

  • Novel biomarkers, notably urinary, lipid and neuroinflammatory markers, have shown promise for early detection and monitoring of lupus nephritis, cardiovascular disease and central nervous system involvement in childhood-onset SLE.

  • Treatments for childhood-onset SLE increasingly include biologic drugs and targeted therapies, although access remains limited; ongoing trials and approval of paediatric-specific treatments and guidelines are essential for therapeutic equity.

  • Future research must prioritize inclusive, multi-ethnic studies, age-specific diagnostic consideration and expanded paediatric clinical trial infrastructure to enable personalized, equitable care for children with childhood-onset SLE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Blood and tissue immune phenotypes in childhood-onset SLE.
Fig. 2: Mechanisms of exacerbated type I IFN signalling in childhood-onset SLE pathogenesis.
Fig. 3: Major advances in childhood-onset SLE in the past decade.

Similar content being viewed by others

References

  1. Hiraki, L. T. et al. Prevalence, incidence, and demographics of systemic lupus erythematosus and lupus nephritis from 2000 to 2004 among children in the US Medicaid beneficiary population. Arthritis Rheum. 64, 2669–2676 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barber, M. R. W. et al. Global epidemiology of systemic lupus erythematosus. Nat. Rev. Rheumatol. 17, 515–532 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Valenzuela-Almada, M. O. et al. Epidemiology of childhood-onset systemic lupus erythematosus: a population-based study. Arthritis Care Res. 74, 728–732 (2022).

    Article  Google Scholar 

  4. Ambrose, N. et al. Differences in disease phenotype and severity in SLE across age groups. Lupus 25, 1542–1550 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Tucker, L. B. et al. Adolescent onset of lupus results in more aggressive disease and worse outcomes: results of a nested matched case-control study within LUMINA, a multiethnic US cohort (LUMINA LVII). Lupus 17, 314–322 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hersh, A. O. et al. Differences in long-term disease activity and treatment of adult patients with childhood- and adult-onset systemic lupus erythematosus. Arthritis Rheum. 61, 13–20 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Groot, N. et al. European evidence-based recommendations for diagnosis and treatment of childhood-onset systemic lupus erythematosus: the SHARE initiative. Ann. Rheum. Dis. 76, 1788–1796 (2017).

    Article  PubMed  CAS  Google Scholar 

  8. Lanças, S. H. S. et al. A Brazilian single-centre series comparision of childhood, adult and late onset systemic lupus erythematosus. Lupus 34, 1110–1118 (2025).

    Article  PubMed  Google Scholar 

  9. Manzi, S. et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham Study. Am. J. Epidemiol. 145, 408–415 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. Hersh, A. O. et al. Childhood-onset disease as a predictor of mortality in an adult cohort of patients with systemic lupus erythematosus. Arthritis Care Res. 62, 1152–1159 (2010).

    Article  Google Scholar 

  11. Brunner, H. I. et al. Treatment patterns in paediatric and adult patients with SLE: a retrospective claims database study in the USA. Lupus Sci. Med. 10, e000817 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aljaberi, N. et al. Performance of the new 2019 European League Against Rheumatism/American College of Rheumatology Classification criteria for systemic lupus erythematosus in children and young adults. Arthritis Care Res. 73, 580–585 (2021).

    Article  Google Scholar 

  13. Brunner, H. I. et al. Disease outcomes and ovarian function of childhood-onset systemic lupus erythematosus. Lupus 15, 198–206 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. Groot, N. et al. Long-term clinical outcomes in a cohort of adults with childhood-onset systemic lupus erythematosus. Arthritis Rheumatol. 71, 290–301 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Smith, E. M. D. et al. Attainment of low disease activity and remission targets reduces the risk of severe flare and new damage in childhood Lupus. Rheumatology 61, 3378–3389 (2022).

    Article  PubMed  Google Scholar 

  16. Zen, M. et al. Lupus low disease activity state is associated with a decrease in damage progression in Caucasian patients with SLE, but overlaps with remission. Ann. Rheum. Dis. 77, 104–110 (2018).

    Article  PubMed  CAS  Google Scholar 

  17. Medina-Quiñones, C. V. et al. Analysis of complete remission in systemic lupus erythematosus patients over a 32-year period. Arthritis Care Res. 68, 981–987 (2016).

    Article  Google Scholar 

  18. Golder, V. et al. Frequency and predictors of the lupus low disease activity state in a multi-national and multi-ethnic cohort. Arthritis Res. Ther. 18, 260 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Choi, M. Y. & Ma, C. Making a big impact with small datasets using machine-learning approaches. Lancet Rheumatol. 2, e451–e452 (2020).

    Article  PubMed  Google Scholar 

  20. Trindade, V. C. et al. An update on the management of childhood-onset systemic lupus erythematosus. Paediatr. Drugs 23, 331–347 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ghodke-Puranik, Y., Olferiev, M. & Crow, M. K. Systemic lupus erythematosus genetics: insights into pathogenesis and implications for therapy. Nat. Rev. Rheumatol. 20, 635–648 (2024).

    Article  PubMed  Google Scholar 

  22. Taylor, K. E. et al. Risk alleles for systemic lupus erythematosus in a large case-control collection and associations with clinical subphenotypes. PLoS Genet. 7, e1001311 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wang, Q. et al. High-throughput identification of functional regulatory SNPs in systemic lupus erythematosus. Nat. Commun. 15, 6804 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Charras, A. et al. Genetic and epigenetic factors shape phenotypes and outcomes in systemic lupus erythematosus — focus on juvenile-onset systemic lupus erythematosus. Curr. Opin. Rheumatol. 37, 149–163 (2025).

    Article  PubMed  CAS  Google Scholar 

  25. Chen, Y. J. et al. Polygenic risk score predicts earlier-onset adult systemic lupus erythematosus and first-year renal diseases in a Taiwanese cohort. RMD Open 10, e003293 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Webb, R. et al. Early disease onset is predicted by a higher genetic risk for lupus and is associated with a more severe phenotype in lupus patients. Ann. Rheum. Dis. 70, 151–156 (2011).

    Article  PubMed  Google Scholar 

  27. Webber, D. et al. Association of systemic lupus erythematosus (SLE) genetic susceptibility loci with lupus nephritis in childhood-onset and adult-onset SLE. Rheumatology 59, 90–98 (2020).

    Article  PubMed  Google Scholar 

  28. Sinicato, N. A. et al. Familial aggregation of childhood- and adulthood-onset systemic lupus erythematosus. Arthritis Care Res. 72, 1147–1151 (2020).

    Article  Google Scholar 

  29. Renaudineau, Y. et al. Type I interferon associated epistasis may contribute to early disease-onset and high disease activity in juvenile-onset lupus. Clin. Immunol. 262, 110194 (2024).

    Article  PubMed  CAS  Google Scholar 

  30. Renaudineau, Y. et al. Common Toll-like receptor 7 variants define disease risk and phenotypes in juvenile-onset systemic lupus erythematosus. J. Autoimmun. 155, 103451 (2025).

    Article  PubMed  CAS  Google Scholar 

  31. Natoli, V. et al. Genetic variability associates with ancestry, age at disease onset, organ involvement and disease severity in juvenile-onset systemic lupus erythematosus. Clin. Immunol. 279, 110540 (2025).

    Article  PubMed  CAS  Google Scholar 

  32. Carlomagno, R. et al. Genetics of childhood-onset systemic lupus erythematosus. Arthritis Rheumatol. 77, 1524–1532 (2025).

    Article  PubMed  Google Scholar 

  33. Belot, A. et al. Contribution of rare and predicted pathogenic gene variants to childhood-onset lupus: a large, genetic panel analysis of British and French cohorts. Lancet Rheumatol. 2, e99–e109 (2020).

    Article  PubMed  CAS  Google Scholar 

  34. Belot, A. & Cimaz, R. Monogenic forms of systemic lupus erythematosus: new insights into SLE pathogenesis. Pediatr. Rheumatol. Online J. 10, 21 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Charras, A. et al. Panel sequencing links rare, likely damaging gene variants with distinct clinical phenotypes and outcomes in juvenile-onset SLE. Rheumatology 62, SI210–SI225 (2023).

    Article  PubMed  Google Scholar 

  36. Lintner, K. E. et al. Early components of the complement classical activation pathway in human systemic autoimmune diseases. Front. Immunol. 7, 36 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brown, G. J. et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 605, 349–356 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. David, C. et al. Gain-of-function human UNC93B1 variants cause systemic lupus erythematosus and chilblain lupus. J. Exp. Med. 221, e20232066 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Al-Azab, M. et al. Genetic variants in UNC93B1 predispose to childhood-onset systemic lupus erythematosus. Nat. Immunol. 25, 969–980 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Xie, C. et al. De novo PACSIN1 gene variant found in childhood lupus and a role for PACSIN1/TRAF4 complex in toll-like receptor 7 activation. Arthritis Rheumatol. 75, 1058–1071 (2023).

    Article  PubMed  CAS  Google Scholar 

  41. Sestan, M. et al. The role of genetic risk factors in pathogenesis of childhood-onset systemic lupus erythematosus. Curr. Issues Mol. Biol. 45, 5981–6002 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tusseau, M. et al. DNASE1L3 deficiency, new phenotypes, and evidence for a transient type I IFN signaling. J. Clin. Immunol. 42, 1310–1320 (2022).

    Article  PubMed  CAS  Google Scholar 

  43. Sisirak, V. et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166, 88–101 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Picard, C. et al. Anti-C1q autoantibodies as markers of renal involvement in childhood-onset systemic lupus erythematosus. Pediatr. Nephrol. 32, 1537–1545 (2017).

    Article  PubMed  Google Scholar 

  45. Hartl, J. et al. Autoantibody-mediated impairment of DNASE1L3 activity in sporadic systemic lupus erythematosus. J. Exp. Med. 218, e20201138 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Jeanpierre, M. et al. Haploinsufficiency in PTPN2 leads to early-onset systemic autoimmunity from Evans syndrome to lupus. J. Exp. Med. 221, e20232337 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hadjadj, J. et al. Early-onset autoimmunity associated with SOCS1 haploinsufficiency. Nat. Commun. 11, 5341 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wang, Y. et al. Phenotypic characterization of patients with activated PI3Kδ syndrome 1 presenting with features of systemic lupus erythematosus. Genes. Dis. 8, 907–917 (2021).

    Article  PubMed  CAS  Google Scholar 

  49. Thuner, J., Cognard, J. & Belot, A. How to treat monogenic SLE? Best. Pract. Res. Clin. Rheumatol. 38, 101962 (2024).

    Article  PubMed  Google Scholar 

  50. Belot, A. et al. Protein kinase cδ deficiency causes Mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum. 65, 2161–2171 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Misztal, M. C. et al. Genome-wide sequencing identified rare genetic variants for childhood-onset monogenic lupus. J. Rheumatol. 50, 671–675 (2023).

    Article  PubMed  Google Scholar 

  52. Lewandowski, L. et al. Next generation sequencing analysis reveals complex genetic architecture of childhood-onset systemic lupus erythematosus. Lupus Sci. Med. 12, e001475 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Belot, A. et al. How (ultra-)rare gene variants improve our understanding of more common autoimmune and inflammatory diseases. ACR Open. Rheumatol. 7, e70003 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Keshavarz-Fathi, M. et al. DNA methylation of CD70 promoter in juvenile systemic lupus erythematosus. Fetal Pediatr. Pathol. 41, 58–67 (2022).

    Article  PubMed  CAS  Google Scholar 

  55. Yeung, K. S. et al. Cell lineage-specific genome-wide DNA methylation analysis of patients with paediatric-onset systemic lupus erythematosus. Epigenetics 14, 341–351 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hanaei, S. et al. The status of FOXP3 gene methylation in pediatric systemic lupus erythematosus. Allergol. Immunopathol. 48, 332–338 (2020).

    Article  CAS  Google Scholar 

  57. Keshavarz-Fathi, M. et al. Aberrant DNA methylation of the promoters of JAK2 and SOCS3 in juvenile systemic lupus erythematosus. Eur. Cytokine Netw. 32, 48–54 (2021).

    Article  CAS  Google Scholar 

  58. Wang, J. et al. DNA methylation of IFI44L as a potential blood biomarker for childhood-onset systemic lupus erythematosus. Pediatr. Res. 96, 494–501 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Narendra, R. et al. Epigenetic attenuation of interferon signaling is associated with aging-related improvements in systemic lupus erythematosus. Sci. Transl. Med. 17, eadt5550 (2025).

    Article  PubMed  CAS  Google Scholar 

  60. Rees, F. et al. The incidence and prevalence of systemic lupus erythematosus in the UK, 1999-2012. Ann. Rheum. Dis. 75, 136–141 (2016).

    Article  PubMed  Google Scholar 

  61. Hiraki, L. T. et al. Ethnic differences in pediatric systemic lupus erythematosus. J. Rheumatol. 36, 2539–2546 (2009).

    Article  PubMed  Google Scholar 

  62. Massias, J. S. et al. Clinical and laboratory phenotypes in juvenile-onset systemic lupus erythematosus across ethnicities in the UK. Lupus 30, 597–607 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Levy, D. M. et al. Influence of ethnicity on childhood-onset systemic lupus erythematosus: results from a multiethnic multicenter Canadian cohort. Arthritis Care Res. 65, 152–160 (2013).

    Article  Google Scholar 

  64. Demkova, K., Morris, D. L. & Vyse, T. J. Genetics of SLE: does this explain susceptibility and severity across racial groups? Rheumatology 62, i15–i21 (2023).

    Article  PubMed  Google Scholar 

  65. Arnaud, L. et al. Burden of systemic lupus erythematosus in clinical practice: baseline data from the SLE Prospective Observational Cohort Study (SPOCS) by interferon gene signature. Lupus Sci. Med. 10, e001032 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Robinson, G. A. et al. Editorial: sex bias in autoimmunity: from animal models to clinical research and applications. Front. Med. 9, 1112966 (2022).

    Article  Google Scholar 

  67. Robinson, G. A. et al. Sex differences in lipid metabolism: implications for systemic lupus erythematosus and cardiovascular disease risk. Front. Med. 9, 914016 (2022).

    Article  Google Scholar 

  68. Peckham, H. et al. Gender-diverse inclusion in immunological research: benefits to science and health. Front. Med. 9, 909789 (2022).

    Article  Google Scholar 

  69. Robinson, G. A. et al. Investigating sex differences in T regulatory cells from cisgender and transgender healthy individuals and patients with autoimmune inflammatory disease: a cross-sectional study. Lancet Rheumatol. 4, e710–e724 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Peckham, H. et al. Estrogen influences class-switched memory B cell frequency only in humans with two X chromosomes. J. Exp. Med. 222, e20241253 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Webb, K. et al. Sex and pubertal differences in the type 1 interferon pathway associate with both X chromosome number and serum sex hormone concentration. Front. Immunol. 9, 3167 (2018).

    Article  PubMed  CAS  Google Scholar 

  72. Lakshmikanth, T. et al. Immune system adaptation during gender-affirming testosterone treatment. Nature 633, 155–164 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Renau, A. I. & Isenberg, D. A. Male versus female lupus: a comparison of ethnicity, clinical features, serology and outcome over a 30 year period. Lupus 21, 1041–1048 (2012).

    Article  PubMed  CAS  Google Scholar 

  74. Vieira, A. A. et al. Female-bias in systemic lupus erythematosus: how much is the X chromosome to blame? Biol. Sex. Differ. 15, 76 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Syrett, C. M. & Anguera, M. C. When the balance is broken: X-linked gene dosage from two X chromosomes and female-biased autoimmunity. J. Leukoc. Biol. 106, 919–932 (2019).

    Article  PubMed  CAS  Google Scholar 

  76. Liu, K. et al. X chromosome dose and sex bias in autoimmune diseases: increased prevalence of 47,XXX in systemic lupus erythematosus and Sjögren’s syndrome. Arthritis Rheumatol. 68, 1290–1300 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Crawford, J. D. et al. The XIST lncRNA is a sex-specific reservoir of TLR7 ligands in SLE. JCI Insight 8, e169344 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Robinson, G. A. et al. Disease-associated and patient-specific immune cell signatures in juvenile-onset systemic lupus erythematosus: patient stratification using a machine-learning approach. Lancet Rheumatol. 2, e485–e496 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nehar-Belaid, D. et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat. Immunol. 21, 1094–1106 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Radziszewska, A. et al. Type I interferon and mitochondrial dysfunction are associated with dysregulated cytotoxic CD8+ T cell responses in juvenile systemic lupus erythematosus. Clin. Exp. Immunol. 219, uxae127 (2025).

    Article  PubMed  CAS  Google Scholar 

  82. Baxter, R. M. et al. Expansion of extrafollicular B and T cell subsets in childhood-onset systemic lupus erythematosus. Front. Immunol. 14, 1208282 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Danaher, P. et al. Childhood-onset lupus nephritis is characterized by complex interactions between kidney stroma and infiltrating immune cells. Sci. Transl. Med. 16, eadl1666 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Ma, J. et al. Construction of molecular subgroups in childhood systemic lupus erythematosus using bioinformatics. Medicine 101, e32274 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wahadat, M. J. et al. Targeted multiomics in childhood-onset SLE reveal distinct biological phenotypes associated with disease activity: results from an explorative study. Lupus Sci. Med. 10, e000799 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Psarras, A., Wittmann, M. & Vital, E. M. Emerging concepts of type I interferons in SLE pathogenesis and therapy. Nat. Rev. Rheumatol. 18, 575–590 (2022).

    PubMed  CAS  Google Scholar 

  89. Natoli, V. et al. Elevated serum interferon-α2 associates with activity and flare risk in Juvenile-onset systemic lupus erythematosus. Rheumatology 64, 3938–3946 (2025).

    Article  PubMed  CAS  Google Scholar 

  90. Wahadat, M. J. et al. Serum IFNα2 levels are associated with disease activity and outperform IFN-I gene signature in a longitudinal childhood-onset SLE cohort. Rheumatology 62, 2872–2879 (2023).

    Article  PubMed  CAS  Google Scholar 

  91. Wahadat, M. J. et al. Gene signature fingerprints stratify SLE patients in groups with similar biological disease profiles: a multicentre longitudinal study. Rheumatology 61, 4344–4354 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Nombel, A. et al. Profiling type I and II interferon responses reveals distinct subgroups of pediatric patients with autoinflammatory disorders. J. Allergy Clin. Immunol. Glob. 4, 100450 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bradford, H. F. et al. Inactive disease in patients with lupus is linked to autoantibodies to type I interferons that normalize blood IFNα and B cell subsets. Cell Rep. Med. 4, 100894 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Macêdo, M. B. et al. Anti-mitochondrial antibodies as markers of disease activity in childhood-onset systemic lupus erythematosus: a longitudinal cohort study. Rheumatology 64, 5096–5100 (2025).

    Article  Google Scholar 

  95. Caielli, S. et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 213, 697–713 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Ciurtin, C. Potential relevance of type I interferon-related biomarkers for the management of polygenic autoimmune rheumatic diseases with childhood onset. Clin. Rheumatol. 42, 1733–1736 (2023).

    Article  PubMed  Google Scholar 

  97. Oni, L. et al. Kidney outcomes for children with lupus nephritis. Pediatr. Nephrol. 36, 1377–1385 (2021).

    Article  PubMed  Google Scholar 

  98. Greenan-Barrett, J. et al. Biomarkers associated with organ-specific involvement in juvenile systemic lupus erythematosus. Int. J. Mol. Sci. 22, 7619 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Soliman, S. A. et al. Urine ALCAM, PF4 and VCAM-1 surpass conventional metrics in identifying nephritis disease activity in childhood-onset systemic lupus erythematosus. Front. Immunol. 13, 885307 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Li, Y. et al. Proximity extension assay proteomics and renal single cell transcriptomics uncover novel urinary biomarkers for active lupus nephritis. J. Autoimmun. 143, 103165 (2024).

    Article  PubMed  CAS  Google Scholar 

  101. Ciurtin, C. et al. Cardiovascular risk in young people with childhood onset systemic lupus erythematosus. Lancet Rheumatol. 6, e258–e263 (2024).

    Article  PubMed  CAS  Google Scholar 

  102. Ciurtin, C. et al. Comorbidity in young patients with juvenile systemic lupus erythematosus: how can we improve management? Clin. Rheumatol. 41, 961–964 (2022).

    Article  PubMed  Google Scholar 

  103. Robinson, G. A. et al. Metabolomics defines complex patterns of dyslipidaemia in juvenile-SLE patients associated with inflammation and potential cardiovascular disease risk. Metabolites 12, 3 (2022).

    Article  CAS  Google Scholar 

  104. Jury, E. C. et al. Systemic lupus erythematosus patients have unique changes in serum metabolic profiles across age associated with cardiometabolic risk. Rheumatology 63, 2741–2753 (2023).

    Article  PubMed Central  Google Scholar 

  105. Robinson, G. et al. Lipid metabolism in autoimmune rheumatic disease: implications for modern and conventional therapies. J. Clin. Invest. 132, e148552 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Schanberg, L. E. et al. Premature atherosclerosis in pediatric systemic lupus erythematosus: risk factors for increased carotid intima-media thickness in the atherosclerosis prevention in pediatric lupus erythematosus cohort. Arthritis Rheum. 60, 1496–1507 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Petri, M. A. et al. Lupus Atherosclerosis Prevention Study (LAPS). Ann. Rheum. Dis. 70, 760–765 (2011).

    Article  PubMed  CAS  Google Scholar 

  108. Peng, J. et al. Atherosclerosis progression in the APPLE trial can be predicted in young people with juvenile-onset systemic lupus erythematosus using a novel lipid metabolomic signature. Arthritis Rheumatol. 76, 455–468 (2024).

    Article  PubMed  CAS  Google Scholar 

  109. Robinson, G. A. et al. Increased apolipoprotein-B:A1 ratio predicts cardiometabolic risk in patients with juvenile onset SLE. EBioMedicine 65, 103243 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Ciurtin, C. et al. Investigation of the performance of validated cardiovascular risk scores in a global (UK/US) cohort of young people with childhood-onset systemic lupus erythematosus. Lupus Sci. Med. 11, e001194 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Woodridge, L. et al. Subclinical atherosclerosis risk can be predicted in female patients with systemic lupus erythematosus using metabolomic signatures: an observational study. J. Am. Heart Assoc. 14, e036507 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Rubinstein, T. B., Putterman, C. & Goilav, B. Biomarkers for CNS involvement in pediatric lupus. Biomark. Med. 9, 545–558 (2015).

    Article  PubMed  CAS  Google Scholar 

  113. van der Heijden, H. et al. Implications of inflammatory processes on a developing central nervous system in childhood-onset systemic lupus erythematosus. Arthritis Rheumatol. 76, 332–344 (2024).

    Article  PubMed  Google Scholar 

  114. Moraitis, E. et al. Aquaporin-4 IgG antibody-related disorders in patients with juvenile systemic lupus erythematosus. Lupus 28, 1243–1249 (2019).

    Article  PubMed  CAS  Google Scholar 

  115. Brunner, H. I. et al. Blood-based candidate biomarkers of the presence of neuropsychiatric systemic lupus erythematosus in children. Lupus Sci. Med. 1, e000038 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kammeyer, R. et al. Blood-based biomarkers of neuronal and glial injury in active major neuropsychiatric systemic lupus erythematosus. Lupus 33, 1116–1129 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Muscal, E. & Brey, R. L. Neurologic manifestations of systemic lupus erythematosus in children and adults. Neurol. Clin. 28, 61–73 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Valdés Cabrera, D. et al. Effects of systemic lupus erythematosus on the brain: a systematic review of structural MRI findings and their relationships with cognitive dysfunction. Lupus Sci. Med. 11, e001214 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Frittoli, R. B. et al. Axonal dysfunction is associated with interferon-γ levels in childhood-onset systemic lupus erythematosus: a multivoxel magnetic resonance spectroscopy study. Rheumatology 61, 1529–1537 (2022).

    Article  PubMed  CAS  Google Scholar 

  120. DiFrancesco, M. W. et al. Functional neuronal network activity differs with cognitive dysfunction in childhood-onset systemic lupus erythematosus. Arthritis Res. Ther. 15, R40 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Vega-Fernandez, P. et al. Cognitive performance scores for the pediatric automated neuropsychological assessment metrics in childhood-onset systemic lupus erythematosus. Arthritis Care Res. 67, 1119–1127 (2015).

    Article  Google Scholar 

  122. Askanase, A. et al. New and future therapies: changes in the therapeutic armamentarium for SLE. Best Pract. Res. Clin. Rheumatol. 37, 101865 (2023).

    Article  PubMed  Google Scholar 

  123. Bruce, I. N. Health inequalities and systemic lupus erythematosus: a global challenge. Rheumatology 62, i1–i3 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ekinci, Z. & Ozturk, K. Systemic lupus erythematosus with C1q deficiency: treatment with fresh frozen plasma. Lupus 27, 134–138 (2018).

    Article  PubMed  CAS  Google Scholar 

  125. Akbar, L., Alsagheir, R. & Al-Mayouf, S. M. Efficacy of a sequential treatment by belimumab in monogenic systemic lupus erythematosus. Eur. J. Rheumatol. 7, 184–189 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Matsumura, R. et al. Bone marrow transplantation from a human leukocyte antigen-mismatched unrelated donor in a case with C1q deficiency associated with refractory systemic lupus erythematosus. Int. J. Hematol. 113, 302–307 (2021).

    Article  PubMed  CAS  Google Scholar 

  127. Tilstra, J. S. et al. B cell-intrinsic Myd88 regulates disease progression in murine lupus. J. Exp. Med. 220, e20230263 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Cenac, C., Ducatez, M. F. & Guery, J. C. Hydroxychloroquine inhibits proteolytic processing of endogenous TLR7 protein in human primary plasmacytoid dendritic cells. Eur. J. Immunol. 52, 54–61 (2022).

    Article  PubMed  CAS  Google Scholar 

  129. Doroudchi, A. & Butte, M. First reported use of anifrolumab to treat a monogenic interferonopathy (DNASE2 loss of function). Clin. Immunol. 250, 109593 (2023).

    Article  Google Scholar 

  130. Felten, R., Scherlinger, M., Mertz, P., Chasset, F. & Arnaud, L. New biologics and targeted therapies in systemic lupus: from new molecular targets to new indications. A systematic review. Jt Bone Spine 90, 105523 (2023).

    Article  CAS  Google Scholar 

  131. Wu, J. et al. Case report: JAK1/2 inhibition with baricitinib in the treatment of STING-associated vasculopathy with onset in infancy. Pediatr. Rheumatol. Online J. 21, 131 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Decout, A. et al. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Su, G. et al. Analysis of five cases of monogenic lupus related to primary immunodeficiency diseases. Inflamm. Res. 70, 1211–1216 (2021).

    Article  PubMed  CAS  Google Scholar 

  134. Lei, L. et al. Successful use of ofatumumab in two cases of early-onset juvenile SLE with thrombocytopenia caused by a mutation in protein kinase C δ. Pediatr. Rheumatol. Online J. 16, 61 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Moreews, M. et al. mTOR activation underlies enhanced B cell proliferation and autoimmunity in PrkcdG510S/G510S mice. J. Immunol. 210, 1209–1221 (2023).

    Article  PubMed  CAS  Google Scholar 

  136. Elhani, I. et al. A20 haploinsufficiency: a systematic review of 177 cases. J. Investig. Dermatol. 144, 1282–1294.e8 (2024).

    Article  PubMed  CAS  Google Scholar 

  137. Liu, J. et al. Haploinsufficiency of A20 in a Chinese child caused by loss-of-function mutations in TNFAIP3: a case report and review of the literature. Front. Pediatrics 10, 990008 (2023).

    Article  Google Scholar 

  138. Brunner, H. I. et al. Safety and efficacy of intravenous belimumab in children with systemic lupus erythematosus: results from a randomised, placebo-controlled trial. Ann. Rheum. Dis. 79, 1340–1348 (2020).

    Article  PubMed  CAS  Google Scholar 

  139. Md Yusof, M. Y. et al. Management and treatment of children, young people and adults with systemic lupus erythematosus: British Society for Rheumatology guideline scope. Rheumatol. Adv. Pract. 7, rkad093 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sammaritano, L. R. et al. 2024 American College of Rheumatology (ACR) guideline for the screening, treatment, and management of lupus nephritis. Arthritis Rheumatol. 77, 1115–1135 (2025).

    Article  PubMed  Google Scholar 

  141. Fanouriakis, A. et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update. Ann. Rheum. Dis. 83, 15–29 (2024).

    Article  PubMed  CAS  Google Scholar 

  142. Lin, T. W. et al. Rituximab as an effective add-on maintenance therapy for disease activities in childhood-onset systemic lupus erythematosus. Lupus Sci. Med. 11, e000987 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Cognard, J. et al. Indications, efficacy, safety of rituximab in childhood-onset systemic lupus erythematosus: a retrospective study of the JIR cohort. Rheumatology 64, 4921–4929 (2025).

    Article  PubMed  CAS  Google Scholar 

  144. Tambralli, A. et al. Safety and efficacy of rituximab in childhood-onset systemic lupus erythematosus and other rheumatic diseases. J. Rheumatol. 42, 541–546 (2015).

    Article  PubMed  CAS  Google Scholar 

  145. Li, H. et al. Efficacy and safety of belimumab combined with the standard regimen in treating children with lupus nephritis. Eur. J. Pediatr. 183, 3987–3995 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Cinar, O. K. et al. Ofatumumab use in juvenile systemic lupus erythematosus: a single centre experience. Lupus 30, 527–530 (2021).

    Article  PubMed  Google Scholar 

  147. Tanaka, H., Aizawa, T. & Endo, M. Long-term outcome of tacrolimus-based immunosuppressive treatment for patients with paediatric-onset lupus nephritis. Nephrology 29, 901–908 (2024).

    Article  PubMed  CAS  Google Scholar 

  148. Fasano, S. et al. Precision medicine in systemic lupus erythematosus. Nat. Rev. Rheumatol. 19, 331–342 (2023).

    Article  PubMed  CAS  Google Scholar 

  149. He, X. et al. Treatment of two pediatric patients with refractory systemic lupus erythematosus using CD19-targeted CAR T-cells. Autoimmun. Rev. 24, 103692 (2025).

    Article  PubMed  CAS  Google Scholar 

  150. Wobma, H. et al. CAR T cell therapy for children with rheumatic disease: the time is now. Nat. Rev. Rheumatol. 21, 494–506 (2025).

    Article  PubMed  Google Scholar 

  151. Chalhoub, N. E. et al. International consensus for the dosing of corticosteroids in childhood-onset systemic lupus erythematosus with proliferative lupus nephritis. Arthritis Rheumatol. 74, 263–273 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Smith, E. M. D. et al. Towards development of treat to target (T2T) in childhood-onset systemic lupus erythematosus: PReS-endorsed overarching principles and points-to-consider from an international task force. Ann. Rheum. Dis. 82, 788–798 (2023).

    Article  PubMed  Google Scholar 

  153. Franklyn, K. et al. Definition and initial validation of a Lupus Low Disease Activity State (LLDAS). Ann. Rheum. Dis. 75, 1615–1621 (2016).

    Article  PubMed  CAS  Google Scholar 

  154. Smith, E. M. D. et al. PReS-endorsed international childhood lupus T2T task force definition of childhood lupus low disease activity state (cLLDAS). Clin. Immunol. 250, 109296 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. van Vollenhoven, R. F. et al. 2021 DORIS definition of remission in SLE: final recommendations from an international task force. Lupus Sci. Med. 8, e000538 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Soulsby, W. D. et al. Racial disparities and achievement of the low lupus disease activity state: a CARRA registry study. Arthritis Care Res. 77, 38–49 (2025).

    Article  CAS  Google Scholar 

  157. Sadun, R. E. et al. Development of CARRA/PReS-endorsed consensus core and expanded datasets in childhood-onset systemic lupus erythematosus for international registry-based research. Ann. Rheum. Dis. 84, 158–168 (2025).

    Article  PubMed  Google Scholar 

  158. Ciurtin, C., Pineda-Torra, I., Jury, E. C. & Robinson, G. A. CD8+ T-cells in juvenile-onset SLE: from pathogenesis to comorbidities. Front. Med. 9, 904435 (2025).

    Article  Google Scholar 

Download references

Acknowledgements

G.A.R. was supported by an Arthritis UK Career Development Fellowship (22856). C.C. was supported by a National Institute of Heath Research (NIHR) University College London Hospital (UCLH) Biomedical Research Centre (ref. BRC4/III/CC) grant. A.K. was supported by a Canadian Institutes of Health Research Canada Research Chair Tier 2 and Lupus Research Alliance Career Development Award.

Author information

Authors and Affiliations

Authors

Contributions

G.A.R., C.C., D.A.I. and A.B. researched data for the article. G.A.R., C.C. and D.A.I. contributed substantially to discussion of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to George A. Robinson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Claudia Saad-Magalhães, Sylvia Kamphuis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, G.A., Knight, A., Tucker, L.B. et al. Insights into the pathogenesis of childhood-onset SLE in the past decade. Nat Rev Rheumatol 22, 26–41 (2026). https://doi.org/10.1038/s41584-025-01321-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41584-025-01321-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing