Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CAUTIon — not all UTIs are the same

Abstract

Urinary tract infections are one of the most common infections, accounting for ~400 million diagnoses per year worldwide. Uncomplicated urinary tract infections (uUTIs) occur in healthy individuals with no structural or functional abnormalities of the urinary system and primarily affect women. Catheter-associated urinary tract infections (CAUTIs) are a type of complicated UTI affecting patients who have a urinary catheter in place, often hospitalized patients or patients with conditions that prevent them from urinating naturally. Both infections share common symptoms, diagnostics and treatment options but also differ greatly in pathophysiology, aetiology, risk factors and comorbidities. These differences could explain why antibiotic treatments — which generally lead to positive outcomes in patients with uUTIs — often fail in patients with CAUTIs. Understanding these differences could guide evidence-based insights into why treatments for CAUTIs should be different from those for uUTIs, specifically, by modifying catheters, which initiate the damage-induced segue for UTIs.

Key points

  • Urinary tract infections (UTIs) are an extremely common diagnosis in the USA and globally.

  • Uncomplicated and catheter-associated UTIs differ greatly in pathogen diversity, pathophysiology and propensity towards secondary bloodstream infections.

  • New treatments for catheter-associated UTIs should be specifically designed for these infections, rather than simply adapted from therapies for uncomplicated UTIs To reduce antibiotic resistance among urinary pathogens, modern treatments and preventative strategies can be designed to target specific mechanisms used by uropathogens to cause different types of UTI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of crucial clinical characteristics between uncomplicated catheter-associated urinary tract infections.
Fig. 2: Pathophysiology of uncomplicated and catheter-associated urinary tract infections.

Similar content being viewed by others

References

  1. Tandogdu, Z. et al. Urosepsis 30-day mortality, morbidity, and their risk factors: SERPENS study, a prospective, observational multi-center study. World J. Urol. 42, 314 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kuehn, B. M. Some progress in effort to reduce hospital-acquired infections. JAMA 311, 1488 (2014).

    Article  PubMed  Google Scholar 

  3. Klevens, R. M. et al. Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public. Health Rep. 122, 160–166 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Foxman, B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. North. Am. 28, 1–13 (2014).

    Article  PubMed  Google Scholar 

  5. Werneburg, G. T. Catheter-associated urinary tract infections: current challenges and future prospects. Res. Rep. Urol. 14, 109–133 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang, X. et al. Disease burden and long-term trends of urinary tract infections: a worldwide report. Front. Public. Health 10, 888205 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Medina, M. & Castillo-Pino, E. An introduction to the epidemiology and burden of urinary tract infections. Ther. Adv. Urol. 11, 1756287219832172 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. United States Center for Disease Control and Prevention. Urinary Tract Infections Basics. CDC https://www.cdc.gov/uti/about/index.html (2024).

  10. Czajkowski, K., Bros-Konopielko, M. & Teliga-Czajkowska, J. Urinary tract infection in women. Prz. Menopauzalny 20, 40–47 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pujades-Rodriguez, M., West, R. M., Wilcox, M. H. & Sandoe, J. Lower urinary tract infections: management, outcomes and risk factors for antibiotic re-prescription in primary care. EClinicalMedicine 14, 23–31 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Koh, S. W. C. et al. Antibiotic treatment failure of uncomplicated urinary tract infections in primary care. Antimicrob. Resist. Infect. Control. 12, 73 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. McLellan, L. K. & Hunstad, D. A. Urinary tract infection: pathogenesis and outlook. Trends Mol. Med. 22, 946–957 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Flores-Mireles, A., Hreha, T. N. & Hunstad, D. A. Pathophysiology, treatment, and prevention of catheter-associated urinary tract infection. Top. Spinal Cord. Inj. Rehabil. 25, 228–240 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wagenlehner, F. M. E. et al. Epidemiology, definition and treatment of complicated urinary tract infections. Nat. Rev. Urol. 17, 586–600 (2020).

    Article  PubMed  Google Scholar 

  16. Lo, E. et al. Strategies to prevent catheter-associated urinary tract infections in acute care hospitals: 2014 update. Infect. Control. Hosp. Epidemiol. 35, 464–479 (2014).

    Article  PubMed  Google Scholar 

  17. Jacobsen, S. M., Stickler, D. J., Mobley, H. L. & Shirtliff, M. E. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 21, 26–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Langford, B. J. et al. Antibiotic selection and duration for catheter-associated urinary tract infection in non-hospitalized older adults: a population-based cohort study. Antimicrob. Steward. Healthc. Epidemiol. 3, e132 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Paul, R. State of the globe: rising antimicrobial resistance of pathogens in urinary tract infection. J. Glob. Infect. Dis. 10, 117–118 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Haider, M.Z. & Annamaraju, P. Bladder Catheterization. StatPearls [Internet] https://www.ncbi.nlm.nih.gov/books/NBK560748 (updated 9 August 2023).

  21. Wilson Dib, R. et al. The impact of the COVID-19 pandemic on hospital-acquired infections at a comprehensive cancer center. Am. J. Infect. Control. 51, 1302–1308 (2023).

    Article  PubMed  Google Scholar 

  22. United States Center for Disease Control and Prevention. COVID-19 Impact on Healthcare-associated Infections. CDC https://www.cdc.gov/healthcare-associated-infections/php/data/covid-impact.html (2024).

  23. Parker, D. et al. Nursing interventions to reduce the risk of catheter-associated urinary tract infection. Part 1: catheter selection. J. Wound Ostomy Cont. Nurs. 36, 23–34 (2009).

    Article  Google Scholar 

  24. Jarrell, A. S. et al. Short-duration treatment for catheter-associated urinary tract infections in critically ill trauma patients. J. Trauma. Acute Care Surg. 79, 649–653 (2015).

    Article  PubMed  Google Scholar 

  25. Willson, M. et al. Nursing interventions to reduce the risk of catheter-associated urinary tract infection: part 2: staff education, monitoring, and care techniques. J. Wound Ostomy Cont. Nurs. 36, 137–154 (2009).

    Article  Google Scholar 

  26. Maki, D. G. & Tambyah, P. A. Engineering out the risk for infection with urinary catheters. Emerg. Infect. Dis. 7, 342–347 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kunin, C. M., Douthitt, S., Dancing, J., Anderson, J. & Moeschberger, M. The association between the use of urinary catheters and morbidity and mortality among elderly patients in nursing homes. Am. J. Epidemiol. 135, 291–301 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Dreger, N. M., Degener, S., Ahmad-Nejad, P., Wobker, G. & Roth, S. Urosepsis — etiology, diagnosis, and treatment. Dtsch. Arztebl Int. 112, 837–847 (2015). quiz 848.

    PubMed  PubMed Central  Google Scholar 

  29. Rosenthal, V. D. et al. Time-dependent analysis of length of stay and mortality due to urinary tract infections in ten developing countries: INICC findings. J. Infect. 62, 136–141 (2011).

    Article  PubMed  Google Scholar 

  30. Trautner, B. W. & Darouiche, R. O. Catheter-associated infections: pathogenesis affects prevention. Arch. Intern. Med. 164, 842–850 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tambyah, P. A. & Oon, J. Catheter-associated urinary tract infection. Curr. Opin. Infect. Dis. 25, 365–370 (2012).

    Article  PubMed  Google Scholar 

  32. Warren, J. W. Catheter-associated urinary tract infections. Infect. Dis. Clin. North. Am. 11, 609–622 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Johnson, J. R., Kuskowski, M. A. & Wilt, T. J. Systematic review: antimicrobial urinary catheters to prevent catheter-associated urinary tract infection in hospitalized patients. Ann. Intern. Med. 144, 116–126 (2006).

    Article  PubMed  Google Scholar 

  34. Tambyah, P. A. & Maki, D. G. Catheter-associated urinary tract infection is rarely symptomatic — a prospective study of 1497 catheterized patients. Arch. Intern. Med. 160, 678–682 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Tambyah, P. A., Knasinski, V. & Maki, D. G. The direct costs of nosocomial catheter-associated urinary tract infection in the era of managed care. Infect. Control. Hosp. Epidemiol. 23, 27–31 (2002).

    Article  PubMed  Google Scholar 

  36. Morgan, D. J. et al. Does nonpayment for hospital-acquired catheter-associated urinary tract infections lead to overtesting and increased antimicrobial prescribing? Clin. Infect. Dis. 55, 923–929 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gould, C. V. et al. Guideline for prevention of catheter-associated urinary tract infections 2009. Infect. Control. Hosp. Epidemiol. 31, 319–326 (2010).

    Article  PubMed  Google Scholar 

  38. Ling, M. L. et al. APSIC guide for prevention of catheter associated urinary tract infections (CAUTIs). Antimicrobial Resistance Infect. Control. 12, 52 (2023).

    Article  Google Scholar 

  39. Saint, S. et al. Preventing catheter-associated urinary tract infection in the United States: a national comparative study. JAMA Intern. Med. 173, 874–879 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Carter, A. E. et al. Evaluation of CAUTI-reduction strategies and associated reduction in CAUTI rate and catheter utilization at a large academic medical center. Am. J. Infect. Control. 51, S51 (2023).

    Article  Google Scholar 

  41. Hayes, B. W. & Abraham, S. N. Innate immune responses to bladder infection. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.uti-0024-2016 (2016).

  42. Ding, Y., Wang, H., Pu, S., Huang, S. & Niu, S. Resistance trends of Klebsiella pneumoniae causing urinary tract infections in Chongqing, 2011–2019. Infect. Drug. Resist. 14, 475–481 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ronald, A. The etiology of urinary tract infection: traditional and emerging pathogens. Dis. Mon. 49, 71–82 (2003).

    Article  PubMed  Google Scholar 

  44. DeRosa, A. et al. Antimicrobial susceptibility trends for urinary isolates in the veteran population. Am. J. Infect. Control. 49, 576–581 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Schembri, M. A., Nhu, N. T. K. & Phan, M.-D. Gut–bladder axis in recurrent UTI. Nat. Microbiol. 7, 601–602 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Klein, R. D. & Hultgren, S. J. Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat. Rev. Microbiol. 18, 211–226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guiton, P. S. et al. Combinatorial small-molecule therapy prevents uropathogenic Escherichia coli catheter-associated urinary tract infections in mice. Antimicrob. Agents Chemother. 56, 4738–4745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abraham, S. N. & Miao, Y. The nature of immune responses to urinary tract infections. Nat. Rev. Immunol. 15, 655–663 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Song, J. et al. A novel TLR4-mediated signaling pathway leading to IL-6 responses in human bladder epithelial cells. PLoS Pathog. 3, e60 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ching, C. B. et al. Interleukin-6/Stat3 signaling has an essential role in the host antimicrobial response to urinary tract infection. Kidney Int. 93, 1320–1329 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dixit, A. et al. Frontline science: proliferation of Ly6C+ monocytes during urinary tract infections is regulated by IL-6 trans-signaling. J. Leukoc. Biol. 103, 13–22 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Hunstad, D. A., Justice, S. S., Hung, C. S., Lauer, S. R. & Hultgren, S. J. Suppression of bladder epithelial cytokine responses by uropathogenic Escherichia coli. Infect. Immun. 73, 3999–4006 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hilbert, D. W. et al. Uropathogenic Escherichia coli dominantly suppress the innate immune response of bladder epithelial cells by a lipopolysaccharide- and Toll-like receptor 4-independent pathway. Microbes Infect. 10, 114–121 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Yu, L. et al. Mucosal infection rewires TNFα signaling dynamics to skew susceptibility to recurrence. Elife 8, e46677 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Al Qahtani, M. et al. The incidence, clinical features and outcome of urinary tract infections in geriatric patients: a prospective longitudinal study. IJID Reg. 13, 100469 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  56. O’Brien, V. P., Dorsey, D. A., Hannan, T. J. & Hultgren, S. J. Host restriction of Escherichia coli recurrent urinary tract infection occurs in a bacterial strain-specific manner. PLoS Pathog. 14, e1007457 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. O’Brien, V. P. et al. A mucosal imprint left by prior Escherichia coli bladder infection sensitizes to recurrent disease. Nat. Microbiol. 2, 16196 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. O’Brien, V. P., Hannan, T. J., Schaeffer, A. J. & Hultgren, S. J. Are you experienced? Understanding bladder innate immunity in the context of recurrent urinary tract infection. Curr. Opin. Infect. Dis. 28, 97–105 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Russell, S. K. et al. Uropathogenic Escherichia coli infection-induced epithelial trained immunity impacts urinary tract disease outcome. Nat. Microbiol. 8, 875–888 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang, X. Z., Zhu, L. B., Li, Z. R. & Lin, J. Bacterial colonization and intestinal mucosal barrier development. World J. Clin. Pediatr. 2, 46–53 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hannan, T. J. et al. Inhibition of cyclooxygenase-2 prevents chronic and recurrent cystitis. EBioMedicine 1, 46–57 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ebrahimzadeh, T. et al. Urinary prostaglandin E2 as a biomarker for recurrent UTI in postmenopausal women. Life Sci. Alliance 4, e202000948 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bleidorn, J., Gagyor, I., Kochen, M. M., Wegscheider, K. & Hummers-Pradier, E. Symptomatic treatment (ibuprofen) or antibiotics (ciprofloxacin) for uncomplicated urinary tract infection? — results of a randomized controlled pilot trial. BMC Med. 8, 30 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tenke, P., Mezei, T., Bőde, I. & Köves, B. Catheter-associated urinary tract infections. Eur. Urol. Suppl. 16, 138–143 (2017).

    Article  Google Scholar 

  65. Barford, J. M., Hu, Y., Anson, K. & Coates, A. R. A biphasic response from bladder epithelial cells induced by catheter material and bacteria: an in vitro study of the pathophysiology of catheter related urinary tract infection. J. Urol. 180, 1522–1526 (2008).

    Article  PubMed  Google Scholar 

  66. Agra Leite, C. & Darbellay Farhoumand, P. [The forgotten urinary catheter]. Rev. Med. Suisse 19, 589–590 (2023).

    PubMed  Google Scholar 

  67. Andersen, M. J. et al. Inhibiting host-protein deposition on urinary catheters reduces associated urinary tract infections. Elife 11, e75798 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Molina, J. J. et al. Fibrinolytic-deficiencies predispose hosts to septicemia from a catheter-associated UTI. Nat. Commun. 15, 2704 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, H. Y., Prentice, E. L. & Webber, M. A. Mechanisms of antimicrobial resistance in biofilms. NPJ Antimicrob. Resist. 2, 27 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Trautner, B. W. & Darouiche, R. O. Role of biofilm in catheter-associated urinary tract infection. Am. J. Infect. Control. 32, 177–183 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gunardi, W. D. et al. Biofilm-producing bacteria and risk factors (gender and duration of catheterization) characterized as catheter-associated biofilm formation. Int. J. Microbiol. 2021, 8869275 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wilks, S. A., Koerfer, V. V., Prieto, J. A., Fader, M. & Keevil, C. W. Biofilm development on urinary catheters promotes the appearance of viable but nonculturable bacteria. mBio 12, e03584–20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ramadan, R., Omar, N., Dawaba, M. & Moemen, D. Bacterial biofilm dependent catheter associated urinary tract infections: characterization, antibiotic resistance pattern and risk factors. Egypt. J. Basic. Appl. Sci. 8, 64–74 (2021).

    Google Scholar 

  74. Soto, S. M. Importance of biofilms in urinary tract infections: new therapeutic approaches. Adv. Biol. 2014, 543974 (2014).

    Article  Google Scholar 

  75. Andersen, M. J. & Flores-Mireles, A. L. Urinary catheter coating modifications: the race against catheter-associated infections. Coatings 10, 23 (2020).

    Article  CAS  Google Scholar 

  76. Flores-Mireles, A. L. et al. Antibody-based therapy for enterococcal catheter-associated urinary tract infections. mBio 7, e01653–16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. La Bella, A. A. et al. The catheterized bladder environment promotes Efg1- and Als1-dependent Candida albicans infection. Sci. Adv. 9, eade7689 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Flores-Mireles, A. L. et al. Fibrinogen release and deposition on urinary catheters placed during urological procedures. J. Urol. 196, 416–421 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chaudhry, R., Killeen, R. B. & Babiker H., M. Physiology, Coagulation Pathways. StatPearls [Internet] https://www.ncbi.nlm.nih.gov/books/NBK482253/ (updated 2 June 2025).

  80. Cheung, A. L. & Fischetti, V. A. The role of fibrinogen in staphylococcal adherence to catheters in vitro. J. Infect. Dis. 161, 1177–1186 (1990).

    Article  CAS  PubMed  Google Scholar 

  81. Bertoglio, F. et al. Antibodies to coagulase of Staphylococcus aureus crossreact to Efb and reveal different binding of shared fibrinogen binding repeats. Front. Immunol. 14, 1221108 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, Q. et al. Fibronectin-/fibrinogen-binding protein (FBPS) is not a critical virulence factor for the Streptococcus suis serotype 2 strain ZY05719. Vet. Microbiol. 208, 38–46 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Lapschies, A. M. et al. The type-2 Streptococcus canis M protein SCM-2 binds fibrinogen and facilitates antiphagocytic properties. Front. Microbiol. 14, 1228472 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  84. National Healthcare Safety Network. Device Associated Module: Urinary Tract Infection (Catheter-Associated Urinary Tract Infection [CAUTI] and Non-Catheter-Associated Urinary Tract Infection [UTI]) Events. CDC https://www.cdc.gov/nhsn/pdfs/pscmanual/7psccauticurrent.pdf (2021).

  85. Holroyd-Leduc, J. M. et al. Risk factors for indwelling urinary catheterization among older hospitalized patients without a specific medical indication for catheterization. J. Patient Saf. 1, 201–207 (2005).

    Article  Google Scholar 

  86. Kaur, R. & Kaur, R. Symptoms, risk factors, diagnosis and treatment of urinary tract infections. Postgrad. Med. J. 97, 803–812 (2020).

    Article  PubMed  Google Scholar 

  87. Ambite, I. et al. Molecular determinants of disease severity in urinary tract infection. Nat. Rev. Urol. 18, 468–486 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Al Lawati, H., Blair, B. M. & Larnard, J. Urinary tract infections: core curriculum 2024. Am. J. Kidney Dis. 83, 90–100 (2024).

    Article  PubMed  Google Scholar 

  89. Hay, A. D. et al. The diagnosis of urinary tract infection in young children (DUTY): a diagnostic prospective observational study to derive and validate a clinical algorithm for the diagnosis of urinary tract infection in children presenting to primary care with an acute illness. Health Technol. Assess. 20, 1–294 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Walker, J. N. et al. High-resolution imaging reveals microbial biofilms on patient urinary catheters despite antibiotic administration. World J. Urol. 38, 2237–2245 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Nye, T. M. et al. Microbial co-occurrences on catheters from long-term catheterized patients. Nat. Commun. 15, 61 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gaston, J. R. et al. Enterococcus faecalis polymicrobial interactions facilitate biofilm formation, antibiotic recalcitrance, and persistent colonization of the catheterized urinary tract. Pathogens 9, 835 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Armbruster, C. E., Brauer, A. L., Humby, M. S., Shao, J. & Chakraborty, S. Prospective assessment of catheter-associated bacteriuria clinical presentation, epidemiology, and colonization dynamics in nursing home residents. JCI Insight 6, e144775 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Armbruster, C. E., Prenovost, K., Mobley, H. L. & Mody, L. How often do clinically diagnosed catheter-associated urinary tract infections in nursing homes meet standardized criteria? J. Am. Geriatr. Soc. 65, 395–401 (2017).

    Article  PubMed  Google Scholar 

  95. Qin, X. et al. Efficacy of expanded periurethral cleansing in reducing catheter-associated urinary tract infection in comatose patients: a randomized controlled clinical trial. Crit. Care 28, 162 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Azevedo, A. S., Almeida, C., Melo, L. F. & Azevedo, N. F. Impact of polymicrobial biofilms in catheter-associated urinary tract infections. Crit. Rev. Microbiol. 43, 423–439 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Melzer, M. & Welch, C. Outcomes in UK patients with hospital-acquired bacteraemia and the risk of catheter-associated urinary tract infections. Postgrad. Med. J. 89, 329–334 (2013).

    Article  PubMed  Google Scholar 

  98. Wagenlehner, F. M. et al. Diagnosis and management for urosepsis. Int. J. Urol. 20, 963–970 (2013).

    Article  PubMed  Google Scholar 

  99. Nasr, A. State of the globe: catheterizations continue to cultivate urinary infections. J. Glob. Infect. Dis. 2, 81–82 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Trautner, B. W. et al. A hospital-site controlled intervention using audit and feedback to implement guidelines concerning inappropriate treatment of catheter-associated asymptomatic bacteriuria. Implement. Sci. 6, 41 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Cope, M. et al. Inappropriate treatment of catheter-associated asymptomatic bacteriuria in a tertiary care hospital. Clin. Infect. Dis. 48, 1182–1188 (2009).

    Article  PubMed  Google Scholar 

  102. Kizilbash, Q. F., Petersen, N. J., Chen, G. J., Naik, A. D. & Trautner, B. W. Bacteremia and mortality with urinary catheter-associated bacteriuria. Infect. Control. Hosp. Epidemiol. 34, 1153–1159 (2013).

    Article  PubMed  Google Scholar 

  103. Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. Sci. Transl. Med. 6, 254ra127 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ponnuraj, K. et al. A “dock, lock, and latch” structural model for a staphylococcal adhesin binding to fibrinogen. Cell 115, 217–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Thomas, S. et al. The complex fibrinogen interactions of the Staphylococcus aureus coagulases. Front. Cell Infect. Microbiol. 9, 106 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Negron, O. et al. Fibrin(ogen) engagement of S. aureus promotes the host antimicrobial response and suppression of microbe dissemination following peritoneal infection. PLoS Pathog. 18, e1010227 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Negron, O. et al. Fibrinogen γ’ promotes host survival during Staphylococcus aureus septicemia in mice. J. Thromb. Haemost. 21, 2277–2290 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Walker, J. N. et al. Catheterization alters bladder ecology to potentiate Staphylococcus aureus infection of the urinary tract. Proc. Natl Acad. Sci. USA 114, E8721–E8730 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Heintz, B. H., Halilovic, J. & Christensen, C. L. Vancomycin-resistant enterococcal urinary tract infections. Pharmacotherapy 30, 1136–1149 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Jayakumar, S. et al. Short term urinary catheterized patients in intensive care unit (ICU) — a need to screen. J. Commun. Dis. 43, 25–30 (2011).

    CAS  PubMed  Google Scholar 

  111. Xu, W. et al. Host and bacterial proteases influence biofilm formation and virulence in a murine model of enterococcal catheter-associated urinary tract infection. NPJ Biofilms Microbiomes 3, 28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Di Venanzio, G. et al. Urinary tract colonization is enhanced by a plasmid that regulates uropathogenic Acinetobacter baumannii chromosomal genes. Nat. Commun. 10, 2763 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Tamadonfar, K. O. et al. Structure–function correlates of fibrinogen binding by Acinetobacter adhesins critical in catheter-associated urinary tract infections. Proc. Natl Acad. Sci. USA 120, e2212694120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hazen, J. E., Di Venanzio, G., Hultgren, S. J. & Feldman, M. F. Catheterization of mice triggers resurgent urinary tract infection seeded by a bladder reservoir of Acinetobacter baumannii. Sci. Transl. Med. 15, eabn8134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kalas, V. et al. Evolutionary fine-tuning of conformational ensembles in FimH during host-pathogen interactions. Sci. Adv. 3, e1601944 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Adamczyk, B., Struwe, W. B., Ercan, A., Nigrovic, P. A. & Rudd, P. M. Characterization of fibrinogen glycosylation and its importance for serum/plasma N-glycome analysis. J. Proteome Res. 12, 444–454 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Alfouzan, W. A. & Dhar, R. Candiduria: evidence-based approach to management, are we there yet? J. Mycol. Med. 27, 293–302 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Fisher, J. F. Candiduria: when and how to treat it. Curr. Infect. Dis. Rep. 2, 523–530 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Hollenbach, E. To treat or not to treat — critically ill patients with candiduria. Mycoses 51, 12–24 (2008).

    Article  PubMed  Google Scholar 

  120. Sobel, J. D., Fisher, J. F., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections — epidemiology. Clin. Infect. Dis. 52, S433–S436 (2011).

    Article  PubMed  Google Scholar 

  121. Jain, M. et al. Candiduria in catheterized intensive care unit patients: emerging microbiological trends. Indian J. Pathol. Microbiol. 54, 552–555 (2011).

    Article  PubMed  Google Scholar 

  122. Gharaghani, M., Taghipour, S., Halvaeezadeh, M. & Mahmoudabadi, A. Z. Candiduria; a review article with specific data from Iran. Turk. J. Urol. 44, 445–452 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Rishpana, M. S. & Kabbin, J. S. Candiduria in catheter associated urinary tract infection with special reference to biofilm production. J. Clin. Diagn. Res. 9, DC11–DC13 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. Goetz, L. L., Howard, M., Cipher, D. & Revankar, S. G. Occurrence of candiduria in a population of chronically catheterized patients with spinal cord injury. Spinal Cord. 48, 51–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Parums, D. V. Editorial: the World Health Organization (WHO) fungal priority pathogens list in response to emerging fungal pathogens during the COVID-19 pandemic. Med. Sci. Monit. 28, e939088 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Organization, W. H. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. (World Health Organization, 2022).

  127. Griffith, N. & Danziger, L. Candida auris urinary tract infections and possible treatment. Antibiotics 9, 898 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Padawer, D. et al. Catheter-associated candiduria: risk factors, medical interventions, and antifungal susceptibility. Am. J. Infect. Control. 43, e19–e22 (2015).

    Article  PubMed  Google Scholar 

  129. Álvarez-Lerma, F. et al. Candiduria in critically ill patients admitted to intensive care medical units. Intensive Care Med. 29, 1069–1076 (2003).

    Article  PubMed  Google Scholar 

  130. Walder, B. & Tramer, M. R. Analgesia and sedation in critically ill patients. Swiss Med. Wkly. 134, 333–346 (2004).

    Article  PubMed  Google Scholar 

  131. Walker, J. N. et al. High-resolution imaging reveals microbial biofilms on patient urinary catheters despite antibiotic administration. World J. Urol. 38, 2237–2245 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kojic, E. M. & Darouiche, R. O. Candida infections of medical devices. Clin. Microbiol. Rev. 17, 255–267 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Azmy, M., Nawar, N., Mohiedden, M. & Warille, L. Electron microscopic assay of bacterial biofilm formed on indwelling urethral catheters. J. Egypt. Soc. Parasitol. 46, 475–484 (2016).

    PubMed  Google Scholar 

  134. Fisher, J. F., Kavanagh, K., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infection: pathogenesis. Clin. Infect. Dis. 52, S437–S451 (2011).

    Article  PubMed  Google Scholar 

  135. Walker, J. N. et al. High-resolution imaging reveals microbial biofilms on patient urinary catheters despite antibiotic administration. World J. Urol. 38, 2237–2245 (2018). 2020 Sep.

    Article  Google Scholar 

  136. Zeller, I. et al. Detection of fungal pathogens by a new broad range real-time PCR assay targeting the fungal ITS2 region. J. Med. Microbiol. 66, 1383–1392 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Gajdacs, M., Doczi, I., Abrok, M., Lazar, A. & Burian, K. Epidemiology of candiduria and Candida urinary tract infections in inpatients and outpatients: results from a 10-year retrospective survey. Cent. European J. Urol. 72, 209–214 (2019).

    PubMed  PubMed Central  Google Scholar 

  138. He, Z. et al. Candiduria in hospitalized patients: an investigation with the Sysmex UF-1000i urine analyzer. PeerJ 7, e6935 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Li, H. et al. Interactions between Candida albicans and the resident microbiota. Front. Microbiol. 13, 930495 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Bouza, E. & Munoz, P. Epidemiology of candidemia in intensive care units. Int. J. Antimicrob. Agents 32, S87–S91 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Epelbaum, O. & Chasan, R. Candidemia in the intensive care unit. Clin. Chest Med. 38, 493–509 (2017).

    Article  PubMed  Google Scholar 

  142. Siegman-Igra, Y. The significance of urine culture with mixed flora. Curr. Opin. Nephrol. Hypertens. 3, 656–659 (1994).

    Article  CAS  PubMed  Google Scholar 

  143. Rudman, D., Hontanosas, A., Cohen, Z. & Mattson, D. E. Clinical correlates of bacteremia in a veterans administration extended care facility. J. Am. Geriatr. Soc. 36, 726–732 (1988).

    Article  CAS  PubMed  Google Scholar 

  144. Lee, H. S. & Le, J. in Infectious Diseases, (eds Huang, V., et al.) 7–28. (American College of Clinical Pharmacology, 2018).

  145. Yu, Y. et al. Urethral catheter biofilms reveal plasticity in bacterial composition and metabolism and withstand host immune defenses in hypoxic environment. Front. Med. 8, 667462 (2021).

    Article  Google Scholar 

  146. Allkja, J., Goeres, D. M., Azevedo, A. S. & Azevedo, N. F. Interactions of microorganisms within a urinary catheter polymicrobial biofilm model. Biotechnol. Bioeng. 120, 239–249 (2023).

    Article  CAS  PubMed  Google Scholar 

  147. Al-Balawi, M. & Morsy, F. M. Enterococcus faecalis is a better competitor than other lactic acid bacteria in the initial colonization of colon of healthy newborn babies at first week of their life. Front. Microbiol. 11, 2017 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. United States Center for Disease Control and Prevention. HAI Pathogens and Antimicrobial Resistance Report, 2018–2021. CDC https://www.cdc.gov/nhsn/hai-report/index.html (2023).

  149. Sheerin, N. S. Urinary tract infection. Medicine 39, 384–389 (2011).

    Article  Google Scholar 

  150. Komala, M. & Kumar, K. S. Urinary tract infection: causes, symptoms, diagnosis and its management. Indian J. Res. Pharm. Biotechnol. 1, 226 (2013).

    Google Scholar 

  151. Sheerin, N. S. & Glover, E. K. Urinary tract infection. Medicine 47, 546–550 (2019).

    Article  Google Scholar 

  152. Danchaivijitr, S., Dhiraputra, C., Cherdrungsi, R., Jintanothaitavorn, D. & Srihapol, N. Catheter-associated urinary tract infection. J. Med. Assoc. Thai 88, 26–30 (2005).

    Google Scholar 

  153. Meddings, J., Reichert, H. & McMahon, L. F. Jr Challenges and proposed improvements for reviewing symptoms and catheter use to identify national healthcare safety network catheter-associated urinary tract infections. Am. J. Infect. Control. 42, S236–S241 (2014).

    Article  PubMed  Google Scholar 

  154. Tambyah, P. A. & Maki, D. G. Catheter-associated urinary tract infection is rarely symptomatic: a prospective study of 1497 catheterized patients. Arch. Intern. Med. 160, 678–682 (2000).

    Article  CAS  PubMed  Google Scholar 

  155. Blodgett, T. J., Gardner, S. E., Blodgett, N. P., Peterson, L. V. & Pietraszak, M. A tool to assess the signs and symptoms of catheter-associated urinary tract infection: development and reliability. Clin. Nurs. Res. 24, 341–356 (2015).

    Article  PubMed  Google Scholar 

  156. Garimella, V. & Cellini, C. Postoperative pain control. Clin. Colon. Rectal Surg. 26, 191–196 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Dinh, A. et al. Urinary tract infections in patients with neurogenic bladder. Med. Mal. Infect. 49, 495–504 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Timm, M. R., Russell, S. K. & Hultgren, S. J. Urinary tract infections: pathogenesis, host susceptibility and emerging therapeutics. Nat. Rev. Microbiol. 23, 72–86 (2025).

    Article  CAS  PubMed  Google Scholar 

  159. Storme, O., Tiran Saucedo, J., Garcia-Mora, A., Dehesa-Davila, M. & Naber, K. G. Risk factors and predisposing conditions for urinary tract infection. Ther. Adv. Urol. 11, 1756287218814382 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Mwansa, C. M. L., Babiker, A., Satola, S., Logan, L. K. & Nadimpalli, M. L. Associations between neighbourhood-level median household income and outpatients’ risk of antibiotic non-susceptible uropathogens in a major urban centre, USA. JAC Antimicrob. Resist. 6, dlae179 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Fromer, D. L. et al. Risk factors for empiric treatment failure in US female outpatients with uncomplicated urinary tract infection: an observational study. J. Gen. Intern. Med. 40, 862–870 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Bono, M. J., Leslie, S. W. & Reygaert, W. C. Uncomplicated Urinary Tract Infections. StatPearls [Internet] https://www.ncbi.nlm.nih.gov/books/NBK470195/ (updated 21 February 2025).

  163. Sen, A., Kaul, A. & Kaul, R. Estrogen receptors in human bladder cells regulate innate cytokine responses to differentially modulate uropathogenic E. coli colonization. Immunobiology 226, 152020 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Ackerson, B. K. et al. Risk factors for recurrent urinary tract infections among women in a large integrated health care organization in the United States. J. Infect. Dis. 230, e1101–e1111 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Anger, J. et al. Recurrent uncomplicated urinary tract infections in women: AUA/CUA/SUFU guideline. J. Urol. 202, 282–289 (2019).

    Article  PubMed  Google Scholar 

  166. Meddings, J. et al. Reducing unnecessary urinary catheter use and other strategies to prevent catheter-associated urinary tract infection: an integrative review. BMJ Qual. Saf. 23, 277–289 (2014).

    Article  PubMed  Google Scholar 

  167. Raz, R., Schiller, D. & Nicolle, L. E. Chronic indwelling catheter replacement before antimicrobial therapy for symptomatic urinary tract infection. J. Urol. 164, 1254–1258 (2000).

    Article  CAS  PubMed  Google Scholar 

  168. Babich, T. et al. Replacement of urinary catheter for urinary tract infections: a prospective observational study. J. Am. Geriatr. Soc. 66, 1779–1784 (2018).

    Article  PubMed  Google Scholar 

  169. Ausen, K., Fossmark, R., Spigset, O. & Pleym, H. Safety and efficacy of local tranexamic acid for the prevention of surgical bleeding in soft-tissue surgery: a review of the literature and recommendations for plastic surgery. Plast. Reconstr. Surg. 149, 774–787 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Perrin, K. et al. Catheter-associated urinary tract infection (CAUTI) in the NeuroICU: identification of risk factors and time-to-CAUTI using a case-control design. Neurocrit Care 34, 271–278 (2021).

    Article  CAS  PubMed  Google Scholar 

  171. Chen, Y. et al. Income-related inequalities in diagnosed diabetes prevalence among US adults, 2001–2018. PLoS ONE 18, e0283450 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chen, J., Khazanchi, R., Bearman, G. & Marcelin, J. R. Racial/ethnic inequities in healthcare-associated infections under the shadow of structural racism: narrative review and call to action. Curr. Infect. Dis. Rep. 23, 17 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Li, X. et al. Effects of hyperglycemia and diabetes mellitus on coagulation and hemostasis. J. Clin. Med. 10, 2419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bryk-Wiazania, A. H. & Undas, A. Hypofibrinolysis in type 2 diabetes and its clinical implications: from mechanisms to pharmacological modulation. Cardiovasc. Diabetol. 20, 191 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cronkleton, E. What Medication Can Treat a Urinary Tract Infection (UTI)? Healthline https://www.healthline.com/health/medicine-for-urinary-tract-infection#oral-antibiotics (2023).

  176. Dunne, M. W. et al. Impact of empirical antibiotic therapy on outcomes of outpatient urinary tract infection due to nonsusceptible Enterobacterales. Microbiol. Spectr. 10, e02359–02321 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Aggarwal, N. & Leslie, S. W. Recurrent Urinary Tract Infections. StatPearls [Internet] https://www.ncbi.nlm.nih.gov/books/NBK557479/ (updated 20 January 2025).

  178. Lee, H. S. & Le, J. in Infectious Diseases (eds Huang, V. et al.) 7–28 (PSAP, 2018).

  179. Heimann, D., Kohnhäuser, D., Kohnhäuser, A. J. & Brönstrup, M. Antibacterials with novel chemical scaffolds in clinical development. Drugs 85, 293–323 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Sabih, A. & Leslie, S. W. Complicated Urinary Tract Infections. StatPearls [Internet] https://www.ncbi.nlm.nih.gov/books/NBK436013/ (updated 7 December 2024).

  181. Tingsgard, S., Bastrup Israelsen, S., Jorgensen, H. L., Ostergaard, C. & Benfield, T. Early switch from intravenous to oral antibiotics for patients with uncomplicated gram-negative bacteremia. JAMA Netw. Open 7, e2352314 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Turjeman, A. et al. Duration of antibiotic treatment for gram-negative bacteremia — systematic review and individual participant data (IPD) meta-analysis. EClinicalMedicine 55, 101750 (2023).

    Article  PubMed  Google Scholar 

  183. Hollenbeck, B. L. & Rice, L. B. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 3, 421–433 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Kim, P. et al. Safety, pharmacokinetics, and pharmacodynamics of LBP-EC01, a CRISPR-Cas3-enhanced bacteriophage cocktail, in uncomplicated urinary tract infections due to Escherichia coli (ELIMINATE): the randomised, open-label, first part of a two-part phase 2 trial. Lancet Infect. Dis. 24, 1319–1332 (2024).

    Article  PubMed  Google Scholar 

  185. Kanti, S. P. Y., Csoka, I., Jojart-Laczkovich, O. & Adalbert, L. Recent advances in antimicrobial coatings and material modification strategies for preventing urinary catheter-associated complications. Biomedicines 10, 2580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Al-Qahtani, M., Safan, A., Jassim, G. & Abadla, S. Efficacy of anti-microbial catheters in preventing catheter associated urinary tract infections in hospitalized patients: a review on recent updates. J. Infect. Public. Health 12, 760–766 (2019).

    Article  PubMed  Google Scholar 

  187. Chadha, J., Thakur, N., Chhibber, S. & Harjai, K. A comprehensive status update on modification of Foley catheter to combat catheter-associated urinary tract infections and microbial biofilms. Crit. Rev. Microbiol. 50, 168–195 (2024).

    Article  PubMed  Google Scholar 

  188. Schug, S. A. The role of COX-2 inhibitors in the treatment of postoperative pain. J. Cardiovasc. Pharmacol. 47, S82–S86 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Maki, K. C. et al. Consumption of a cranberry juice beverage lowered the number of clinical urinary tract infection episodes in women with a recent history of urinary tract infection. Am. J. Clin. Nutr. 103, 1434–1442 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Babar, A. et al. High dose versus low dose standardized cranberry proanthocyanidin extract for the prevention of recurrent urinary tract infection in healthy women: a double-blind randomized controlled trial. BMC Urol. 21, 44 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Cooper, T. E. et al. D‐mannose for preventing and treating urinary tract infections. Cochrane Database Syst. Rev. 8, CD013608 (2022).

    PubMed  Google Scholar 

  192. Hayward, G. et al. d-Mannose for prevention of recurrent urinary tract infection among women: a randomized clinical trial. JAMA Intern. Med. 184, 619–628 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. La Bella, A. A., Molesan, A., Wollin, D. A., Paul, S. & Flores-Mireles, A. L. Initial antimicrobial testing of a novel reusable intermittent urinary catheter system and catheter reprocessing device. Urology 193, 8–15 (2024).

    Article  PubMed  Google Scholar 

  194. Etefia, E. in Escherichia coli — Old and New Insights (ed. Erjavec, M. S.) (IntechOpen, 2021).

  195. Carere-Sigl, A., Nowakowska, J., Hevey, R., Khanna, N. & Ernst, B. in Carbohydrate Chemistry: Chemical and Biological Approaches, Volume 45 (eds Rauter, A. P., Lindhorst, T. K., Queneau. Y. (Royal Society of Chemistry, 2021).

  196. Spaulding, C. N. & Hultgren, S. J. Adhesive pili in UTI pathogenesis and drug development. Pathogens 5, 30 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Chagneau, C. V. et al. HlyF, an underestimated virulence factor of uropathogenic Escherichia coli. Clin. Microbiol. Infect. 29, 1449.e1441–1449.e1449 (2023).

    Article  Google Scholar 

  198. Tanaka, R. et al. Cyclic-di-AMP confers an invasive phenotype on Escherichia coli through elongation of flagellin filaments. Gut Pathog. 16, 6 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Lopez-Banda, D. A. et al. Identification of virulence factors genes in Escherichia coli isolates from women with urinary tract infection in Mexico. Biomed. Res. Int. 2014, 959206 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Bunduki, G. K. et al. Virulence factors and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from urinary tract infections: a systematic review and meta-analysis. BMC Infect. Dis. 21, 753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zou, Z. et al. E. coli catheter-associated urinary tract infections are associated with distinctive virulence and biofilm gene determinants. JCI Insight 8, e161461 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Mohamed, E. H. et al. Study of biofilm, virulence genes, and risk factors in urinary catheter-associated Escherichia coli infections. Jundishapur J. Microbiol. 17, 1–9 (2024).

    Google Scholar 

  203. Lopatto, E. D. B. et al. Conformational ensembles in Klebsiella pneumoniae FimH impact uropathogenesis. Proc. Natl Acad. Sci. USA 121, e2409655121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Clegg, S. & Murphy, C. N. in Urinary Tract Infections: Molecular Pathogenesis and Clinical Management (eds. Mulvey, M. A. et al.) 435-457 (Oxford Univ. Press, 2017).

  205. Govindarajan, D. K. & Kandaswamy, K. Virulence factors of uropathogens and their role in host pathogen interactions. Cell Surf. 8, 100075 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Schaffer, J. N. & Pearson, M. M. Proteus mirabilis and urinary tract infections. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.UTI-0017-2013 (2015).

  207. Wasfi, R., Hamed, S. M., Amer, M. A. & Fahmy, L. I. Proteus mirabilis biofilm: development and therapeutic strategies. Front. Cell Infect. Microbiol. 10, 414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Newman, J. W., Floyd, R. V. & Fothergill, J. L. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol. Lett. 364, fnx124 (2017).

    Article  Google Scholar 

  209. Romling, U., Galperin, M. Y. & Gomelsky, M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77, 1–52 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Cole, S. J., Records, A. R., Orr, M. W., Linden, S. B. & Lee, V. T. Catheter-associated urinary tract infection by Pseudomonas aeruginosa is mediated by exopolysaccharide-independent biofilms. Infect. Immun. 82, 2048–2058 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Jackson-Litteken, C. D. et al. InvL, an invasin-like adhesin, is a type II secretion system substrate required for Acinetobacter baumannii uropathogenesis. mBio 13, e0025822 (2022).

    Article  PubMed  Google Scholar 

  212. Kundra, S. et al. c-di-AMP is essential for the virulence of Enterococcus faecalis. Infect. Immun. 89, e0036521 (2021).

    Article  PubMed  Google Scholar 

  213. Colomer-Winter, C. et al. Manganese acquisition is essential for virulence of Enterococcus faecalis. PLoS Pathog. 14, e1007102 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Lam, L. N., Brunson, D. N., Molina, J. J., Flores-Mireles, A. L. & Lemos, J. A. The AdcACB/AdcAII system is essential for zinc homeostasis and an important contributor of Enterococcus faecalis virulence. Virulence 13, 592–608 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Xu, K. et al. Staphylococcus aureus ST1 promotes persistent urinary tract infection by highly expressing the urease. Front. Microbiol. 14, 1101754 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Paudel, S. et al. Defining the roles of pyruvate oxidation, TCA cycle, and mannitol metabolism in methicillin-resistant Staphylococcus aureus catheter-associated urinary tract infection. Microbiol. Spectr. 11, e05365–e05322 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Ismail, M. G., El-Haliem, A., Farouk, N. & Aboelmagd, E. K. Assessment of virulence factors and antifungal susceptibility of Candida species isolated from catheter associated urinary tract infections. Al-Azhar Int. Med. J. 1, 179–188 (2020).

    Google Scholar 

  218. Letica-Kriegel, A. S. et al. Identifying the risk factors for catheter-associated urinary tract infections: a large cross-sectional study of six hospitals. BMJ Open 9, e022137 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Shankar, M., Narasimhappa, S. & Madhura, N. S. Urinary tract infection in chronic kidney disease population: a clinical observational study. Cureus 13, e12486 (2021).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ana L. Flores-Mireles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Florian Wagenlehner, Sharyl Justice and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina, J.J., Flores-Mireles, A.L. CAUTIon — not all UTIs are the same. Nat Rev Urol 22, 799–814 (2025). https://doi.org/10.1038/s41585-025-01065-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41585-025-01065-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing