Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune-based therapies in penile cancer

Abstract

Penile cancer is a rare genitourinary malignancy that is associated with poor outcomes and severely limited therapeutic options that are generally non-curative when used to treat localized disease with high-risk features or advanced disease. To address the unmet need for treatment modalities with increased effectiveness, immune-based therapies such as immune-checkpoint blockade, human papilloma virus (HPV)-directed vaccines and adoptive T cell therapies have emerged as potential treatment options for advanced penile cancer. A diverse array of immune cells such as cytotoxic T lymphocytes (CTLs), tumour-associated macrophages and myeloid-derived suppressor cells have been shown to infiltrate penile cancer tumours, with distinct immune landscapes being demonstrated in HPV-positive compared with HPV-negative tumours. Study results have also demonstrated the prognostic value of immune cells such as tumour-associated macrophages, immune markers such as programmed death ligand-1, and HPV-status in penile cancer. Taken together, these findings underscore the clinical relevance of the tumour immune microenvironment as a source of both prognostic indicators and potential therapeutic targets for immune-based therapies. Current evidence regarding the safety and efficacy of immune-based therapies is limited in penile cancer, but a number of clinical and preclinical studies are ongoing to evaluate these therapies in this disease based on promising results from studies in other malignancies, including other squamous cell carcinomas. In addition, an opportunity exists to combine immune-based therapies with existing lines of systemic therapy to offer the most benefit to patients with advanced penile cancer. Future work should focus on expansion of preclinical models for immune-based drug discovery.

Key points

  • The immune landscape of penile cancer is defined by unique patterns of immune cell infiltration that also serve as prognostic indicators of metastasis and survival.

  • Human papilloma virus (HPV) infection status can be used to stratify patients into two groups with differing tumour immune microenvironments (TIMEs) based on key markers such as programmed death-ligand 1.

  • Immune-based therapies including immune-checkpoint blockade, adoptive T cell therapies, and HPV-targeting therapeutic vaccines are each promising candidate therapies, although these treatments are largely unexplored in penile cancer; however, they are currently being evaluated prospectively.

  • The optimal management of locally advanced penile cancer might involve a multimodal approach that combines immune-based therapies with chemotherapeutic and/or targeted agents early in the disease course followed by surgery.

  • Preclinical models that will improve understanding of the TIME and the mechanisms underlying responses to immune-based therapies are needed.

  • In this rare disease context, future preclinical and clinical work on immune-based therapies will benefit from the centralization of care and the pooling of collaborative scientific knowledge and resources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The immune landscape of penile cancer.
Fig. 2: Potential immune-based therapies for penile cancer.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).

    Article  PubMed  Google Scholar 

  2. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of Incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  3. Olesen, T. B. et al. Prevalence of human papillomavirus DNA and p16(INK4a) in penile cancer and penile intraepithelial neoplasia: a systematic review and meta-analysis. Lancet Oncol. 20, 145–158 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Kidd, L. C. et al. Relationship between human papillomavirus and penile cancer-implications for prevention and treatment. Transl. Androl. Urol. 6, 791–802 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Torbrand, C. et al. Socioeconomic factors and penile cancer risk and mortality; a population-based study. BJU Int. 119, 254–260 (2017).

    Article  PubMed  Google Scholar 

  6. Favorito, L. A. et al. Epidemiologic study on penile cancer in Brazil. Int. Braz. J. Urol. 34, 587–591 discussion 591–593 (2008).

    Article  PubMed  Google Scholar 

  7. Madsen, B. S., van den Brule, A. J., Jensen, H. L., Wohlfahrt, J. & Frisch, M. Risk factors for squamous cell carcinoma of the penis — population-based case-control study in Denmark. Cancer Epidemiol. Biomark. Prev. 17, 2683–2691 (2008).

    Article  CAS  Google Scholar 

  8. Morris, B. J. et al. The strong protective effect of circumcision against cancer of the penis. Adv. Urol. 2011, 812368 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Morris, B. J. et al. Early infant male circumcision: systematic review, risk-benefit analysis, and progress in policy. World J. Clin. Pediatr. 6, 89–102 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Harish, K. & Ravi, R. The role of tobacco in penile carcinoma. Br. J. Urol. 75, 375–377 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Tward, J. The case for nonsurgical therapy of nonmetastatic penile cancer. Nat. Rev. Urol. 15, 574–584 (2018).

    Article  PubMed  Google Scholar 

  12. Ficarra, V., Akduman, B., Bouchot, O., Palou, J. & Tobias-Machado, M. Prognostic factors in penile cancer. Urology 76, S66–S73 (2010).

    Article  PubMed  Google Scholar 

  13. Srinivas, V., Morse, M. J., Herr, H. W., Sogani, P. C. & Whitmore, W. F. Jr. Penile cancer: relation of extent of nodal metastasis to survival. J. Urol. 137, 880–882 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Horenblas, S. & van Tinteren, H. Squamous cell carcinoma of the penis. IV. Prognostic factors of survival: analysis of tumor, nodes and metastasis classification system. J. Urol. 151, 1239–1243 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Djajadiningrat, R. S. et al. Contemporary management of regional nodes in penile cancer — improvement of survival? J. Urol. 191, 68–73 (2014).

    Article  PubMed  Google Scholar 

  16. Pagliaro, L. C. & Crook, J. Multimodality therapy in penile cancer: when and which treatments? World J. Urol. 27, 221–225 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. National Comprehensive Cancer Network. Penile Cancer. nccn.org https://www.nccn.org/professionals/physician_gls/pdf/penile.pdf (2021).

  18. Hakenberg, O.W. et al. EAU Guidelines: Penile Cancer. https://uroweb.org/guidelines/penile-cancer (2020).

  19. Soodana-Prakash, N. et al. Lymph node yield as a predictor of overall survival following inguinal lymphadenectomy for penile cancer. Urol. Oncol. 36, 471 e419–471.e427 (2018).

    Article  Google Scholar 

  20. Li, Z. S. et al. Disease-specific survival after radical lymphadenectomy for penile cancer: prediction by lymph node count and density. Urol. Oncol. 32, 893–900 (2014).

    Article  PubMed  Google Scholar 

  21. Zargar-Shoshtari, K. et al. Extent of pelvic lymph node dissection in penile cancer may impact survival. World J. Urol. 34, 353–359 (2016).

    Article  PubMed  Google Scholar 

  22. Ahmed, M. E. et al. in Penile Carcinoma 97–107 (Springer International Publishing, 2021).

  23. Pagliaro, L. C. et al. Neoadjuvant paclitaxel, ifosfamide, and cisplatin chemotherapy for metastatic penile cancer: a phase II study. J. Clin. Oncol. 28, 3851–3857 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Azizi, M. et al. Systematic review and meta-analysis-is there a benefit in using neoadjuvant systemic chemotherapy for locally advanced penile squamous cell carcinoma? J. Urol. 203, 1147–1155 (2020).

    Article  PubMed  Google Scholar 

  25. Chahoud, J., Tamil, M. & Necchi, A. Second line salvage systemic therapy for advanced penile cancer. Urol. Oncol. https://doi.org/10.1016/j.urolonc.2020.08.001 (2020).

    Article  PubMed  Google Scholar 

  26. Nicolai, N. et al. A combination of cisplatin and 5-fluorouracil with a taxane in patients who underwent lymph node dissection for nodal metastases from squamous cell carcinoma of the penis: treatment outcome and survival analyses in neoadjuvant and adjuvant settings. Clin. Genitourin. Cancer 14, 323–330 (2016).

    Article  PubMed  Google Scholar 

  27. Necchi, A. et al. Nomogram-based prediction of overall survival after regional lymph node dissection and the role of perioperative chemotherapy in penile squamous cell carcinoma: a retrospective multicenter study. Urol. Oncol. 37, 531.e7–531.e15 (2019).

    Article  Google Scholar 

  28. Sharma, P. et al. Adjuvant chemotherapy is associated with improved overall survival in pelvic node-positive penile cancer after lymph node dissection: a multi-institutional study. Urol. Oncol. 33, 496.e17–e23 (2015).

    Article  Google Scholar 

  29. Han, S. C., Kim, D. H., Higgins, S. A., Carcangiu, M. L. & Kacinski, B. M. Chemoradiation as primary or adjuvant treatment for locally advanced carcinoma of the vulva. Int. J. Radiat. Oncol. Biol. Phys. 47, 1235–1244 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, J., Pettaway, C. A. & Pagliaro, L. C. Treatment for metastatic penile cancer after first-line chemotherapy failure: analysis of response and survival outcomes. Urology 85, 1104–1110 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Challapalli, A. et al. A phase II trial of cabazitaxel as second line chemotherapy in relapsed locally advanced and/or metastatic carcinoma of the penis. J. Int. Med. Res. 47, 4664–4672 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nicholson, S. et al. Phase II trial of docetaxel, cisplatin and 5FU chemotherapy in locally advanced and metastatic penis cancer (CRUK/09/001). Br. J. Cancer 109, 2554–2559 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Di Lorenzo, G. et al. Cisplatin and 5-fluorouracil in inoperable, stage IV squamous cell carcinoma of the penis. BJU Int. 110, E661–E666 (2012).

    Article  PubMed  CAS  Google Scholar 

  34. Di Lorenzo, G. et al. Paclitaxel in pretreated metastatic penile cancer: final results of a phase 2 study. Eur. Urol. 60, 1280–1284 (2011).

    Article  PubMed  CAS  Google Scholar 

  35. Theodore, C. et al. A phase II multicentre study of irinotecan (CPT 11) in combination with cisplatin (CDDP) in metastatic or locally advanced penile carcinoma (EORTC PROTOCOL 30992). Ann. Oncol. 19, 1304–1307 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Chahoud, J., Kohli, M. & Spiess, P. E. Management of advanced penile cancer. Mayo Clin. Proc. 96, 720–732 (2021).

    Article  PubMed  Google Scholar 

  37. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02305654 (2019).

  38. Bartelink, H. et al. Concomitant radiotherapy and chemotherapy is superior to radiotherapy alone in the treatment of locally advanced anal cancer: results of a phase III randomized trial of the European Organization for Research and Treatment of Cancer Radiotherapy and Gastrointestinal Cooperative Groups. J. Clin. Oncol. 15, 2040–2049 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. UKCCCR Anal Cancer Trial Working Party. Epidermoid anal cancer: results from the UKCCCR randomised trial of radiotherapy alone versus radiotherapy, 5-fluorouracil, and mitomycin. UK Co-ordinating Committee on Cancer Research. Lancet 348, 1049–1054 (1996).

    Article  Google Scholar 

  40. van Doorn, H. C., Ansink, A., Verhaar-Langereis, M. & Stalpers, L. Neoadjuvant chemoradiation for advanced primary vulvar cancer. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD003752.pub2 (2006).

    Article  PubMed  Google Scholar 

  41. Moore, D. H. et al. A phase II trial of radiation therapy and weekly cisplatin chemotherapy for the treatment of locally-advanced squamous cell carcinoma of the vulva: a gynecologic oncology group study. Gynecol. Oncol. 124, 529–533 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. De Bacco, M. W. et al. PD-L1 and p16 expression in penile squamous cell carcinoma from an endemic region. Clin. Genitourin. Cancer 18, e254–e259 (2020).

    Article  PubMed  Google Scholar 

  43. Cocks, M. et al. Immune-checkpoint status in penile squamous cell carcinoma: a North American cohort. Hum. Pathol. 59, 55–61 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Chahoud, J., Pickering, C. R. & Pettaway, C. A. Genetics and penile cancer: recent developments and implications. Curr. Opin. Urol. 29, 364–370 (2019).

    Article  PubMed  Google Scholar 

  45. Aydin, A. M. et al. Understanding genomics and the immune environment of penile cancer to improve therapy. Nat. Rev. Urol. 17, 555–570 (2020).

    Article  PubMed  Google Scholar 

  46. Ali, S. M. et al. Comprehensive genomic profiling of advanced penile carcinoma suggests a high frequency of clinically relevant genomic alterations. Oncologist 21, 33–39 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Busso-Lopes, A. F. et al. Genomic profiling of human penile carcinoma predicts worse prognosis and survival. Cancer Prev. Res. 8, 149–156 (2015).

    Article  CAS  Google Scholar 

  48. Feber, A. et al. CSN1 somatic mutations in penile squamous cell carcinoma. Cancer Res. 76, 4720–4727 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jacob, J. M. et al. Comparative genomic profiling of refractory and metastatic penile and nonpenile cutaneous squamous cell carcinoma: implications for selection of systemic therapy. J. Urol. 201, 541–548 (2019).

    Article  PubMed  Google Scholar 

  50. La-Touche, S. et al. DNA copy number aberrations, and human papillomavirus status in penile carcinoma. clinico-pathological correlations and potential driver genes. PLoS One 11, e0146740 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Marchi, F. A. et al. Multidimensional integrative analysis uncovers driver candidates and biomarkers in penile carcinoma. Sci. Rep. 7, 6707 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. McDaniel, A. S. et al. Genomic profiling of penile squamous cell carcinoma reveals new opportunities for targeted therapy. Cancer Res. 75, 5219–5227 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Feber, A. et al. Epigenetics markers of metastasis and HPV-induced tumorigenesis in penile cancer. Clin. Cancer Res. 21, 1196–1206 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Hartz, J. M. et al. Integrated loss of miR-1/miR-101/miR-204 discriminates metastatic from nonmetastatic penile carcinomas and can predict patient outcome. J. Urol. 196, 570–578 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Kuasne, H. et al. Integrative miRNA and mRNA analysis in penile carcinomas reveals markers and pathways with potential clinical impact. Oncotarget 8, 15294–15306 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kuasne, H. et al. Genome-wide methylation and transcriptome analysis in penile carcinoma: uncovering new molecular markers. Clin. Epigenetics 7, 46 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Necchi, A. et al. Gene expression profiling of advanced penile squamous cell carcinoma receiving cisplatin-based chemotherapy improves prognostication and identifies potential therapeutic targets. Eur. Urol. Focus. 4, 733–736 (2018).

    Article  PubMed  Google Scholar 

  58. Chahoud, J. et al. Whole-exome sequencing in penile squamous cell carcinoma uncovers novel prognostic categorization and drug targets similar to head and neck squamous cell carcinoma. Clin. Cancer Res. 27, 2560–2570 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Jardim, D. L., Goodman, A., de Melo Gagliato, D. & Kurzrock, R. The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell 39, 154–173 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Hendry, S. et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immunooncology biomarkers working group: part 1: assessing the host immune response, tils in invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research. Adv. Anat. Pathol. 24, 235–251 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Tay, R. E., Richardson, E. K. & Toh, H. C. Revisiting the role of CD4+ T cells in cancer immunotherapy-new insights into old paradigms. Cancer Gene Ther. 28, 5–17 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Ohue, Y. & Nishikawa, H. Regulatory T (Treg) cells in cancer: can Treg cells be a new therapeutic target? Cancer Sci. 110, 2080–2089 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu, Q., Wang, C., Yuan, X., Feng, Z. & Han, Z. Prognostic value of tumor-infiltrating lymphocytes for patients with head and neck squamous cell carcinoma. Transl. Oncol. 10, 10–16 (2017).

    Article  PubMed  Google Scholar 

  67. Spector, M. E. et al. Prognostic value of tumor-infiltrating lymphocytes in head and neck squamous cell carcinoma. JAMA Otolaryngol. Head. Neck Surg. 145, 1012–1019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jiang, D. et al. Tumour infiltrating lymphocytes correlate with improved survival in patients with esophageal squamous cell carcinoma. Sci. Rep. 7, 44823 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ottenhof, S. R. et al. The prognostic value of immune factors in the tumor microenvironment of penile squamous cell carcinoma. Front. Immunol. 9, 1253 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Cao, L. et al. M2 macrophage infiltration into tumor islets leads to poor prognosis in non-small-cell lung cancer. Cancer Manag. Res. 11, 6125–6138 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Alves, A. M., Diel, L. F. & Lamers, M. L. Macrophages and prognosis of oral squamous cell carcinoma: a systematic review. J. Oral. Pathol. Med. 47, 460–467 (2018).

    Article  PubMed  Google Scholar 

  72. Kumar, A. T. et al. Prognostic significance of tumor-associated macrophage content in head and neck squamous cell carcinoma: a meta-analysis. Front. Oncol. 9, 656 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang, Y., Smith, W., Hao, D., He, B. & Kong, L. M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. Int. Immunopharmacol. 70, 459–466 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Chu, C. et al. Immunophenotypes based on the tumor immune microenvironment allow for unsupervised penile cancer patient stratification. Cancers https://doi.org/10.3390/cancers12071796 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rafael, T. S. et al. Distinct patterns of myeloid cell infiltration in patients with hrHPV-positive and hrHPV-negative penile squamous cell carcinoma: the importance of assessing myeloid cell densities within the spatial context of the tumor. Front. Immunol. 12, 682030 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792–809.e23 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Vassallo, J. et al. Pathologic and imunohistochemical characterization of tumoral inflammatory cell infiltrate in invasive penile squamous cell carcinomas: Fox-P3 expression is an independent predictor of recurrence. Tumour Biol. 36, 2509–2516 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Szylberg, L., Karbownik, D. & Marszalek, A. The role of FOXP3 in human cancers. Anticancer. Res. 36, 3789–3794 (2016).

    CAS  PubMed  Google Scholar 

  79. Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Greten, T. F., Manns, M. P. & Korangy, F. Myeloid derived suppressor cells in human diseases. Int. Immunopharmacol. 11, 802–807 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Huang, T. et al. Effective combinatorial immunotherapy for penile squamous cell carcinoma. Nat. Commun. 11, 2124 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kusmartsev, S., Nefedova, Y., Yoder, D. & Gabrilovich, D. I. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J. Immunol. 172, 989–999 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Bronte, V. & Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol. 5, 641–654 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Huang, B. et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 66, 1123–1131 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Stiff, A. et al. Nitric oxide production by myeloid-derived suppressor cells plays a role in impairing Fc receptor-mediated natural killer cell function. Clin. Cancer Res. 24, 1891–1904 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Diaz-Montero, C. M. et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol. Immunother. 58, 49–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Alizadeh, D. et al. Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer. Cancer Res. 74, 104–118 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Meyer, C. et al. Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol. Immunother. 63, 247–257 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Ai, L. et al. Prognostic role of myeloid-derived suppressor cells in cancers: a systematic review and meta-analysis. BMC Cancer 18, 1220 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Parsa, A. T. et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med. 13, 84–88 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Taube, J. M. et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med. 4, 127ra137 (2012).

    Article  CAS  Google Scholar 

  95. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vaddepally, R. K., Kharel, P., Pandey, R., Garje, R. & Chandra, A. B. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers https://doi.org/10.3390/cancers12030738 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Udager, A. M. et al. Frequent PD-L1 expression in primary and metastatic penile squamous cell carcinoma: potential opportunities for immunotherapeutic approaches. Ann. Oncol. 27, 1706–1712 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ottenhof, S. R. et al. Expression of programmed death ligand 1 in penile cancer is of prognostic value and associated with HPV status. J. Urol. 197, 690–697 (2017).

    Article  PubMed  Google Scholar 

  100. Moch, H., Cubilla, A. L., Humphrey, P. A., Reuter, V. E. & Ulbright, T. M. The 2016 WHO classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours. Eur. Urol. 70, 93–105 (2016).

    Article  PubMed  Google Scholar 

  101. Chaux, A. & Cubilla, A. L. Advances in the pathology of penile carcinomas. Hum. Pathol. 43, 771–789 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Sand, F. L., Rasmussen, C. L., Frederiksen, M. H., Andersen, K. K. & Kjaer, S. K. Prognostic significance of HPV and p16 status in men diagnosed with penile cancer: a systematic review and meta-analysis. Cancer Epidemiol. Biomark. Prev. 27, 1123–1132 (2018).

    Article  CAS  Google Scholar 

  103. Bandini, M. et al. Association between human papillomavirus infection and outcome of perioperative nodal radiotherapy for penile carcinoma. Eur. Urol. Oncol. 4, 802–810 (2021).

    Article  PubMed  Google Scholar 

  104. Mannweiler, S., Sygulla, S., Winter, E. & Regauer, S. Two major pathways of penile carcinogenesis: HPV-induced penile cancers overexpress p16ink4a, HPV-negative cancers associated with dermatoses express p53, but lack p16ink4a overexpression. J. Am. Acad. Dermatol. 69, 73–81 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Dyson, N., Howley, P. M., Munger, K. & Harlow, E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–937 (1989).

    Article  CAS  PubMed  Google Scholar 

  106. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    Article  CAS  PubMed  Google Scholar 

  107. Werness, B. A., Levine, A. J. & Howley, P. M. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248, 76–79 (1990).

    Article  CAS  PubMed  Google Scholar 

  108. Steinestel, J. et al. The role of histologic subtype, p16(INK4a) expression, and presence of human papillomavirus DNA in penile squamous cell carcinoma. BMC Cancer 15, 220 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Cubilla, A. L. et al. Value of p16INK4a in the pathology of invasive penile squamous cell carcinomas: a report of 202 cases. Am. J. Surg. Pathol. 35, 253–261 (2011).

    Article  PubMed  Google Scholar 

  110. Romagosa, C. et al. p16Ink4a overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 30, 2087–2097 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Djajadiningrat, R. S. et al. Human papillomavirus prevalence in invasive penile cancer and association with clinical outcome. J. Urol. 193, 526–531 (2015).

    Article  PubMed  Google Scholar 

  112. Lont, A. P. et al. Presence of high-risk human papillomavirus DNA in penile carcinoma predicts favorable outcome in survival. Int. J. Cancer 119, 1078–1081 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Stafford, M. & Kaczmar, J. The neoadjuvant paradigm reinvigorated: a review of pre-surgical immunotherapy in HNSCC. Cancers Head. Neck 5, 4 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Uprety, D., Mandrekar, S. J., Wigle, D., Roden, A. C. & Adjei, A. A. Neoadjuvant immunotherapy for NSCLC: current concepts and future approaches. J. Thorac. Oncol. 15, 1281–1297 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. McGregor, B. A. et al. Results of a multicenter, phase 2 study of nivolumab and ipilimumab for patients with advanced rare genitourinary malignancies. Cancer 127, 840–849 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Hahn, A. W. et al. Pembrolizumab for advanced penile cancer: a case series from a phase II basket trial. Invest. N. Drugs https://doi.org/10.1007/s10637-021-01100-x (2021).

    Article  Google Scholar 

  117. Trafalis, D. T. et al. Evidence for efficacy of treatment with the anti-PD-1 mab nivolumab in radiation and multichemorefractory advanced penile squamous cell carcinoma. J. Immunother. 41, 300–305 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Chahoud, J. et al. Case report: two cases of chemotherapy refractory metastatic penile squamous cell carcinoma with extreme durable response to pembrolizumab. Front. Oncol. 10, 615298 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT04224740 (2022).

  120. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT03391479 (2021).

  121. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT03774901 (2022).

  122. Deutsch, E., Chargari, C., Galluzzi, L. & Kroemer, G. Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol. 20, e452–e463 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Plavc, G. & Strojan, P. Combining radiotherapy and immunotherapy in definitive treatment of head and neck squamous cell carcinoma: review of current clinical trials. Radiol. Oncol. 54, 377–393 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Xing, D. T. et al. Recent research on combination of radiotherapy with targeted therapy or immunotherapy in head and neck squamous cell carcinoma: a review for radiation oncologists. Cancers https://doi.org/10.3390/cancers13225716 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Karam, S. D. & Raben, D. Radioimmunotherapy for the treatment of head and neck cancer. Lancet Oncol. 20, e404–e416 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Oweida, A. et al. Ionizing radiation sensitizes tumors to PD-L1 immune checkpoint blockade in orthotopic murine head and neck squamous cell carcinoma. Oncoimmunology 6, e1356153 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Twyman-Saint Victor, C. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Distler, F. A. et al. Adherence to the EAU guideline recommendations for systemic chemotherapy in penile cancer: results of the E-PROPS study group survey. World J. Urol. 38, 2523–2530 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Paz-Ares, L. et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med. 379, 2040–2051 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Magee, D. E. et al. Adverse event profile for immunotherapy agents compared with chemotherapy in solid organ tumors: a systematic review and meta-analysis of randomized clinical trials. Ann. Oncol. 31, 50–60 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Michot, J. M. et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur. J. Cancer 54, 139–148 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Wang, Y. et al. Treatment-related adverse events of PD-1 and PD-L1 inhibitors in clinical trials: a systematic review and meta-analysis. JAMA Oncol. 5, 1008–1019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Horvat, T. Z. et al. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center. J. Clin. Oncol. 33, 3193–3198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Weber, J. S. et al. Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 35, 785–792 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Naidoo, J. et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol. 26, 2375–2391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cascone, T. et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: the phase 2 randomized NEOSTAR trial. Nat. Med. 27, 504–514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pataer, A. et al. Histopathologic response criteria predict survival of patients with resected lung cancer after neoadjuvant chemotherapy. J. Thorac. Oncol. 7, 825–832 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Chaft, J. E. et al. Phase II trial of neoadjuvant bevacizumab plus chemotherapy and adjuvant bevacizumab in patients with resectable nonsquamous non-small-cell lung cancers. J. Thorac. Oncol. 8, 1084–1090 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cascone, T. et al. Induction cisplatin docetaxel followed by surgery and erlotinib in non-small cell lung cancer. Ann. Thorac. Surg. 105, 418–424 (2018).

    Article  PubMed  Google Scholar 

  140. Weissferdt, A. et al. Agreement on major pathological response in NSCLC patients receiving neoadjuvant chemotherapy. Clin. Lung Cancer 21, 341–348 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cascone, T. et al. A phase I/II study of neoadjuvant cisplatin, docetaxel, and nintedanib for resectable non-small cell lung cancer. Clin. Cancer Res. 26, 3525–3536 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Schoenfeld, J. D. et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in untreated oral cavity squamous cell carcinoma: a phase 2 open-label randomized clinical trial. JAMA Oncol. 6, 1563–1570 (2020).

    Article  PubMed  Google Scholar 

  143. Schalper, K. A. et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat. Med. 25, 470–476 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Necchi, A. et al. Pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive urothelial bladder carcinoma (PURE-01): an open-label, single-arm, phase II study. J. Clin. Oncol. 36, 3353–3360 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Amaria, R. N. et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat. Med. 24, 1649–1654 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Liu, J. et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 6, 1382–1399 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Blank, C. U. et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 24, 1655–1661 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. O’Donnell, J. S., Hoefsmit, E. P., Smyth, M. J., Blank, C. U. & Teng, M. W. L. The promise of neoadjuvant immunotherapy and surgery for cancer treatment. Clin. Cancer Res. 25, 5743–5751 (2019).

    Article  PubMed  Google Scholar 

  149. Yu, W. D., Sun, G., Li, J., Xu, J. & Wang, X. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett. 452, 66–70 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Chen, G. & Emens, L. A. Chemoimmunotherapy: reengineering tumor immunity. Cancer Immunol. Immunother. 62, 203–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. FDA. FDA approves pembrolizumab for high-risk early-stage triple-negative breast cancer. fda.gov https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-high-risk-early-stage-triple-negative-breast-cancer (2021).

  152. Schmid, P. et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 382, 810–821 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Hiller, J. G., Perry, N. J., Poulogiannis, G., Riedel, B. & Sloan, E. K. Perioperative events influence cancer recurrence risk after surgery. Nat. Rev. Clin. Oncol. 15, 205–218 (2018).

    Article  PubMed  Google Scholar 

  154. Horowitz, M., Neeman, E., Sharon, E. & Ben-Eliyahu, S. Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat. Rev. Clin. Oncol. 12, 213–226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chen, Z. et al. Surgical stress and cancer progression: the twisted tango. Mol. Cancer 18, 132 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Bakos, O., Lawson, C., Rouleau, S. & Tai, L. H. Combining surgery and immunotherapy: turning an immunosuppressive effect into a therapeutic opportunity. J. Immunother. Cancer 6, 86 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Sun, Z. et al. Treatment with anti-programmed cell death 1 (PD-1) antibody restored postoperative CD8+ T cell dysfunction by surgical stress. Biomed. Pharmacother. 89, 1235–1241 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Golijanin, D. et al. Cyclooxygenase-2 and microsomal prostaglandin E synthase-1 are overexpressed in squamous cell carcinoma of the penis. Clin. Cancer Res. 10, 1024–1031 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. zur Hausen, H. Papillomaviruses and cancer: from basic studies to clinical application. Nat. Rev. Cancer 2, 342–350 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Morrow, M. P., Yan, J. & Sardesai, N. Y. Human papillomavirus therapeutic vaccines: targeting viral antigens as immunotherapy for precancerous disease and cancer. Expert. Rev. Vaccines 12, 271–283 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Lin, K., Doolan, K., Hung, C. F. & Wu, T. C. Perspectives for preventive and therapeutic HPV vaccines. J. Formos. Med. Assoc. 109, 4–24 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. van der Burg, S. H. & Melief, C. J. Therapeutic vaccination against human papilloma virus induced malignancies. Curr. Opin. Immunol. 23, 252–257 (2011).

    Article  PubMed  CAS  Google Scholar 

  163. Garbuglia, A. R., Lapa, D., Sias, C., Capobianchi, M. R. & Del Porto, P. The use of both therapeutic and prophylactic vaccines in the therapy of papillomavirus disease. Front. Immunol. 11, 188 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chabeda, A. et al. Therapeutic vaccines for high-risk HPV-associated diseases. Papillomavirus Res. 5, 46–58 (2018).

    Article  PubMed  Google Scholar 

  165. Yang, A. et al. Current state in the development of candidate therapeutic HPV vaccines. Expert. Rev. Vaccines 15, 989–1007 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Maciag, P. C., Radulovic, S. & Rothman, J. The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine 27, 3975–3983 (2009).

    Article  CAS  PubMed  Google Scholar 

  167. Rosales, R. et al. Regression of human papillomavirus intraepithelial lesions is induced by MVA E2 therapeutic vaccine. Hum. Gene Ther. 25, 1035–1049 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Trimble, C. L. et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet 386, 2078–2088 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT04432597 (2022).

  170. Strauss, J. et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with human papillomavirus-associated malignancies. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-001395 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Daayana, S. et al. Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br. J. Cancer 102, 1129–1136 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Besser, M. J. et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin. Cancer Res. 16, 2646–2655 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Stevanovic, S. et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J. Clin. Oncol. 33, 1543–1550 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Stevanovic, S. et al. A phase II study of tumor-infiltrating lymphocyte therapy for human papillomavirus-associated epithelial cancers. Clin. Cancer Res. 25, 1486–1493 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Fujita, K. et al. Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes. Clin. Cancer Res. 1, 501–507 (1995).

    CAS  PubMed  Google Scholar 

  177. Aydin, A. M. et al. Expansion of tumor-infiltrating lymphocytes (TIL) from penile cancer patients. Int. Immunopharmacol. 94, 107481 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Chalmers, Z. R. et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9, 34 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Restifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269–281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nagarsheth, N. B. et al. TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers. Nat. Med. 27, 419–425 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Doran, S. L. et al. T-cell receptor gene therapy for human papillomavirus-associated epithelial cancers: a first-in-human, phase I/II study. J. Clin. Oncol. 37, 2759–2768 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kunert, A. et al. TCR-engineered T cells meet new challenges to treat solid tumors: choice of antigen, T cell fitness, and sensitization of tumor milieu. Front. Immunol. 4, 363 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Zhao, L. & Cao, Y. J. Engineered T cell therapy for cancer in the clinic. Front. Immunol. 10, 2250 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wagner, J., Wickman, E., DeRenzo, C. & Gottschalk, S. CAR T cell therapy for solid tumors: bright future or dark reality? Mol. Ther. 28, 2320–2339 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Newick, K., O’Brien, S., Moon, E. & Albelda, S. M. CAR T cell therapy for solid tumors. Annu. Rev. Med. 68, 139–152 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Wolf, B. et al. Safety and tolerability of adoptive cell therapy in cancer. Drug Saf. 42, 315–334 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. D’Ippolito, E., Schober, K., Nauerth, M. & Busch, D. H. T cell engineering for adoptive T cell therapy: safety and receptor avidity. Cancer Immunol. Immunother. 68, 1701–1712 (2019).

    Article  PubMed  Google Scholar 

  188. Grigor, E. J. M. et al. Risks and benefits of chimeric antigen receptor T-cell (CAR-T) therapy in cancer: a systematic review and meta-analysis. Transfus. Med. Rev. 33, 98–110 (2019).

    Article  PubMed  Google Scholar 

  189. US National Library of Medicine. ClinicalTrials.gov, https://ClinicalTrials.gov/show/NCT02379520 (2022).

  190. Gyurkocza, B. & Sandmaier, B. M. Conditioning regimens for hematopoietic cell transplantation: one size does not fit all. Blood 124, 344–353 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Smith, T. J. et al. Recommendations for the use of WBC growth factors: American Society of Clinical Oncology clinical practice guideline update. J. Clin. Oncol. 33, 3199–3212 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Urban, D. et al. Mortality among neutropenic cancer patients within the United States: the association with hospital volume. JCO Oncol. Pract. 17, e582–e592 (2021).

    Article  PubMed  Google Scholar 

  193. Lu, X. et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543, 728–732 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Naumann, C. M. et al. Establishment and characterization of primary cell lines of squamous cell carcinoma of the penis and its metastasis. J. Urol. 187, 2236–2242 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. Munoz, J. J. et al. A comprehensive characterization of cell cultures and xenografts derived from a human verrucous penile carcinoma. Tumour Biol. 37, 11375–11384 (2016).

    Article  CAS  PubMed  Google Scholar 

  196. Zhou, Q. H. et al. Molecular characterization and integrative genomic analysis of a panel of newly established penile cancer cell lines. Cell Death Dis. 9, 684 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Hernandez, M. C. et al. Patient-derived xenografts in surgical oncology: a short research review. Surgery 168, 1021–1025 (2020).

    Article  PubMed  Google Scholar 

  198. Forde, P. M. et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 378, 1976–1986 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kastenmuller, W. et al. Regulatory T cells selectively control CD8+ T cell effector pool size via IL-2 restriction. J. Immunol. 187, 3186–3197 (2011).

    Article  CAS  PubMed  Google Scholar 

  200. Kamel, M. H. et al. Survival outcomes of organ sparing surgery, partial penectomy, and total penectomy in pathological T1/T2 penile cancer: report from the National Cancer Data Base. Urol. Oncol. 36, 82.e7–82.e15 (2018).

    Article  Google Scholar 

  201. Zukiwskyj, M., Daly, P. & Chung, E. Penile cancer and phallus preservation strategies: a review of current literature. BJU Int. 112, 21–26 (2013).

    Article  PubMed  Google Scholar 

  202. Bayles, A. C. & Sethia, K. K. The impact of Improving outcomes guidance on the management and outcomes of patients with carcinoma of the penis. Ann. R. Coll. Surg. Engl. 92, 44–45 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Chipollini, J., Tang, D. H., Sharma, P., Baumgarten, A. S. & Spiess, P. E. Patterns of regional lymphadenectomy for clinically node-negative patients with penile carcinoma: analysis from the national cancer database from 1998 to 2012. Clin. Genitourin. Cancer 15, 670–677.e1 (2017).

    Article  PubMed  Google Scholar 

  204. Kamel, M. H. Should the care of penile cancer be confined to centralized centers of excellence? Eur. Urol. Focus. 5, 735–736 (2019).

    Article  PubMed  Google Scholar 

  205. Jakobsen, J. K., Pettaway, C. A. & Ayres, B. Centralization and equitable care in rare urogenital malignancies: the case for penile cancer. Eur. Urol. Focus. https://doi.org/10.1016/j.euf.2021.09.019 (2021).

    Article  PubMed  Google Scholar 

  206. Canter, D. J. et al. The international penile advanced cancer trial (InPACT): rationale and current status. Eur. Urol. Focus. 5, 706–709 (2019).

    Article  PubMed  Google Scholar 

  207. Vanthoor, J. et al. Making surgery safer by centralization of care: impact of case load in penile cancer. World J. Urol. 38, 1385–1390 (2020).

    Article  PubMed  Google Scholar 

  208. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03686332 (2022).

  209. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04231981 (2022).

  210. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04718584 (2021).

  211. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02496208 (2022).

  212. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04357873 (2021).

  213. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03866382 (2022).

  214. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02721732 (2022).

  215. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03333616 (2021).

  216. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03517488 (2022).

  217. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02834013 (2022).

  218. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03427411 (2022).

  219. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03439085 (2022).

  220. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04287868 (2022).

  221. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03418480 (2022).

  222. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02858310 (2022).

  223. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04180215 (2022).

Download references

Author information

Authors and Affiliations

Authors

Contributions

V.B.J. and J.C. researched data for the article and wrote the manuscript. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jad Chahoud.

Ethics declarations

Competing interests

P.E.S. maintains leadership positions of relevance as a member of the NCCN penile cancer panel, President of the Global Society of Rare GU Tumors and ASCO/EAU Penile Cancer Panel Member. A.N. serves as Vice-President of the Global Society of Rare GU Tumors (GSRGT) and is an ASCO/EAU Penile Cancer Panel Member. C.A.P. is an Editorial Consultant for the ‘UpToDate’ penile cancer series published by Wolters Kluwer. J.C. reports that he provided advisory board consultations for Pfizer, Aveo and Exelixis. V.B.J. declares no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Oliver Hakenberg, Juanita Crook and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

GSRGT: https://www.gsrgt.com

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, V.B., Spiess, P.E., Necchi, A. et al. Immune-based therapies in penile cancer. Nat Rev Urol 19, 457–474 (2022). https://doi.org/10.1038/s41585-022-00617-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41585-022-00617-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer