Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The diverse roles of SPOP in prostate cancer and kidney cancer

Abstract

Multiple studies have confirmed that speckle-type pox virus and zinc finger (POZ) protein (SPOP) functions as a substrate adaptor of cullin 3-based E3 ligase and has a crucial role in various cellular processes via specific targeting of proteins for ubiquitination and subsequent proteasomal degradation. Dysregulation of SPOP-mediated proteolysis might be involved in the development and progression of human prostate and kidney cancers. In prostate cancer, SPOP seems to function as a tumour suppressor by targeting several proteins, including androgen receptor (AR), steroid receptor coactivator 3 (SRC3) and BRD4, for degradation, whereas it might function as an oncoprotein in kidney cancer, for example, by targeting phosphatase and tensin homologue (PTEN) for proteasomal degradation. In addition, nuclear SPOP targets AR for degradation and has a role as a tumour suppressor in prostate cancer; however, in kidney cancer, SPOP largely accumulates in the cytoplasm and fails to promote degradation of AR located in the nucleus, resulting in activation of AR-driven pathways and cancer progression. Owing to the context-dependent function of SPOP in human malignancies, further assessment of the molecular mechanisms involving SPOP in prostate and kidney cancers is needed to improve our understanding of its role in the development of these cancer types. Treatments that target SPOP might become therapeutic strategies in these malignancies in the future.

Key points

  • Speckle-type pox virus and zinc finger (POZ) protein (SPOP) is a substrate adaptor of cullin 3-based E3 ligase and targets multiple substrates with important biological functions in a plethora of cellular processes for ubiquitination and proteasomal degradation.

  • SPOP dysregulation occurs in various cancer types, including prostate cancer and kidney cancer; as SPOP controls the turnover of key cellular signalling factors, dysregulation leads to abnormal regulation in cell proliferation, apoptosis, cell cycle, motility and metastasis.

  • SPOP can have oncogenic and tumour-suppressive functions in a tissue-specific manner; SPOP seems to function as a tumour suppressor in prostate cancer but as an oncoprotein in kidney cancer.

  • In prostate cancer, SPOP targets multiple oncoproteins, such as androgen receptor (AR), Cdc20, Myc, ERG, steroid receptor coactivator 3 (SRC3), PDL1 and BRD4, for degradation, whereas it controls the turnover of several tumour suppressors in renal cell carcinoma, including phosphatase and tensin homologue (PTEN), Daxx and DUSP7.

  • Targeting SPOP might be a promising strategy for prevention or therapy of human cancers, such as prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Components of cullin 3 E3 ligases.
Fig. 2: SPOP structural features.
Fig. 3: Potential tumour-suppressive roles of SPOP in prostate cancer.
Fig. 4: Potential oncogenic roles of SPOP in kidney cancer.

Similar content being viewed by others

References

  1. Wei, X. et al. Functional roles of speckle-type Poz (SPOP) protein in genomic stability. J. Cancer 9, 3257–3262 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. Stone, L. Kidney cancer: on target - inhibiting SPOP in ccRCC. Nat. Rev. Urol. 13, 630 (2016).

    CAS  PubMed  Google Scholar 

  3. Ciechanover, A. The unravelling of the ubiquitin system. Nat. Rev. Mol. Cell Biol. 16, 322–324 (2015).

    CAS  PubMed  Google Scholar 

  4. Nakayama, K. I. & Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nat. Rev. Cancer 6, 369–381 (2006).

    CAS  PubMed  Google Scholar 

  5. Hershko, A., Heller, H., Elias, S. & Ciechanover, A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 258, 8206–8214 (1983).

    CAS  PubMed  Google Scholar 

  6. Schulman, B. A. & Harper, J. W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10, 319–331 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Natarajan, C. & Takeda, K. Regulation of various DNA repair pathways by E3 ubiquitin ligases. J. Cancer Res. Ther. 13, 157–169 (2017).

    CAS  PubMed  Google Scholar 

  8. O’Connor, H. F. & Huibregtse, J. M. Enzyme-substrate relationships in the ubiquitin system: approaches for identifying substrates of ubiquitin ligases. Cell Mol. Life Sci. 74, 3363–3375 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Liu, J. et al. Targeting the ubiquitin pathway for cancer treatment. Biochim. Biophys. Acta 1855, 50–60 (2015).

    CAS  PubMed  Google Scholar 

  10. Buetow, L. & Huang, D. T. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 17, 626–642 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    CAS  PubMed  Google Scholar 

  12. Genschik, P., Sumara, I. & Lechner, E. The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J. 32, 2307–2320 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hernandez-Munoz, I. et al. Stable X chromosome inactivation involves the PRC1 polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc. Natl Acad. Sci. USA 102, 7635–7640 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng, J. et al. Functional analysis of Cullin 3 E3 ligases in tumorigenesis. Biochim. Biophys. Acta Rev. Cancer 1869, 11–28 (2018).

    CAS  PubMed  Google Scholar 

  15. Singer, J. D., Gurian-West, M., Clurman, B. & Roberts, J. M. Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev. 13, 2375–2387 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kossatz, U. et al. The cyclin E regulator cullin 3 prevents mouse hepatic progenitor cells from becoming tumor-initiating cells. J. Clin. Invest. 120, 3820–3833 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. McCormick, J. A. et al. Hyperkalemic hypertension-associated cullin 3 promotes WNK signaling by degrading KLHL3. J. Clin. Invest. 124, 4723–4736 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mathew, R. et al. BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs. Nature 491, 618–621 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, J. et al. Analysis of Drosophila segmentation network identifies a JNK pathway factor overexpressed in kidney cancer. Science 323, 1218–1222 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brenner, J. C. & Chinnaiyan, A. M. Disruptive events in the life of prostate cancer. Cancer Cell 19, 301–303 (2011).

    CAS  PubMed  Google Scholar 

  21. Nagai, Y. et al. Identification of a novel nuclear speckle-type protein, SPOP. FEBS Lett. 418, 23–26 (1997).

    CAS  PubMed  Google Scholar 

  22. Zhuang, M. et al. Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol. Cell 36, 39–50 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, G. et al. SPOP promotes tumorigenesis by acting as a key regulatory hub in kidney cancer. Cancer Cell 25, 455–468 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Barbieri, C. E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44, 685–689 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Le Gallo, M. et al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat. Genet. 44, 1310–1315 (2012).

    PubMed  PubMed Central  Google Scholar 

  26. Kim, M. S., Je, E. M., Oh, J. E., Yoo, N. J. & Lee, S. H. Mutational and expressional analyses of SPOP, a candidate tumor suppressor gene, in prostate, gastric and colorectal cancers. APMIS 121, 626–633 (2013).

    CAS  PubMed  Google Scholar 

  27. Yoo, S. K. et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 12, e1006239 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010).

    CAS  PubMed  Google Scholar 

  29. Chong, P. A. & Forman-Kay, J. D. Liquid-liquid phase separation in cellular signaling systems. Curr. Opin. Struct. Biol. 41, 180–186 (2016).

    CAS  PubMed  Google Scholar 

  30. Bouchard, J. J. et al. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol. Cell 72, 19–36.e8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Richards, E. J. Inherited epigenetic variation–revisiting soft inheritance. Nat. Rev. Genet. 7, 395–401 (2006).

    CAS  PubMed  Google Scholar 

  32. Zhi, X. et al. Silencing speckle-type POZ protein by promoter hypermethylation decreases cell apoptosis through upregulating Hedgehog signaling pathway in colorectal cancer. Cell Death Dis. 7, e2569 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang, C. J., Chen, H. Y., Lin, W. Y. & Choo, K. B. Differential expression of speckled POZ protein, SPOP: putative regulation by miR-145. J. Biosci. 39, 401–413 (2014).

    PubMed  Google Scholar 

  34. Xu, J., Wang, F., Wang, X., He, Z. & Zhu, X. miRNA-543 promotes cell migration and invasion by targeting SPOP in gastric cancer. Onco Targets Ther. 11, 5075–5082 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ding, M. et al. The E2F1-miR-520/372/373-SPOP axis modulates progression of renal carcinoma. Cancer Res. 78, 6771–6784 (2018).

    CAS  PubMed  Google Scholar 

  36. LaGory, E. L. & Giaccia, A. J. The ever-expanding role of HIF in tumour and stromal biology. Nat. Cell Biol. 18, 356–365 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Guo, Z. Q. et al. Small-molecule targeting of E3 ligase adaptor SPOP in kidney cancer. Cancer Cell 30, 474–484 (2016).

    CAS  PubMed  Google Scholar 

  38. An, J., Wang, C., Deng, Y., Yu, L. & Huang, H. Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants. Cell Rep. 6, 657–669 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lai, J. & Batra, J. Speckle-type POZ protein mutations interrupt tumor suppressor function of speckle-type POZ protein in prostate cancer by affecting androgen receptor degradation. Asian J. Androl. 16, 659–660 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Geng, C. et al. Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer. Cancer Res. 74, 5631–5643 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dai, X. et al. Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nat. Med. 23, 1063–1071 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Janouskova, H. et al. Opposing effects of cancer-type-specific SPOP mutants on BET protein degradation and sensitivity to BET inhibitors. Nat. Med. 23, 1046–1054 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, P. et al. Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation. Nat. Med. 23, 1055–1062 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, F. et al. Prostate cancer-associated mutation in SPOP impairs its ability to target Cdc20 for poly-ubiquitination and degradation. Cancer Lett. 385, 207–214 (2017).

    CAS  PubMed  Google Scholar 

  45. Geng, C. et al. SPOP regulates prostate epithelial cell proliferation and promotes ubiquitination and turnover of c-MYC oncoprotein. Oncogene 36, 4767–4777 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. An, J. et al. Truncated ERG oncoproteins from TMPRSS2-ERG fusions are resistant to SPOP-mediated proteasome degradation. Mol. Cell 59, 904–916 (2015).

    CAS  PubMed  Google Scholar 

  47. Duan, S. & Pagano, M. SPOP mutations or ERG rearrangements result in enhanced levels of ERG to promote cell invasion in prostate cancer. Mol. Cell 59, 883–884 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gan, W. et al. SPOP promotes ubiquitination and degradation of the ERG oncoprotein to suppress prostate cancer progression. Mol. Cell 59, 917–930 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Geng, C. et al. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc. Natl Acad. Sci. USA 110, 6997–7002 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Blattner, M. et al. SPOP mutations in prostate cancer across demographically diverse patient cohorts. Neoplasia 16, 14–20 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. Boysen, G. et al. SPOP-mutated/CHD1-deleted lethal prostate cancer and abiraterone sensitivity. Clin. Cancer Res. 24, 5585–5593 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, D. et al. Molecular alterations in prostate cancer and association with MRI features. Prostate Cancer Prostatic Dis. 20, 430–435 (2017).

    CAS  PubMed  Google Scholar 

  54. Bottcher, R. et al. Cribriform and intraductal prostate cancer are associated with increased genomic instability and distinct genomic alterations. BMC Cancer 18, 8 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. Beltran, H. et al. Impact of therapy on genomics and transcriptomics in high-risk prostate cancer treated with neoadjuvant docetaxel and androgen deprivation therapy. Clin. Cancer Res. 23, 6802–6811 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nguyen, H. M. et al. LuCaP prostate cancer patient-derived xenografts reflect the molecular heterogeneity of advanced disease and serve as models for evaluating cancer therapeutics. Prostate 77, 654–671 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Spans, L. et al. Genomic and epigenomic analysis of high-risk prostate cancer reveals changes in hydroxymethylation and TET1. Oncotarget 7, 24326–24338 (2016).

    PubMed  PubMed Central  Google Scholar 

  58. Manson-Bahr, D. et al. Mutation detection in formalin-fixed prostate cancer biopsies taken at the time of diagnosis using next-generation DNA sequencing. J. Clin. Pathol. 68, 212–217 (2015).

    CAS  PubMed  Google Scholar 

  59. Rubin, M. A. & Demichelis, F. The genomics of prostate cancer: emerging understanding with technologic advances. Mod. Pathol. 31, S1–S11 (2018).

    PubMed  Google Scholar 

  60. Zuhlke, K. A. et al. Identification of a novel germline SPOP mutation in a family with hereditary prostate cancer. Prostate 74, 983–990 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Buckles, E. et al. Identification of speckle-type POZ protein somatic mutations in African American prostate cancer. Asian J. Androl. 16, 829–832 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Khani, F. et al. Evidence for molecular differences in prostate cancer between African American and Caucasian men. Clin. Cancer Res. 20, 4925–4934 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Vinceneux, A. et al. Ductal adenocarcinoma of the prostate: clinical and biological profiles. Prostate 77, 1242–1250 (2017).

    CAS  PubMed  Google Scholar 

  64. Wang, H. et al. Quantification of mutant SPOP proteins in prostate cancer using mass spectrometry-based targeted proteomics. J. Transl Med. 15, 175 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. Romanel, A. et al. Inherited determinants of early recurrent somatic mutations in prostate cancer. Nat. Commun. 8, 48 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Tan, S. H., Petrovics, G. & Srivastava, S. Prostate cancer genomics: recent advances and the prevailing underrepresentation from racial and ethnic minorities. Int. J. Mol. Sci. 19, E1255 (2018).

  67. Jung, S. H. et al. Genetic progression of high grade prostatic intraepithelial neoplasia to prostate cancer. Eur. Urol. 69, 823–830 (2016).

    CAS  PubMed  Google Scholar 

  68. Hjorth-Jensen, K. et al. SPOP promotes transcriptional expression of DNA repair and replication factors to prevent replication stress and genomic instability. Nucleic Acids Res. 46, 9484–9495 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Boysen, G. et al. SPOP mutation leads to genomic instability in prostate cancer. Elife 4, e09207 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. Zhang, D. et al. Speckle-type POZ protein, SPOP, is involved in the DNA damage response. Carcinogenesis 35, 1691–1697 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Claiborn, K. C. et al. Pcif1 modulates Pdx1 protein stability and pancreatic beta cell function and survival in mice. J. Clin. Invest. 120, 3713–3721 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Blattner, M. et al. SPOP mutation drives prostate tumorigenesis in vivo through coordinate regulation of PI3K/mTOR and AR signaling. Cancer Cell 31, 436–451 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Garcia-Flores, M. et al. Clinico-pathological significance of the molecular alterations of the SPOP gene in prostate cancer. Eur. J. Cancer 50, 2994–3002 (2014).

    CAS  PubMed  Google Scholar 

  74. Loh, S. N. Follow the mutations: toward class-specific, small-molecule reactivation of p53. Biomolecules 10, 303 (2020).

    CAS  PubMed Central  Google Scholar 

  75. Lopez-Bergami, P., Lau, E. & Ronai, Z. Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat. Rev. Cancer 10, 65–76 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Maekawa, T. et al. Leucine zipper structure of the protein CRE-BP1 binding to the cyclic AMP response element in brain. EMBO J. 8, 2023–2028 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Vlahopoulos, S. A. et al. The role of ATF-2 in oncogenesis. Bioessays 30, 314–327 (2008).

    CAS  PubMed  Google Scholar 

  78. Ricote, M. et al. The p38 transduction pathway in prostatic neoplasia. J. Pathol. 208, 401–407 (2006).

    CAS  PubMed  Google Scholar 

  79. Zhang, S., Dong, X., Ji, T., Chen, G. & Shan, L. Long non-coding RNA UCA1 promotes cell progression by acting as a competing endogenous RNA of ATF2 in prostate cancer. Am. J. Transl Res. 9, 366–375 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ma, J. et al. SPOP promotes ATF2 ubiquitination and degradation to suppress prostate cancer progression. J. Exp. Clin. Cancer Res. 37, 145 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Belkina, A. C. & Denis, G. V. BET domain co-regulators in obesity, inflammation and cancer. Nat. Rev. Cancer 12, 465–477 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Jang, M. K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534 (2005).

    CAS  PubMed  Google Scholar 

  84. Shi, J. & Vakoc, C. R. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol. Cell 54, 728–736 (2014).

    CAS  PubMed  Google Scholar 

  85. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mertz, J. A. et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl Acad. Sci. USA 108, 16669–16674 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Shi, J. et al. Disrupting the interaction of BRD4 with diacetylated twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell 25, 210–225 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Asangani, I. A. et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510, 278–282 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, X. et al. BRD4 promotes DNA repair and mediates the formation of TMPRSS2-ERG gene rearrangements in prostate cancer. Cell Rep. 22, 796–808 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Crawford, N. P. et al. Bromodomain 4 activation predicts breast cancer survival. Proc. Natl Acad. Sci. USA 105, 6380–6385 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Dai, X., Wang, Z. & Wei, W. SPOP-mediated degradation of BRD4 dictates cellular sensitivity to BET inhibitors. Cell Cycle 16, 2326–2329 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Jin, X. et al. DUB3 promotes BET inhibitor resistance and cancer progression by deubiquitinating BRD4. Mol. Cell 71, 592–605 e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yu, H. Cdc20: a WD40 activator for a cell cycle degradation machine. Mol. Cell 27, 3–16 (2007).

    CAS  PubMed  Google Scholar 

  94. Kidokoro, T. et al. CDC20, a potential cancer therapeutic target, is negatively regulated by p53. Oncogene 27, 1562–1571 (2008).

    CAS  PubMed  Google Scholar 

  95. Wang, L. et al. Targeting Cdc20 as a novel cancer therapeutic strategy. Pharmacol. Ther. 151, 141–151 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Karra, H. et al. Cdc20 and securin overexpression predict short-term breast cancer survival. Br. J. Cancer 110, 2905–2913 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ding, Z. Y., Wu, H. R., Zhang, J. M., Huang, G. R. & Ji, D. D. Expression characteristics of CDC20 in gastric cancer and its correlation with poor prognosis. Int. J. Clin. Exp. Pathol. 7, 722–727 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gayyed, M. F., El-Maqsoud, N. M., Tawfiek, E. R., El Gelany, S. A. & Rahman, M. F. A comprehensive analysis of CDC20 overexpression in common malignant tumors from multiple organs: its correlation with tumor grade and stage. Tumour Biol. 37, 749–762 (2016).

    CAS  PubMed  Google Scholar 

  99. Mao, Y. et al. Overexpression of Cdc20 in clinically localized prostate cancer: relation to high Gleason score and biochemical recurrence after laparoscopic radical prostatectomy. Cancer Biomark. 16, 351–358 (2016).

    CAS  PubMed  Google Scholar 

  100. Manchado, E. et al. Targeting mitotic exit leads to tumor regression in vivo: modulation by Cdk1, mastl, and the PP2A/B55α,δ phosphatase. Cancer Cell 18, 641–654 (2010).

    CAS  PubMed  Google Scholar 

  101. Huang, H. C., Shi, J., Orth, J. D. & Mitchison, T. J. Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell 16, 347–358 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, K. et al. Silencing of CDC20 suppresses metastatic castration-resistant prostate cancer growth and enhances chemosensitivity to docetaxel. Int. J. Oncol. 49, 1679–1685 (2016).

    CAS  PubMed  Google Scholar 

  103. Dang, C. V. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb. Perspect. Med. 3, a014217 (2013).

    PubMed  PubMed Central  Google Scholar 

  104. Fleming, W. H. et al. Expression of the c-myc protooncogene in human prostatic carcinoma and benign prostatic hyperplasia. Cancer Res. 46, 1535–1538 (1986).

    CAS  PubMed  Google Scholar 

  105. Gurel, B. et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod. Pathol. 21, 1156–1167 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Antonarakis, E. S. et al. An immunohistochemical signature comprising PTEN, MYC, and Ki67 predicts progression in prostate cancer patients receiving adjuvant docetaxel after prostatectomy. Cancer 118, 6063–6071 (2012).

    CAS  PubMed  Google Scholar 

  107. Hawksworth, D. et al. Overexpression of C-MYC oncogene in prostate cancer predicts biochemical recurrence. Prostate Cancer Prostatic Dis. 13, 311–315 (2010).

    CAS  PubMed  Google Scholar 

  108. Vander Griend, D. J., Litvinov, I. V. & Isaacs, J. T. Conversion of androgen receptor signaling from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells involves a gain of function in c-Myc regulation. Int. J. Biol. Sci. 10, 627–642 (2014).

    Google Scholar 

  109. Antony, L., van der Schoor, F., Dalrymple, S. L. & Isaacs, J. T. Androgen receptor (AR) suppresses normal human prostate epithelial cell proliferation via AR/β-catenin/TCF-4 complex inhibition of c-MYC transcription. Prostate 74, 1118–1131 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Bernard, D., Pourtier-Manzanedo, A., Gil, J. & Beach, D. H. Myc confers androgen-independent prostate cancer cell growth. J. Clin. Invest. 112, 1724–1731 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zafarana, G. et al. Copy number alterations of c-MYC and PTEN are prognostic factors for relapse after prostate cancer radiotherapy. Cancer 118, 4053–4062 (2012).

    CAS  PubMed  Google Scholar 

  112. Siu, K. T., Rosner, M. R. & Minella, A. C. An integrated view of cyclin E function and regulation. Cell Cycle 11, 57–64 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Koepp, D. M. et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294, 173–177 (2001).

    CAS  PubMed  Google Scholar 

  114. Welcker, M. & Clurman, B. E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer 8, 83–93 (2008).

    CAS  PubMed  Google Scholar 

  115. Tan, Y., Sangfelt, O. & Spruck, C. The Fbxw7/hCdc4 tumor suppressor in human cancer. Cancer Lett. 271, 1–12 (2008).

    CAS  PubMed  Google Scholar 

  116. Spruck, C. H., Won, K. A. & Reed, S. I. Deregulated cyclin E induces chromosome instability. Nature 401, 297–300 (1999).

    CAS  PubMed  Google Scholar 

  117. Loeb, K. R. et al. A mouse model for cyclin E-dependent genetic instability and tumorigenesis. Cancer Cell 8, 35–47 (2005).

    CAS  PubMed  Google Scholar 

  118. Hwang, H. C. & Clurman, B. E. Cyclin E in normal and neoplastic cell cycles. Oncogene 24, 2776–2786 (2005).

    CAS  PubMed  Google Scholar 

  119. Resnitzky, D., Gossen, M., Bujard, H. & Reed, S. I. Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol. Cell Biol. 14, 1669–1679 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Bortner, D. M. & Rosenberg, M. P. Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Mol. Cell Biol. 17, 453–459 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Keyomarsi, K. et al. Cyclin E and survival in patients with breast cancer. N. Engl. J. Med. 347, 1566–1575 (2002).

    CAS  PubMed  Google Scholar 

  122. Pils, D. et al. Cyclin E1 (CCNE1) as independent positive prognostic factor in advanced stage serous ovarian cancer patients – a study of the OVCAD consortium. Eur. J. Cancer 50, 99–110 (2014).

    CAS  PubMed  Google Scholar 

  123. Ju, L. G. et al. SPOP suppresses prostate cancer through regulation of CYCLIN E1 stability. Cell Death Differ. 26, 1156–1168 (2019).

    CAS  PubMed  Google Scholar 

  124. Sanden, C. & Gullberg, U. The DEK oncoprotein and its emerging roles in gene regulation. Leukemia 29, 1632–1636 (2015).

    CAS  PubMed  Google Scholar 

  125. Teng, Y., Lang, L. & Jauregui, C. E. The complexity of DEK signaling in cancer progression. Curr. Cancer Drug Targets 18, 256–265 (2018).

    CAS  PubMed  Google Scholar 

  126. Lin, D. et al. Identification of DEK as a potential therapeutic target for neuroendocrine prostate cancer. Oncotarget 6, 1806–1820 (2015).

    PubMed  Google Scholar 

  127. Theurillat, J. P. et al. Prostate cancer. Ubiquitylome analysis identifies dysregulation of effector substrates in SPOP-mutant prostate cancer. Science 346, 85–89 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang, Q. et al. Control of cyclin D1 and breast tumorigenesis by the EglN2 prolyl hydroxylase. Cancer Cell 16, 413–424 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Zheng, X. et al. Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase. Genes. Dev. 28, 1429–1444 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Henze, A. T. et al. Prolyl hydroxylases 2 and 3 act in gliomas as protective negative feedback regulators of hypoxia-inducible factors. Cancer Res. 70, 357–366 (2010).

    CAS  PubMed  Google Scholar 

  131. Briggs, K. J. et al. Paracrine induction of HIF by glutamate in breast cancer: EglN1 senses cysteine. Cell 166, 126–139 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Deschoemaeker, S. et al. PHD1 regulates p53-mediated colorectal cancer chemoresistance. EMBO Mol. Med. 7, 1350–1365 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang, L. et al. Tumor suppressor SPOP ubiquitinates and degrades EglN2 to compromise growth of prostate cancer cells. Cancer Lett. 390, 11–20 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    CAS  PubMed  Google Scholar 

  135. Yang, Y. et al. Loss of FOXO1 cooperates with TMPRSS2-ERG overexpression to promote prostate tumorigenesis and cell invasion. Cancer Res. 77, 6524–6537 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Lin, B. et al. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res. 59, 4180–4184 (1999).

    CAS  PubMed  Google Scholar 

  137. Nam, R. K. et al. Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. Br. J. Cancer 97, 1690–1695 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Seth, A. & Watson, D. K. ETS transcription factors and their emerging roles in human cancer. Eur. J. Cancer 41, 2462–2478 (2005).

    CAS  PubMed  Google Scholar 

  139. Shoag, J. et al. SPOP mutation drives prostate neoplasia without stabilizing oncogenic transcription factor ERG. J. Clin. Invest. 128, 381–386 (2018).

    PubMed  Google Scholar 

  140. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bonfiglio, R. et al. PD-L1 in immune-escape of breast and prostate cancers: from biology to therapy. Future Oncol. 13, 2129–2131 (2017).

    CAS  PubMed  Google Scholar 

  142. Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).

    CAS  PubMed  Google Scholar 

  143. Sunshine, J. & Taube, J. M. PD-1/PD-L1 inhibitors. Curr. Opin. Pharmacol. 23, 32–38 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Gridelli, C. et al. The evolving role of nivolumab in non-small-cell lung cancer for second-line treatment: a new cornerstone for our treatment algorithms. Results from an international experts panel meeting of the Italian Association of Thoracic Oncology. Clin. Lung Cancer 17, 161–168 (2016).

    CAS  PubMed  Google Scholar 

  145. Presotto, E. M. et al. Endocrine toxicity in cancer patients treated with nivolumab or pembrolizumab: results of a large multicentre study. J. Endocrinol. Invest. 43, 337–345 (2020).

    CAS  PubMed  Google Scholar 

  146. Prasad, V. & Kaestner, V. Nivolumab and pembrolizumab: monoclonal antibodies against programmed cell death-1 (PD-1) that are interchangeable. Semin. Oncol. 44, 132–135 (2017).

    CAS  PubMed  Google Scholar 

  147. Brahmer, J. R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Taube, J. M. et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 20, 5064–5074 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Zou, W. & Chen, L. Inhibitory B7-family molecules in the tumour microenvironment. Nat. Rev. Immunol. 8, 467–477 (2008).

    CAS  PubMed  Google Scholar 

  151. Fankhauser, C. D. et al. Comprehensive immunohistochemical analysis of PD-L1 shows scarce expression in castration-resistant prostate cancer. Oncotarget 9, 10284–10293 (2018).

    PubMed  Google Scholar 

  152. Roth, T. J. et al. B7-H3 ligand expression by prostate cancer: a novel marker of prognosis and potential target for therapy. Cancer Res. 67, 7893–7900 (2007).

    CAS  PubMed  Google Scholar 

  153. Zhang, J. et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553, 91–95 (2018).

    CAS  PubMed  Google Scholar 

  154. Mukhopadhyay, D. & Dasso, M. Modification in reverse: the SUMO proteases. Trends Biochem. Sci. 32, 286–295 (2007).

    CAS  PubMed  Google Scholar 

  155. Yates, K. E., Korbel, G. A., Shtutman, M., Roninson, I. B. & DiMaio, D. Repression of the SUMO-specific protease Senp1 induces p53-dependent premature senescence in normal human fibroblasts. Aging Cell 7, 609–621 (2008).

    CAS  PubMed  Google Scholar 

  156. Bischof, O. et al. The E3 SUMO ligase PIASy is a regulator of cellular senescence and apoptosis. Mol. Cell 22, 783–794 (2006).

    CAS  PubMed  Google Scholar 

  157. Drag, M., Mikolajczyk, J., Krishnakumar, I. M., Huang, Z. & Salvesen, G. S. Activity profiling of human deSUMOylating enzymes (SENPs) with synthetic substrates suggests an unexpected specificity of two newly characterized members of the family. Biochem. J. 409, 461–469 (2008).

    CAS  PubMed  Google Scholar 

  158. Itahana, Y., Yeh, E. T. & Zhang, Y. Nucleocytoplasmic shuttling modulates activity and ubiquitination-dependent turnover of SUMO-specific protease 2. Mol. Cell Biol. 26, 4675–4689 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Gong, L. & Yeh, E. T. Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J. Biol. Chem. 281, 15869–15877 (2006).

    CAS  PubMed  Google Scholar 

  160. Bawa-Khalfe, T. et al. Differential expression of SUMO-specific protease 7 variants regulates epithelial-mesenchymal transition. Proc. Natl Acad. Sci. USA 109, 17466–17471 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Lin, F. M. et al. SUMOylation of HP1α supports association with ncRNA to define responsiveness of breast cancer cells to chemotherapy. Oncotarget 7, 30336–30349 (2016).

    PubMed  PubMed Central  Google Scholar 

  162. Gonzalez-Prieto, R., Cuijpers, S. A., Kumar, R., Hendriks, I. A. & Vertegaal, A. C. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4. Cell Cycle 14, 1859–1872 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhu, H. et al. SPOP E3 ubiquitin ligase adaptor promotes cellular senescence by degrading the SENP7 deSUMOylase. Cell Rep. 13, 1183–1193 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Xu, J., Wu, R. C. & O’Malley, B. W. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat. Rev. Cancer 9, 615–630 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhou, X. E. et al. Identification of SRC3/AIB1 as a preferred coactivator for hormone-activated androgen receptor. J. Biol. Chem. 285, 9161–9171 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Heemers, H. V. et al. Differential regulation of steroid nuclear receptor coregulator expression between normal and neoplastic prostate epithelial cells. Prostate 70, 959–970 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Eedunuri, V. K. et al. miR-137 targets p160 steroid receptor coactivators SRC1, SRC2, and SRC3 and inhibits cell proliferation. Mol. Endocrinol. 29, 1170–1183 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Xiong, W. et al. Oncogenic non-coding RNA NEAT1 promotes the prostate cancer cell growth through the SRC3/IGF1R/AKT pathway. Int. J. Biochem. Cell Biol. 94, 125–132 (2018).

    CAS  PubMed  Google Scholar 

  169. Li, C. et al. Tumor-suppressor role for the SPOP ubiquitin ligase in signal-dependent proteolysis of the oncogenic co-activator SRC-3/AIB1. Oncogene 30, 4350–4364 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Kikuchi, M. et al. TRIM24 mediates ligand-dependent activation of androgen receptor and is repressed by a bromodomain-containing protein, BRD7, in prostate cancer cells. Biochim. Biophys. Acta 1793, 1828–1836 (2009).

    CAS  PubMed  Google Scholar 

  171. Groner, A. C. et al. TRIM24 is an oncogenic transcriptional activator in prostate cancer. Cancer Cell 29, 846–858 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhu, K. et al. SPOP-containing complex regulates SETD2 stability and H3K36me3-coupled alternative splicing. Nucleic Acids Res. 45, 92–105 (2017).

    CAS  PubMed  Google Scholar 

  173. Harb, O. A. et al. SPOP, ZEB-1 and E-cadherin expression in clear cell renal cell carcinoma (cc-RCC): clinicopathological and prognostic significance. Pathophysiology 25, 335–345 (2018).

    CAS  PubMed  Google Scholar 

  174. Chauhan, A., Bhattacharyya, S., Ojha, R., Mandal, A. K. & Singh, S. K. Speckle-type POZ protein as a diagnostic biomarker in renal cell carcinoma. J. Cancer Res. Ther. 14, 977–982 (2018).

    CAS  PubMed  Google Scholar 

  175. Nagy, A., Lanczky, A., Menyhart, O. & Gyorffy, B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci. Rep. 8, 9227 (2018).

    PubMed  PubMed Central  Google Scholar 

  176. Anaya, J. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Computer Sci. 2, e67 (2016).

    Google Scholar 

  177. Zhao, W., Zhou, J., Deng, Z., Gao, Y. & Cheng, Y. SPOP promotes tumor progression via activation of β-catenin/TCF4 complex in clear cell renal cell carcinoma. Int. J. Oncol. 49, 1001–1008 (2016).

    CAS  PubMed  Google Scholar 

  178. Puisieux, A., Brabletz, T. & Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 16, 488–494 (2014).

    CAS  PubMed  Google Scholar 

  179. Tam, W. L. & Weinberg, R. A. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat. Med. 19, 1438–1449 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Liu, X., Sun, G. & Sun, X. RNA interference-mediated silencing of speckle-type POZ protein promotes apoptosis of renal cell cancer cells. Onco Targets Ther. 9, 2393–2402 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. He, D. et al. ASC-J9 suppresses renal cell carcinoma progression by targeting an androgen receptor-dependent HIF2α/VEGF signaling pathway. Cancer Res. 74, 4420–4430 (2014).

    CAS  PubMed  Google Scholar 

  182. Adelaiye-Ogala, R. et al. Therapeutic targeting of sunitinib-induced AR phosphorylation in renal cell carcinoma. Cancer Res. 78, 2886–2896 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Chi, J. T. et al. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med. 3, e47 (2006).

    PubMed  PubMed Central  Google Scholar 

  184. Wagner, E. J. & Carpenter, P. B. Understanding the language of Lys36 methylation at histone H3. Nat. Rev. Mol. Cell Biol. 13, 115–126 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Venkatesh, S. et al. Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes. Nature 489, 452–455 (2012).

    CAS  PubMed  Google Scholar 

  186. Larkin, J., Goh, X. Y., Vetter, M., Pickering, L. & Swanton, C. Epigenetic regulation in RCC: opportunities for therapeutic intervention? Nat. Rev. Urol. 9, 147–155 (2012).

    CAS  PubMed  Google Scholar 

  187. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Simon, J. M. et al. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res. 24, 241–250 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Li, F. et al. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSα. Cell 153, 590–600 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Pfister, S. X. et al. SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep. 7, 2006–2018 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Carvalho, S. et al. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint. Elife 3, e02482 (2014).

    PubMed  PubMed Central  Google Scholar 

  193. Aymard, F. et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 21, 366–374 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Errington, W. J. et al. Adaptor protein self-assembly drives the control of a cullin-RING ubiquitin ligase. Structure 20, 1141–1153 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ research was supported in part by the Key Project from the Natural Science Foundation of Education Department of Anhui Province (KJ2019ZD27) and the Science and Technology Planning Project of Wenzhou City (Y20180082) and the Research Fund for Lin He’s Academician Workstation of New Medicine and Clinical Translation.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to the discussion of content and reviewed and/or edited the manuscript before submission. Z.W., Y.S., X.Z. and W.W. wrote the article.

Corresponding authors

Correspondence to Zhiwei Wang, Xueqiong Zhu or Wenyi Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks M. Rubin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Song, Y., Ye, M. et al. The diverse roles of SPOP in prostate cancer and kidney cancer. Nat Rev Urol 17, 339–350 (2020). https://doi.org/10.1038/s41585-020-0314-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41585-020-0314-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing