Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in cartilage imaging techniques

Abstract

Articular cartilage is crucial for joint function; however, it has limited regenerative capacity when damaged, a hallmark of many rheumatic diseases. Non-invasive imaging is essential for early diagnosis, therapeutic monitoring and prognostication. MRI remains the reference standard, offering detailed assessment of both morphological and compositional cartilage changes. Technological advances, including high-resolution and compositional MRI techniques such as T2 mapping, T1ρ, delayed gadolinium-enhanced MRI of cartilage, sodium imaging, diffusion imaging and ultra-short echo-time imaging, enable early detection of matrix alterations that precede structural breakdown. CT arthrography, although it involves radiation, serves as a valuable alternative when MRI is contra-indicated, offering high performance in the detection and evaluation of cartilage surface lesions. Emerging modalities, such as ultrasonography and PET, offer additional functional insights but are currently limited in scope. Artificial intelligence is poised to transform cartilage imaging through accelerated acquisition, automated segmentation, improved interpretation and enhanced efficiency, with growing clinical adoption. Advanced cartilage imaging will probably have an increasingly important role in clinical rheumatology, particularly for the optimization of individualized management of cartilage pathology.

Key points

  • MRI is the primary imaging technique used to directly visualize articular cartilage. All MRI field strengths can be used for cartilage imaging, whereas higher magnetic field strength allows for greater spatial resolution and shorter acquisition times.

  • Semi-quantitative MRI assessment allows for evaluation of cartilage surface damage regarding area extent and depth, but also covers other articular structures, such as subchondral bone and menisci.

  • Quantitative cartilage morphometry involves cartilage tissue segmentation from MRI and computation of diverse 3D measures; this technique is highly sensitive to change over time.

  • Compositional MRI techniques allow for the evaluation of the cartilage ultrastructure prior to the presence of surface damage and can be used as biomarkers for early cartilage degeneration.

  • Advances in the CT field include the advent of spectral, photon-counting and weight-bearing CT, whereas the application of PET and other nuclear medicine techniques to cartilage has been limited.

  • Artificial intelligence is increasingly used in cartilage evaluation to accelerate MRI acquisition and improve image quality. Artificial intelligence-based automated segmentation enables precise cartilage quantification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Direct comparison between 3 T and 7 T MRI.
Fig. 2: Relevance of sequence selection for evaluation of focal cartilage defects.
Fig. 3: Cartilage morphometry based on MRI.
Fig. 4: Direct comparison of different magnetic field strengths for cartilage surface damage evaluation.
Fig. 5: Comparison between CT arthrography and MRI.
Fig. 6: Metabolic imaging.

References

  1. Joukar, A. et al. Correlation analysis of cartilage wear with biochemical composition, viscoelastic properties and friction. J. Mech. Behav. Biomed. Mater. 142, 105827 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pap, T. & Korb-Pap, A. Cartilage damage in osteoarthritis and rheumatoid arthritis — two unequal siblings. Nat. Rev. Rheumatol. 11, 606–615 (2015).

    Article  PubMed  Google Scholar 

  3. Roemer, F. W. et al. State of the art: imaging of osteoarthritis — revisited 2020. Radiology 296, 5–21 (2020).

    Article  PubMed  Google Scholar 

  4. Crema, M. D. et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 31, 37–61 (2011).

    Article  PubMed  Google Scholar 

  5. Roemer, F. W. et al. A perspective on the evolution of semi-quantitative MRI assessment of osteoarthritis: past, present and future. Osteoarthritis Cartilage 32, 460–472 (2024).

    Article  PubMed  Google Scholar 

  6. Eckstein, F., Wluka, A. E., Wirth, W. & Cicuttini, F. 30 Years of MRI-based cartilage & bone morphometry in knee osteoarthritis: from correlation to clinical trials. Osteoarthritis Cartilage 32, 439–451 (2024).

    Article  PubMed  Google Scholar 

  7. Guermazi, A. et al. Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthritis Cartilage 23, 1639–1653 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Li, S. et al. Diagnostic value of MRI for detection of knee cartilage lesions vs. weight-bearing CT arthrography (WBCTa). Skeletal Radiol. 54, 2795–2802 (2025).

    Article  PubMed  Google Scholar 

  9. Vande Berg, B. C., Lecouvet, F. E. & Malghem, J. Frequency and topography of lesions of the femoro-tibial cartilage at spiral CT arthrography of the knee: a study in patients with normal knee radiographs and without history of trauma. Skeletal Radiol. 31, 643–649 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Guermazi, A. et al. How AI may transform musculoskeletal imaging. Radiology 310, e230764 (2024).

    Article  PubMed  Google Scholar 

  11. Fritz, J., Guggenberger, R. & Del Grande, F. Rapid musculoskeletal MRI in 2021: clinical application of advanced accelerated techniques. AJR Am. J. Roentgenol. 216, 718–733 (2021).

    Article  PubMed  Google Scholar 

  12. Buchanan, M. E. & Markhardt, B. K. Systematic review of techniques in cartilage imaging. J. Cartil. Jt Preserv. 4, 100155 (2024).

    Google Scholar 

  13. Gold, G. E. et al. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. Am. J. Roentgenol. 183, 343–351 (2004).

    Article  Google Scholar 

  14. Link, T. M. et al. 3.0 vs 1.5 T MRI in the detection of focal cartilage pathology — ROC analysis in an experimental model. Osteoarthritis Cartilage 14, 63–70 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Van Dyck, P. et al. Comparison of 1.5- and 3-T MR imaging for evaluating the articular cartilage of the knee. Knee Surg. Sports Traumatol. Arthrosc. 22, 1376–1384 (2014).

    Article  PubMed  Google Scholar 

  16. Kijowski, R. et al. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology 250, 839–848 (2009).

    Article  PubMed  Google Scholar 

  17. Krug, R., Stehling, C., Kelley, D. A., Majumdar, S. & Link, T. M. Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T. Invest. Radiol. 44, 613–618 (2009).

    Article  PubMed  Google Scholar 

  18. Heiss, R. et al. Clinical application of ultrahigh-field-strength wrist MRI: a multireader 3-T and 7-T comparison study. Radiology 307, e220753 (2023).

    Article  PubMed  Google Scholar 

  19. Chang, G. et al. Comparison of a 28-channel receive array coil and quadrature volume coil for morphologic imaging and T2 mapping of knee cartilage at 7T. J. Magn. Reson. Imaging 35, 441–448 (2012).

    Article  PubMed  Google Scholar 

  20. Deshmane, A., Gulani, V., Griswold, M. A. & Seiberlich, N. Parallel MR imaging. J. Magn. Reson. Imaging 36, 55–72 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Omoumi, P., Mourad, C., Ledoux, J. B. & Hilbert, T. Morphological assessment of cartilage and osteoarthritis in clinical practice and research: intermediate-weighted fat-suppressed sequences and beyond. Skeletal Radiol. 52, 2185–2198 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shakoor, D. et al. Diagnostic performance of three-dimensional MRI for depicting cartilage defects in the knee: a meta-analysis. Radiology 289, 71–82 (2018).

    Article  PubMed  Google Scholar 

  23. Collins, J. E., Roemer, F. W. & Guermazi, A. Approaches to optimize analyses of multidimensional ordinal MRI data in osteoarthritis research: a perspective. Osteoarthr. Cartil. Open. 6, 100465 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Peterfy, C. G. et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12, 177–190 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Kornaat, P. R. et al. MRI assessment of knee osteoarthritis: knee osteoarthritis scoring system (KOSS) — inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol. 34, 95–102 (2005).

    Article  PubMed  Google Scholar 

  26. Hunter, D. J. et al. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann. Rheum. Dis. 67, 206–211 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Hunter, D. J. et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 19, 990–1002 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meredith, D. S. et al. Empirical evaluation of the inter-relationship of articular elements involved in the pathoanatomy of knee osteoarthritis using magnetic resonance imaging. BMC Musculoskelet. Disord. 10, 133 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Roemer, F. W., Frobell, R., Lohmander, L. S., Niu, J. & Guermazi, A. Anterior cruciate ligament osteoarthritis score (ACLOAS): longitudinal MRI-based whole joint assessment of anterior cruciate ligament injury. Osteoarthritis Cartilage 22, 668–682 (2014).

    Article  PubMed  Google Scholar 

  30. Roemer, F. W. et al. Whole joint MRI assessment of surgical cartilage repair of the knee: cartilage repair osteoarthritis knee score (CROAKS). Osteoarthritis Cartilage 22, 779–799 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Roemer, F. W. et al. MRI-based screening for structural definition of eligibility in clinical DMOAD trials: rapid osteoarthritis MRI eligibility score (ROAMES). Osteoarthritis Cartilage 28, 71–81 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Uppstrom, T. J. et al. Reliability of a novel magnetic resonance imaging scoring system to evaluate patellofemoral osteoarthritis. J. Knee Surg. 38, 555–562 (2025).

    Article  PubMed  Google Scholar 

  33. Roemer, F. W. et al. Hip osteoarthritis MRI scoring system (HOAMS): reliability and associations with radiographic and clinical findings. Osteoarthritis Cartilage 19, 946–962 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, S. et al. Scoring hip osteoarthritis with MRI (SHOMRI): a whole joint osteoarthritis evaluation system. J. Magn. Reson. Imaging 41, 1549–1557 (2015).

    Article  PubMed  Google Scholar 

  35. Haugen, I. K. et al. Hand osteoarthritis and MRI: development and first validation step of the proposed Oslo hand osteoarthritis MRI score. Ann. Rheum. Dis. 70, 1033–1038 (2011).

    Article  PubMed  Google Scholar 

  36. Haugen, I. K. et al. Iterative development and reliability of the OMERACT hand osteoarthritis MRI scoring system. J. Rheumatol. 41, 386–391 (2014).

    Article  PubMed  Google Scholar 

  37. Kroon, F. P. B. et al. Longitudinal reliability of the OMERACT thumb base osteoarthritis magnetic resonance imaging scoring system (TOMS). J. Rheumatol. 46, 1228–1231 (2019).

    Article  PubMed  Google Scholar 

  38. Roemer, F. W. et al. Can structural joint damage measured with MR imaging be used to predict knee replacement in the following year? Radiology 274, 810–820 (2015).

    Article  PubMed  Google Scholar 

  39. Hafezi-Nejad, N., Zikria, B., Eng, J., Carrino, J. A. & Demehri, S. Predictive value of semi-quantitative MRI-based scoring systems for future knee replacement: data from the Osteoarthritis Initiative. Skeletal Radiol. 44, 1655–1662 (2015).

    Article  PubMed  Google Scholar 

  40. Crema, M. D. et al. Cross-sectional and longitudinal reliability of semiquantitative osteoarthritis assessment at 1.0T extremity MRI: multi-reader data from the MOST study. Osteoarthr. Cartil. Open. 3, 100214 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hunter, D. J. et al. Responsiveness, effect size, and smallest detectable difference of Magnetic Resonance Imaging in knee osteoarthritis. Osteoarthritis Cartilage 14, 112–115 (2006).

    Article  Google Scholar 

  42. Fangzhou, C., Mochizuki, T., Ushiki, T. & Kawashima, H. Clinical outcomes and magnetic resonance imaging evaluation of autologous protein solution treatment for knee osteoarthritis. Cureus 17, e84698 (2025).

    PubMed  PubMed Central  Google Scholar 

  43. van der Graaff, S. J. A. et al. Post-traumatic and OA-related lesions in the knee at baseline and 2 years after traumatic meniscal injury: secondary analysis of a randomized controlled trial. Osteoarthritis Cartilage 33, 647–655 (2025).

    Article  PubMed  Google Scholar 

  44. Wang, T. et al. Baseline 25-hydroxyvitamin D levels predict the effects of vitamin D supplementation on joint symptoms and cartilage loss in patients with knee osteoarthritis. Rheumatol. Adv. Pract. 9, rkaf061 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Guermazi, A., Roemer, F. W., Jarraya, M. & Hayashi, D. A call for screening MRI as a tool for osteoarthritis clinical trials. Skeletal Radiol. 52, 2011–2019 (2023).

    Article  PubMed  Google Scholar 

  46. Roemer, F. W. et al. Structural phenotypes of knee osteoarthritis: potential clinical and research relevance. Skeletal Radiol. 52, 2021–2030 (2023).

    Article  PubMed  Google Scholar 

  47. Liu, Y. et al. Association of MRI-based knee osteoarthritis structural phenotypes with short-term structural progression and subsequent total knee replacement. J. Orthop. Surg. Res. 19, 699 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roemer, F. W., Collins, J. E., Hunter, D. J., Demehri, S. & Guermazi, A. Patterns of progression differ between Kellgren-Lawrence 2 and 3 knees fulfilling different definitions of a cartilage-meniscus phenotype in the foundation for National Institutes of Health Osteoarthritis Biomarkers Study (FNIH). Osteoarthr. Cartil. Open. 4, 100284 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hayashi, D., Roemer, F. W. & Guermazi, A. Osteoarthritis year in review 2024: imaging. Osteoarthritis Cartilage 33, 88–93 (2025).

    Article  PubMed  Google Scholar 

  50. Eckstein, F. et al. Brief report: cartilage thickness change as an imaging biomarker of knee osteoarthritis progression: data from the foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium. Arthritis Rheumatol. 67, 3184–3189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hunter, D. J. et al. Multivariable modeling of biomarker data from the phase I Foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium. Arthritis Care Res. 74, 1142–1153 (2021).

    Article  Google Scholar 

  52. Eckstein, F. et al. Quantitative MRI measures of cartilage predict knee replacement: a case-control study from the Osteoarthritis Initiative. Ann. Rheum. Dis. 72, 707–714 (2013).

    Article  PubMed  Google Scholar 

  53. Eckstein, F. et al. Trajectory of cartilage loss within 4 years of knee replacement — a nested case-control study from the Osteoarthritis Initiative. Osteoarthritis Cartilage 22, 1542–1549 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eckstein, F. et al. Comparison of radiographic joint space width and magnetic resonance imaging for prediction of knee replacement: a longitudinal case-control study from the osteoarthritis initiative. Eur. Radiol. 26, 1942–1951 (2016).

    Article  PubMed  Google Scholar 

  55. Eckstein, F. et al. Quantitative cartilage thickness change preceding surgical and virtual knee replacement status – comparative analysis using data from the OAI. Osteoarthritis Cartilage 25, S248–S249 (2017).

    Article  Google Scholar 

  56. Eckstein, F. et al. Cartilage loss is greater in knees with virtual joint replacement status than in matched controls without. Osteoarthr. Cartil. Open. 7, 100658 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schnitzer, T. et al. Evaluation of S201086/GLPG1972, an ADAMTS-5 inhibitor, for the treatment of knee osteoarthritis in ROCCELLA: a phase 2 randomized clinical trial. Osteoarthritis Cartilage 31, 985–994 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Eckstein, F., Deckx, B. K., Imbert, H., Lalande, O. & Wisser, A. A. Test-retest reliability and smallest detectable change (SDC) of MRI-based cartilage thickness analysis in a large multicenter randomized controlled clinical trial of knee osteoarthritis. Osteoarthritis Cartilage 29, S327–S328 (2021).

    Article  Google Scholar 

  59. Hochberg, M. C. et al. Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage thickness in patients with osteoarthritis: the FORWARD randomized clinical trial. JAMA 322, 1360–1370 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guehring, H. et al. The effects of sprifermin on symptoms and structure in a subgroup at risk of progression in the FORWARD knee osteoarthritis trial. Semin. Arthritis Rheum. 51, 450–456 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Eckstein, F. et al. Unbiased analysis of knee cartilage thickness change over three years after sprifermin vs. placebo treatment – a post-hoc analysis from the phase 2B FORWARD study. Osteoarthr. Cartil. Open. 6, 100513 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Eckstein, F. et al. Long-term structural and symptomatic effects of intra-articular sprifermin in patients with knee osteoarthritis: 5-year results from the FORWARD study. Ann. Rheum. Dis. 80, 1062–1069 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Eckstein, F. et al. Intra-articular sprifermin reduces cartilage loss in addition to increasing cartilage gain independent of location in the femorotibial joint: post-hoc analysis of a randomised, placebo-controlled phase II clinical trial. Ann. Rheum. Dis. 79, 525–528 (2020).

    Article  PubMed  Google Scholar 

  64. McAlindon, T. E. et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: a randomized clinical trial. JAMA 317, 1967–1975 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Conaghan, P. G. et al. Disease-modifying effects of a novel cathepsin k inhibitor in osteoarthritis: a randomized controlled trial. Ann. Intern. Med. 172, 86–95 (2020).

    Article  PubMed  Google Scholar 

  66. Hunter, D. J. et al. The intensive diet and exercise for arthritis (IDEA) trial: 18-month radiographic and MRI outcomes. Osteoarthritis Cartilage 23, 1090–1098 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sekiya, I. et al. 3D-MRI analysis of cartilage thickness changes after PRP injection in medial knee osteoarthritis: a preliminary report. PLoS ONE 20, e0321067 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Intema, F. et al. Tissue structure modification in knee osteoarthritis by use of joint distraction: an open 1-year pilot study. Ann. Rheum. Dis. 70, 1441–1446 (2011).

    Article  PubMed  Google Scholar 

  69. Wiegant, K. et al. Sustained clinical and structural benefit after joint distraction in the treatment of severe knee osteoarthritis. Osteoarthritis Cartilage 21, 1660–1667 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. van der Woude, J. A. D. et al. Five-year follow-up of knee joint distraction: clinical benefit and cartilaginous tissue repair in an open uncontrolled prospective study. Cartilage 8, 263–271 (2017).

    Article  PubMed  Google Scholar 

  71. Jansen, M. P., Mastbergen, S. C., MacKay, J. W., Turmezei, T. D. & Lafeber, F. Knee joint distraction results in MRI cartilage thickness increase up to 10 years after treatment. Rheumatology 61, 974–982 (2022).

    Article  PubMed  Google Scholar 

  72. Birmingham, T. B. et al. High tibial osteotomy for medial compartment knee osteoarthritis: a randomized trial with parallel preference arm. Ann. Intern. Med. 178, 1238–1248 (2025).

    Article  PubMed  Google Scholar 

  73. Chaudhari, A. S. et al. Five-minute knee MRI for simultaneous morphometry and T2 relaxometry of cartilage and meniscus and for semiquantitative radiological assessment using double-echo in steady-state at 3T. J. Magn. Reson. Imaging 47, 1328–1341 (2018).

    Article  PubMed  Google Scholar 

  74. Eckstein, F. et al. The design of a sample rapid magnetic resonance imaging (MRI) acquisition protocol supporting assessment of multiple articular tissues and pathologies in knee osteoarthritis. Osteoarthr. Cartil. Open. 6, 100505 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Williams, A. A. et al. Reproducibility of quantitative double-echo steady-state T2 mapping of knee cartilage. J. Magn. Reson. Imaging 61, 784–795 (2025).

    Article  PubMed  Google Scholar 

  76. Wirth, W. et al. Clinical validation of fully automated cartilage transverse relaxation time (T2) and thickness analysis using quantitative DESS magnetic resonance imaging. MAGMA 38, 285–297 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Norman, B., Pedoia, V. & Majumdar, S. Use of 2D U-net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology 288, 177–185 (2018).

    Article  PubMed  Google Scholar 

  78. Xie, D. et al. Multi-vendor multi-site quantitative MRI analysis of cartilage degeneration 10 years after anterior cruciate ligament reconstruction: MOON-MRI protocol and preliminary results. Osteoarthritis Cartilage 30, 1647–1657 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wirth, W. & Eckstein, F. A fully-automated technique for cartilage morphometry in knees with severe radiographic osteoarthritis – method development and validation. Osteoarthr. Cartil. Open. 7, 100645 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yao, Y., Zhong, J., Zhang, L., Khan, S. & Chen, W. Cartimorph: a framework for automated knee articular cartilage morphometrics. Med. Image Anal. 91, 103035 (2024).

    Article  PubMed  Google Scholar 

  81. Eckstein, F., Buck, R. & Wirth, W. Location-independent analysis of structural progression of osteoarthritis-taking it all apart, and putting the puzzle back together makes the difference. Semin. Arthritis Rheum. 46, 404–410 (2017).

    Article  PubMed  Google Scholar 

  82. Wirth, W. et al. Test-retest precision and longitudinal cartilage thickness loss in the IMI-APPROACH cohort. Osteoarthritis Cartilage 31, 238–248 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Eckstein, F. et al. Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0T. Arthritis Rheum. 52, 3132–3136 (2005).

    Article  PubMed  Google Scholar 

  84. Welsch, G. H. et al. Magnetic resonance imaging of the knee at 3 and 7 Tesla: a comparison using dedicated multi-channel coils and optimised 2D and 3D protocols. Eur. Radiol. 22, 1852–1859 (2012).

    Article  PubMed  Google Scholar 

  85. Cheng, Q. & Zhao, F. C. Comparison of 1.5- and 3.0-T magnetic resonance imaging for evaluating lesions of the knee: a systematic review and meta-analysis (PRISMA-compliant article). Medicine 97, e12401 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Juras, V. et al. Comparison of 3T and 7T MRI clinical sequences for ankle imaging. Eur. J. Radiol. 81, 1846–1850 (2012).

    Article  PubMed  Google Scholar 

  87. Chang, G. et al. MRI of the wrist at 7 Tesla using an eight-channel array coil combined with parallel imaging: preliminary results. J. Magn. Reson. Imaging 31, 740–746 (2014).

    Article  Google Scholar 

  88. Friedrich, K. M. et al. In vivo 7.0-Tesla magnetic resonance imaging of the wrist and hand: technical aspects and applications. Semin. Musculoskelet. Radiol. 13, 74–84 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Emanuel, K. S. et al. The relation between the biochemical composition of knee articular cartilage and quantitative MRI: a systematic review and meta-analysis. Osteoarthritis Cartilage 30, 650–662 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Jungmann, P. M. et al. T2 relaxation time measurements are limited in monitoring progression, once advanced cartilage defects at the knee occur: longitudinal data from the osteoarthritis initiative. J. Magn. Reson. Imaging 38, 1415–1424 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Eck, B. L. et al. Quantitative MRI for evaluation of musculoskeletal disease: cartilage and muscle composition, joint inflammation, and biomechanics in osteoarthritis. Invest. Radiol. 58, 60–75 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Prasad, A. P., Nardo, L., Schooler, J., Joseph, G. B. & Link, T. M. T1ρ and T2 relaxation times predict progression of knee osteoarthritis. Osteoarthritis Cartilage 21, 69–76 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Liebl, H. et al. Early T2 changes predict onset of radiographic knee osteoarthritis: data from the Osteoarthritis Initiative. Ann. Rheum. Dis. 74, 1353–1359 (2015).

    Article  PubMed  Google Scholar 

  94. Razmjoo, A. et al. T2 analysis of the entire osteoarthritis initiative dataset. J. Orthop. Res. 39, 74–85 (2021).

    Article  PubMed  Google Scholar 

  95. Joseph, G. B. et al. Elevated cartilage T2 and increased severity of cartilage defects at baseline are associated with the development of knee pain over 7 years. Osteoarthritis Cartilage 21, S185–S186 (2013).

    Article  Google Scholar 

  96. Gersing, A. S. et al. Progression of cartilage degeneration and clinical symptoms in obese and overweight individuals is dependent on the amount of weight loss: 48-month data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 24, 1126–1134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li, X. & Majumdar, S. Quantitative MRI of articular cartilage and its clinical applications. J. Magn. Reson. Imaging 38, 991–1008 (2013).

    Article  PubMed  Google Scholar 

  98. Li, X. et al. Quantitative MRI using T1ρ and T2 in human osteoarthritic cartilage specimens: correlation with biochemical measurements and histology. Magn. Reson. Imaging 29, 324–334 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Lartey, R. et al. Reproducibility of T and T2 quantification in a multi-vendor multi-site study. Osteoarthritis Cartilage 31, 249–257 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Shah, R. P. et al. T1rho magnetic resonance imaging at 3T detects knee cartilage changes after viscosupplementation. Orthopedics 38, e604–e610 (2015).

    Article  PubMed  Google Scholar 

  101. Zhao, X. et al. Multi-compositional MRI evaluation of repair cartilage in knee osteoarthritis with treatment of allogeneic human adipose-derived mesenchymal progenitor cells. Stem Cell Res. Ther. 10, 308 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Xie, D. et al. Baseline cartilage T1ρ and T2 predicted patellofemoral joint cartilage lesion progression and patient-reported outcomes after ACL reconstruction. J. Orthop. Res. 41, 1310–1319 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. O’Sullivan, O. et al. Knee MRI biomarkers associated with structural, functional and symptomatic changes at least a year from ACL injury — a systematic review. Osteoarthr. Cartil. Open. 5, 100385 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kantola, V. et al. Anisotropy of T2 and T relaxation time in articular cartilage at 3 T. Magn. Reson. Med. 92, 1177–1188 (2024).

    Article  CAS  PubMed  Google Scholar 

  105. Champagne, A. A. et al. Quantitative susceptibility and T1 rho mapping of knee articular cartilage at 3T. Osteoarthr. Cartil. Open. 6, 100509. (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Moazamian, D. et al. Quantitative ultrashort echo time magnetization transfer imaging of the osteochondral junction: an in vivo knee osteoarthritis study. J. Imaging 11, 198 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Namiranian, B. et al. Assessment of mechanical properties of articular cartilage with quantitative three-dimensional ultrashort echo time (UTE) cones magnetic resonance imaging. J. Biomech. 113, 110085 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhang, M. et al. Simultaneous quantitative susceptibility mapping of articular cartilage and cortical bone of human knee joint using ultrashort echo time sequences. Front. Endocrinol. 13, 844351 (2022).

    Article  Google Scholar 

  109. Nykanen, O. et al. T2* and quantitative susceptibility mapping in an equine model of post-traumatic osteoarthritis: assessment of mechanical and structural properties of articular cartilage. Osteoarthritis Cartilage 27, 1481–1490 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Basser, P. J., Mattiello, J. & LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Raya, J. G. Techniques and applications of in vivo diffusion imaging of articular cartilage. J. Magn. Reson. Imaging 41, 1487–1504 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Filidoro, L. et al. High-resolution diffusion tensor imaging of human patellar cartilage: feasibility and preliminary findings. Magn. Reson. Med. 53, 993–998 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Ferizi, U. et al. Diffusion tensor imaging of articular cartilage at 3T correlates with histology and biomechanics in a mechanical injury model. Magn. Reson. Med. 78, 69–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Raya, J. G. et al. Feasibility of in vivo diffusion tensor imaging of articular cartilage with coverage of all cartilage regions. Eur. Radiol. 24, 1700–1706 (2014).

    Article  PubMed  Google Scholar 

  115. Guha, A. et al. Spatial variations in magnetic resonance-based diffusion of articular cartilage in knee osteoarthritis. Magn. Reson. Imaging 33, 1051–1058 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Raya, J. G. et al. Articular cartilage: in vivo diffusion-tensor imaging. Radiology 262, 550–559 (2012).

    Article  PubMed  Google Scholar 

  117. Hamilton, J. et al. Robust frequency-dependent diffusional kurtosis computation using an efficient direction scheme, axisymmetric modelling, and spatial regularization. Imaging Neurosci. 2, imag-2-00055 (2024).

    Article  Google Scholar 

  118. Wang, F. et al. Motion-robust sub-millimeter isotropic diffusion imaging through motion corrected generalized slice dithered enhanced resolution (MC-gSlider) acquisition. Magn. Reson. Med. 80, 1891–1906 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Bashir, A., Gray, M. L. & Burstein, D. Gd-DTPA2- as a measure of cartilage degradation. Magn. Reson. Med. 36, 665–673 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Burstein, D. et al. Protocol issues for delayed Gd(DTPA)2−-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn. Reson. Med. 45, 36–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. van Tiel, J. et al. Is T1ρ mapping an alternative to delayed gadolinium-enhanced MR imaging of cartilage in the assessment of sulphated glycosaminoglycan content in human osteoarthritic knees? An in vivo validation study. Radiology 279, 523–531 (2016).

    Article  PubMed  Google Scholar 

  122. van Tiel, J. et al. Reproducibility of 3D delayed gadolinium enhanced MRI of cartilage (dGEMRIC) of the knee at 3.0 T in patients with early stage osteoarthritis. Eur. Radiol. 23, 496–504 (2013).

    Article  PubMed  Google Scholar 

  123. Mamisch, T. C. et al. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in femoacetabular impingement. J. Orthop. Res. 29, 1305–1311 (2011).

    Article  PubMed  Google Scholar 

  124. Domayer, S. E. et al. Delayed gadolinium-enhanced MRI of cartilage in the ankle at 3 T: feasibility and preliminary results after matrix-associated autologous chondrocyte implantation. J. Magn. Reson. Imaging 31, 732–739 (2010).

    Article  PubMed  Google Scholar 

  125. Kogan, F., Hargreaves, B. A. & Gold, G. E. Volumetric multislice gagCEST imaging of articular cartilage: optimization and comparison with T1rho. Magn. Reson. Med. 77, 1134–1141 (2017).

    Article  PubMed  Google Scholar 

  126. Watkins, L. E. et al. Rapid volumetric gagCEST imaging of knee articular cartilage at 3 T: evaluation of improved dynamic range and an osteoarthritic population. NMR Biomed. 33, e4310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Soellner, S. T. et al. gagCEST imaging at 3 T MRI in patients with articular cartilage lesions of the knee and intraoperative validation. Osteoarthritis Cartilage 29, 1163–1172 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Zbyn, S. et al. Changes in tissue sodium concentration and sodium relaxation times during the maturation of human knee cartilage: ex vivo (23) Na MRI study at 10.5 T. Magn. Reson. Med. 91, 1099–1114 (2024).

    Article  CAS  PubMed  Google Scholar 

  129. Newbould, R. D. et al. T1-weighted sodium MRI of the articulator cartilage in osteoarthritis: a cross sectional and longitudinal study. PLoS ONE 8, e73067 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Muller-Lutz, A. et al. Sodium MRI of human articular cartilage of the wrist: a feasibility study on a clinical 3T MRI scanner. MAGMA 34, 241–248 (2021).

    Article  PubMed  Google Scholar 

  131. Borthakur, A. et al. Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthritis Cartilage 8, 288–293 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Trattnig, S. et al. Na-23 MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation: preliminary results. Radiology 257, 175–184 (2010).

    Article  PubMed  Google Scholar 

  133. Mosher, T. J. Quantitative cartilage T2 and T1rho mapping: is there a clinical role? From the AJR special series on quantitative imaging. Am. J. Roentgenol. 224, e2431655 (2025).

    Article  Google Scholar 

  134. Li, X. et al. Cartilage compositional MRI — a narrative review of technical development and clinical applications over the past three decades. Skeletal Radiol. 53, 1761–1781 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shao, H. et al. Magic angle effect plays a major role in both T1rho and T2 relaxation in articular cartilage. Osteoarthritis Cartilage 25, 2022–2030 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Desai, A. D. et al. The International Workshop on Osteoarthritis Imaging knee MRI segmentation challenge: a multi-institute evaluation and analysis framework on a standardized dataset. Radiol. Artif. Intell. 3, e200078 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Li, H. et al. SuperMAP: deep ultrafast MR relaxometry with joint spatiotemporal undersampling. Magn. Reson. Med. 89, 64–76 (2023).

    Article  PubMed  Google Scholar 

  138. Kim, J. et al. Multi-vendor multi-site T and T2 quantification of knee cartilage. Osteoarthritis Cartilage 28, 1539–1550 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chalian, M. et al. The QIBA profile for MRI-based compositional imaging of knee cartilage. Radiology 301, 423–432 (2021).

    Article  PubMed  Google Scholar 

  140. Link, T. M., Joseph, G. B. & Li, X. MRI-based T and T2 cartilage compositional imaging in osteoarthritis: what have we learned and what is needed to apply it clinically and in a trial setting? Skeletal Radiol. 52, 2137–2147 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Omoumi, P. Imaging of cartilage, meniscus, and beyond: role of magnetic resonance imaging (MRI) and computed tomography (CT). Osteoarthr. Imaging 5, 1002268 (2025).

    Google Scholar 

  142. El-Khoury, G. Y. et al. Cartilage thickness in cadaveric ankles: measurement with double-contrast multi-detector row CT arthrography versus MR imaging. Radiology 233, 768–773 (2004).

    Article  PubMed  Google Scholar 

  143. Wyler, A. et al. Comparison of MR-arthrography and CT-arthrography in hyaline cartilage-thickness measurement in radiographically normal cadaver hips with anatomy as gold standard. Osteoarthritis Cartilage 17, 19–25 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Omoumi, P., Rubini, A., Dubuc, J. E., Vande Berg, B. C. & Lecouvet, F. E. Diagnostic performance of CT-arthrography and 1.5T MR-arthrography for the assessment of glenohumeral joint cartilage: a comparative study with arthroscopic correlation. Eur. Radiol. 25, 961–969 (2015).

    Article  PubMed  Google Scholar 

  145. Mutschler, C. et al. Postoperative meniscus: assessment at dual-detector row spiral CT arthrography of the knee. Radiology 228, 635–641 (2003).

    Article  PubMed  Google Scholar 

  146. Vande Berg, B. C. et al. Anterior cruciate ligament tears and associated meniscal lesions: assessment at dual-detector spiral CT arthrography. Radiology 223, 403–409 (2002).

    Article  PubMed  Google Scholar 

  147. Mourad, C. et al. Chances and challenges of photon-counting CT in musculoskeletal imaging. Skeletal Radiol. 53, 1889–1902 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Wilson, M. P. et al. Diagnostic accuracy of dual-energy CT for the detection of bone marrow edema in the appendicular skeleton: a systematic review and meta-analysis. Eur. Radiol. 31, 1558–1568 (2021).

    Article  PubMed  Google Scholar 

  149. Bernabei, I. et al. Multi-energy photon-counting computed tomography versus other clinical imaging techniques for the identification of articular calcium crystal deposition. Rheumatology 60, 2483–2485 (2021).

    Article  PubMed  Google Scholar 

  150. Turmezei, T. D. Quantitative assessment of the knee joint from weight bearing CT. Osteoarthr. Imaging 4, 100177 (2024).

    Article  Google Scholar 

  151. Hilbert, T., Omoumi, P., Raudner, M. & Kober, T. Synthetic contrasts in musculoskeletal MRI: a review. Invest. Radiol. 58, 111–119 (2023).

    Article  PubMed  Google Scholar 

  152. Brett, A., Bowes, M. A. & Conaghan, P. G. Comparison of 3D quantitative osteoarthritis imaging biomarkers from paired CT and MR images: data from the IMI-APPROACH study. BMC Musculoskelet. Disord. 24, 76 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Babel, H. et al. Three-dimensional quantification of bone mineral density in the distal femur and proximal tibia based on computed tomography: in vitro evaluation of an extended standardization method. J. Clin. Med. 10, 160 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Omoumi, P. et al. Proximal tibial osteophyte volumes are correlated spatially and with knee alignment: a quantitative analysis suggesting the influence of biochemical and mechanical factors in the development of osteophytes. Osteoarthritis Cartilage 29, 1691–1700 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Pena, J. A. et al. Dose-efficient assessment of trabecular microstructure using ultra-high-resolution photon-counting CT. Z. Med. Phys. 32, 403–416 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Margain, P., Favre, J., Jolles, B. M. & Omoumi, P. Standardized maps — an emerging approach to leverage quantitative information in knee imaging. Osteoarthr. Imaging 4, 100251 (2024).

    Article  Google Scholar 

  157. Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cai, Y. et al. Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res. 30, 574–589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Suryadevara, V. et al. [18F]FPyGal PET tracer detects senescence in human osteoarthritic specimens. Osteoarthr. Imaging 4, 100205 (2024).

    Article  Google Scholar 

  160. Nernekli, K. et al. MRI detection of senescent cells in porcine knee joints with a β-galactosidase responsive Gd-chelate. npj Imaging 3, 18 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Piert, M. et al. Assessment of porcine bone metabolism by dynamic [18F]-fluoride ion PET: correlation with bone histomorphometry. J. Nucl. Med. 42, 1091–1100 (2001).

    CAS  PubMed  Google Scholar 

  162. Messa, C. et al. Bone metabolic activity measured with positron emission tomography and [18F]fluoride ion in renal osteodystrophy: correlation with bone histomorphometry. J. Clin. Endocrinol. Metab. 77, 949–955 (1993).

    CAS  PubMed  Google Scholar 

  163. Watkins, L. et al. Assessment of quantitative [18F]Sodium fluoride PET measures of knee subchondral bone perfusion and mineralization in osteoarthritic and healthy subjects. Osteoarthritis Cartilage 29, 849–858 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kogan, F. et al. Quantitative imaging of bone-cartilage interactions in ACL-Injured patients with PET-MRI. Osteoarthritis Cartilage 26, 790–796 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Savic, D. et al. Imaging bone-cartilage interactions in osteoarthritis using [18F]-NaF PET-MRI. Mol. Imaging 15, 1–12 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Bhattacharjee, R. et al. The relationships between patellofemoral bone remodeling, cartilage composition, and vertical loading rate: PET/MRI in isolated patellofemoral osteoarthritis. Osteoarthritis Cartilage 32, 1591–1600 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Haddock, B. et al. Assessment of acute bone loading in humans using [18F]NaF PET/MRI. Eur. J. Nucl. Med. Mol. Imaging 46, 2452–2463 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Bruce, O. L., Goyal, A., Gatti, A. A. & Kogan, F. Spatial correspondence between [18F]NaF PET uptake and bone strain in the tibia. In Proc. 34th Annual Meeting of ISMRM (ISMRM, 2025).

  169. Watkins, L. E. et al. [18F]Sodium fluoride PET-MRI detects increased metabolic bone response to whole-joint loading stress in osteoarthritic knees. Osteoarthritis Cartilage 30, 1515–1525 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kauppinen, K. et al. Ultrasonographic assessment of the normal femoral articular cartilage of the knee joint: comparison with 3D MRI. ScientificWorldJournal 2021, 9978819 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Harkey, M. S., Driban, J. B., Kuenze, C., Zhang, M. & Salzler, M. J. Pre-operative femoral cartilage ultrasound characteristics are altered in people who report symptoms at 1 year after anterior cruciate ligament reconstruction. Ultrasound Med. Biol. 47, 1976–1984 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Saarakkala, S. et al. Diagnostic performance of knee ultrasonography for detecting degenerative changes of articular cartilage. Osteoarthritis Cartilage 20, 376–381 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Podlipska, J. et al. Comparison of diagnostic performance of semi-quantitative knee ultrasound and knee radiography with MRI: Oulu Knee Osteoarthritis Study. Sci. Rep. 6, 22365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Nevalainen, M. T. et al. Ultrasonography of the late-stage knee osteoarthritis prior to total knee arthroplasty: comparison of the ultrasonographic, radiographic and intra-operative findings. Sci. Rep. 8, 17742 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Torp-Pedersen, S., Bartels, E. M., Wilhjelm, J. & Bliddal, H. Articular cartilage thickness measured with US is not as easy as it appears: a systematic review of measurement techniques and image interpretation. Ultraschall Med. 32, 54–61 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Sorriento, A. et al. Quantitative ultrasound classification of healthy and chemically degraded ex-vivo cartilage. Sci. Rep. 15, 20760 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Fransen, S. J., Roest, C., Simonis, F. F., Yakar, D. & Kwee, T. C. The scientific evidence of commercial AI products for MRI acceleration: a systematic review. Eur. Radiol. 35, 4736–4746 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Wirth, W. et al. Accuracy and longitudinal reproducibility of quantitative femorotibial cartilage measures derived from automated U-Net-based segmentation of two different MRI contrasts: data from the Osteoarthritis Initiative healthy reference cohort. Magn. Reson. Mater. Phys. Biol. Med. 34, 337–354 (2021).

    Article  Google Scholar 

  179. Yeoh, P. S. Q. et al. Emergence of deep learning in knee osteoarthritis diagnosis. Computational Intell. Neurosci. 2021, 4931437 (2021).

    Article  Google Scholar 

  180. Tack, A. & Zachow, S. Accurate automated volumetry of cartilage of the knee using convolutional neural networks: data from the Osteoarthritis Initiative. In Proc. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) 40–43 (IEEE, 2019).

  181. Guo, J. et al. Automated measurement and grading of knee cartilage thickness: a deep learning-based approach. Front. Med. 11, 1337993 (2024).

    Article  Google Scholar 

  182. Zhang, L. et al. Multi-level classification of knee cartilage lesion in multimodal MRI based on deep learning. Biomed. Signal. Process. Control. 83, 104687 (2023).

    Article  Google Scholar 

  183. Tang, X. et al. Fully automatic knee joint segmentation and quantitative analysis for osteoarthritis from magnetic resonance (MR) images using a deep learning model. Med. Sci. Monit. 28, e936733–936731 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Goyal, A. et al. Automating imaging biomarker analysis for knee osteoarthritis using an open-source MRI-based deep learning pipeline. Osteoarthr. Imaging 5, 100288 (2025).

    Article  Google Scholar 

  185. Sun, C. et al. Evaluation of the consistency of the MRI-based AI segmentation cartilage model using the natural tibial plateau cartilage. J. Orthop. Surg. Res. 19, 247 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Niu, Z., Ouyang, S., Xie, S., Chen, Y. -w & Lin, L. A survey on domain generalization for medical image analysis. Preprint at arXiv https://doi.org/10.48550/arXiv.2402.05035 (2024).

  187. Liu, F. et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection. Radiology 289, 160–169 (2018).

    Article  PubMed  Google Scholar 

  188. Huo, J. et al. Automatic grading assessments for knee MRI cartilage defects via self-ensembling semi-supervised learning with dual-consistency. Med. Image Anal. 80, 102508 (2022).

    Article  PubMed  Google Scholar 

  189. Marques, M. L. et al. Atlas for the CT Syndesmophyte Score (CTSS) in patients with axial spondyloarthritis. RMD Open 10, e003702 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Wu, H. et al. Axial spondyloarthritis: dual-energy virtual noncalcium CT in the detection of bone marrow edema in the sacroiliac joints. Radiology 290, 157–164 (2019).

    Article  PubMed  Google Scholar 

  191. Kroon, F. P. B. et al. development and reliability of the OMERACT thumb base osteoarthritis magnetic resonance imaging scoring system. J. Rheumatol. 44, 1694–1698 (2017).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ali Guermazi.

Ethics declarations

Competing interests

A.G. is the president and co-owner of Boston Core Imaging Lab (BICL), LLC., a company that provides image assessment devices to academia and the pharmaceutical industry; has received consulting fees from TissueGene, Novartis, ICM, Paradigm, Formation Bio, 4Moving, Scarcell Therapeutics, Pacira, Coval, Medipost, Levicept and Peptinov; is the co-editor-in-chief of Skeletal Radiology. F.E. is the co-owner and CEO of Chondrometrics GmbH, a company that provides MR image analysis services to academic researchers and to the pharmaceutical industry; has provided consulting services to MerckSerono, Galapagos/Servier, Kolon Tissue Gene, Novartis, Peptinov, Formation Bio, 4 P Pharma, Sanofi and Artialis. D.H. has received publication royalties from Wolters Kluwer. S.N. has received lecture honoraria by Bayer Vital AG. E.H.G.O. has received research support from GE Healthcare. W.W. is in part-time employment with Chondrometrics GmbH and is a co-owner of Chondrometrics GmbH. F.W.R. is the CMO, director of research and shareholder of Boston Imaging Core Lab (BICL), LLC. F.W.R. is editor-in-chief of Osteoarthritis Imaging. G.G., M.J., F.K., X.L., T.M.L., P.O., S.S. and S.T. declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Ichiro Sekiya, Vladimir Juras and Mikko Nissi for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

A non-systematic literature search was performed using PubMed, starting with a list of terms including the title of the current manuscript, followed by multiple search terms including but not limited to “imaging”, “cartilage”, “quantitative”, “semiquantitative”, “joint”, “whole organ”, “joint tissue”, “joint structure”, “assessment”, “score”, “measure”, “compositional MRI”, “computed tomography”, “ultrasound”, “metabolic imaging”, “PET”, “ultrashort echo time imaging”, “diffusion imaging”, “T2 Mapping”, “T1rho”, “delayed gadolinium enhanced MRI of cartilage”, “arthrography”, “reliability”, “artificial intelligence” and possible variants for each. The focus of the literature search was on articles published in the past 5 years. Results of the search were reviewed by the first and last authors to determine the relevance of the selected publications for the focus topic of this manuscript. All authors of this article made a joint decision on which articles to include and considered the most relevant. Finally, to receive broad and detailed input, informal (that is, non-structured) consultations were held with domain experts in various research areas. The identified methodologies, findings, concepts and recommendations were then organized into a systematic framework, providing an overview of advances in cartilage imaging, considering the state-of-the-art of current imaging science.

Supplementary information

Glossary

Arthrography

Technique that is used for direct visualization of cartilage surface damage after intra-articular injection of either an iodine-based (CT) or gadolinium-based (MRI) contrast agent.

Compositional MRI

Umbrella term for MRI techniques that allow for evaluation of the cartilage ultrastructure including but not limited to assessment of collagen content and organization, water content and glycosaminoglycan content.

Convolutional neural network

(CNN). Type of deep-learning model commonly used in medical imaging to automatically detect and analyse patterns in images, such as identifying tumours or segmenting organs.

Delayed gadolinium-enhanced MRI of cartilage

(dGEMRIC). Compositional MRI technique that involves intra-articular administration of a gadolinium-based contrast agent using repulsive forces between a negatively charged contrast agent (commonly gadopentetate dimeglumine) and negative charges on glycosaminoglycans to indirectly measure glycosaminoglycan content.

Dice similarity coefficient

(DSC). Statistical measure used to evaluate the spatial overlap between two segmented regions, such as an automated segmentation and a ground truth (manual segmentation). It ranges from 0 (no overlap) to 1 (perfect overlap) and is commonly used to assess the accuracy of tissue or lesion segmentation in medical imaging.

Diffusion imaging

Compositional MRI technique that enables visualization of the mobility of water molecules within a given tissue. Increased mobility reflects early cartilage pathology.

PET

Imaging technique that uses different radioactive tracers that are administered intra-venously to visualize and measure metabolic activity of a given tissue.

Segmentation-based quantitative MRI

Using high-resolution 3D MRI sequences that offer a high contrast between cartilage, the subchondral bone and intra-articular joint fluid, quantitative assessment is based on manual, automated or semi-automated segmentation of cartilage. Several parameters are being extracted, including thickness, volume, amount of full-thickness damage or joint surface area.

Semi-quantitative MRI assessment

Applying ordinal grading scales, semi-quantitative cartilage assessment is performed by expert readers considering area extent and depth of cartilage damage in a specific anatomical subregion of a joint.

T1ρ

Compositional MRI technique, which is also termed spin-lattice relaxation time in the rotating frame, reflects the proteoglycan concentration within the cartilage matrix by probing the interactions between motion-restricted water molecules and their local macromolecular environment.

T2 mapping

Compositional MRI technique that quantifies the T2 relaxation time of a given tissue. In the context of cartilage imaging, T2 reflects collagen content and organization and water content.

Ultra-short echo-time imaging

(UTE). Very low echo times at MRI acquisition enable visualization of tissues that do not commonly exhibit a signal such as bone or tendons or the deep calcified layer of cartilage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guermazi, A., Eckstein, F., Gold, G. et al. Advances in cartilage imaging techniques. Nat Rev Rheumatol (2026). https://doi.org/10.1038/s41584-026-01353-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41584-026-01353-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing