Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and implications of epithelial cell plasticity in the bladder

Abstract

Cellular plasticity, the ability of cells to reprogramme and alter their fate, has a pivotal role in maintaining homeostasis and facilitating tissue regeneration after injury. The bladder urothelium, a dynamic transitional epithelial layer, displays a highly plastic phenotype that enables its remarkable regenerative capacity in response to wounding. During both development and repair, urothelial cells exhibit considerable plasticity through processes such as dedifferentiation, transdifferentiation and epithelial-to-mesenchymal transition. Urothelial plasticity is not only crucial for healthy tissue repair but is also involved in pathological conditions, including cancer. In bladder tumorigenesis, urothelial cells exploit plasticity to acquire new phenotypic and functional characteristics, transitioning between distinct cellular states. This plasticity contributes to tumour heterogeneity, subtype switching, progression, metastasis and resistance to therapies. These dynamic cellular transitions are regulated by intrinsic and extrinsic factors, including transcriptional and epigenetic mechanisms, as well as microenvironmental influences. Targeting urothelial plasticity could offer novel therapeutic strategies for bladder-related diseases.

Key points

  • Epithelial cell plasticity contributes to bladder repair, but leads to metaplastic changes, fibrosis and malignancy risk under pathological conditions such as inflammation or mechanical irritation.

  • Cellular plasticity drives bladder cancer heterogeneity, progression and therapy resistance through dynamic lineage transitions, epithelial-to-mesenchymal transition and stem-like traits, underscoring its pivotal role in disease evolution and treatment challenges.

  • Epithelial plasticity in bladder repair and cancer is regulated by transcription factors, signalling pathways, epigenetic modifications and microenvironmental cues, driving cell transitions and phenotypic adaptations.

  • Targeting epithelial cell plasticity offers promising avenues for bladder disease, regenerative medicine and cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The hierarchical structure of bladder urothelium.
Fig. 2: Manifestations of urothelial plasticity during bladder development and repair.
Fig. 3: Lineage plasticity triggers the heterogeneity and aggressive nature of bladder cancer.
Fig. 4: Molecular mechanisms regulating bladder urothelial plasticity.
Fig. 5: Detection of and therapeutic strategies for lineage plasticity.

Similar content being viewed by others

References

  1. Birder, L. & Andersson, K. E. Urothelial signaling. Physiol. Rev. 93, 653–680 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jackson, A. R., Narla, S. T., Bates, C. M. & Becknell, B. Urothelial progenitors in development and repair. Pediatr. Nephrol. 37, 1721–1731 (2022).

    Article  PubMed  Google Scholar 

  3. Garg, M. Urothelial cancer stem cells and epithelial plasticity: current concepts and therapeutic implications in bladder cancer. Cancer Metastasis Rev. 34, 691–701 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Al-Kurdi, B. Hierarchical transcriptional profile of urothelial cells development and differentiation. Differentiation 95, 10–20 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Jost, S. P., Gosling, J. A. & Dixon, J. S. The morphology of normal human bladder urothelium. J. Anat. 167, 103–115 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lavelle, J. et al. Bladder permeability barrier: recovery from selective injury of surface epithelial cells. Am. J. Physiol. Ren. Physiol. 283, F242–F253 (2002).

    Article  CAS  Google Scholar 

  7. Yamany, T., Van Batavia, J. & Mendelsohn, C. Formation and regeneration of the urothelium. Curr. Opin. Organ Transplant. 19, 323–330 (2014).

    Article  PubMed  Google Scholar 

  8. Wezel, F., Pearson, J. & Southgate, J. Plasticity of in vitro-generated urothelial cells for functional tissue formation. Tissue Eng. Part A 20, 1358–1368 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Li, Y. et al. Single-cell transcriptomes of mouse bladder urothelium uncover novel cell type markers and urothelial differentiation characteristics. Cell Prolif. 54, e13007 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blanpain, C. & Fuchs, E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science 344, 1242281 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tata, A., Chow, R. D. & Tata, P. R. Epithelial cell plasticity: breaking boundaries and changing landscapes. EMBO Rep. 22, e51921 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wicker, M. N. & Wagner, K. U. Cellular plasticity in mammary gland development and breast cancer. Cancers 15, 5605 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, Y., Liu, W., Hayward, S. W., Cunha, G. R. & Baskin, L. S. Plasticity of the urothelial phenotype: effects of gastro-intestinal mesenchyme/stroma and implications for urinary tract reconstruction. Differentiation 66, 126–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Dunton, C. L., Purves, J. T., Hughes, F. M. Jr. & Nagatomi, J. BOO induces fibrosis and EMT in urothelial cells which can be recapitulated in vitro through elevated storage and voiding pressure cycles. Int. Urol. Nephrol. 53, 2007–2018 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu, Z. et al. Single-cell transcriptomic map of the human and mouse bladders. J. Am. Soc. Nephrol. 30, 2159–2176 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pérez-González, A., Bévant, K. & Blanpain, C. Cancer cell plasticity during tumor progression, metastasis and response to therapy. Nat. Cancer 4, 1063–1082 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Davies, A., Zoubeidi, A., Beltran, H. & Selth, L. A. The transcriptional and epigenetic landscape of cancer cell lineage plasticity. Cancer Discov. 13, 1771–1788 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. da Silva-Diz, V., Lorenzo-Sanz, L., Bernat-Peguera, A., Lopez-Cerda, M. & Muñoz, P. Cancer cell plasticity: impact on tumor progression and therapy response. Semin. Cancer Biol. 53, 48–58 (2018).

    Article  PubMed  Google Scholar 

  19. Wiessner, G. B., Plumber, S. A., Xiang, T. & Mendelsohn, C. L. Development, regeneration and tumorigenesis of the urothelium. Development 149, dev.198184 (2022).

    Article  Google Scholar 

  20. Garg, M. Epithelial plasticity in urothelial carcinoma: current advancements and future challenges. World J. Stem Cell 8, 260–267 (2016).

    Article  Google Scholar 

  21. Wang, M. et al. Acquired semi-squamatization during chemotherapy suggests differentiation as a therapeutic strategy for bladder cancer. Cancer Cell 40, 1044–1059 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Warrick, J. I. et al. FOXA1 repression drives lineage plasticity and immune heterogeneity in bladder cancers with squamous differentiation. Nat. Commun. 13, 6575 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garioni, M. et al. Patient-derived organoids identify tailored therapeutic options and determinants of plasticity in sarcomatoid urothelial bladder cancer. npj Precis. Oncol. 7, 112 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sfakianos, J. P. et al. Epithelial plasticity can generate multi-lineage phenotypes in human and murine bladder cancers. Nat. Commun. 11, 2540 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, S. et al. Loss of LPAR6 and CAB39L dysregulates the basal-to-luminal urothelial differentiation program, contributing to bladder carcinogenesis. Cell Rep. 43, 114146 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Santos, C. P. et al. Urothelial organoids originating from Cd49f(high) mouse stem cells display Notch-dependent differentiation capacity. Nat. Commun. 10, 4407 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Papafotiou, G. et al. KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis. Nat. Commun. 7, 11914 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, J. et al. Polyploid superficial cells that maintain the urothelial barrier are produced via incomplete cytokinesis and endoreplication. Cell Rep. 25, 464–477 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shin, K. et al. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472, 110–114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Veranic, P. & Jezernik, K. Trajectorial organisation of cytokeratins within the subapical region of umbrella cells. Cell Motil. Cytoskeleton 53, 317–325 (2002).

    Article  PubMed  Google Scholar 

  31. Wu, X. R., Kong, X. P., Pellicer, A., Kreibich, G. & Sun, T. T. Uroplakins in urothelial biology, function, and disease. Kidney Int. 75, 1153–1165 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, J. D. & Lee, M. H. Decreased expression of zonula occludens-1 and occludin in the bladder urothelium of patients with interstitial cystitis/painful bladder syndrome. J. Formos. Med. Assoc. 113, 17–22 (2014).

    Article  PubMed  Google Scholar 

  33. Aboseif, S., El-Sakka, A., Young, P. & Cunha, G. Mesenchymal reprogramming of adult human epithelial differentiation. Differentiation 65, 113–118 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Neubauer, B. L. et al. Epithelial-mesenchymal interactions in prostatic development. II. Biochemical observations of prostatic induction by urogenital sinus mesenchyme in epithelium of the adult rodent urinary bladder. J. Cell Biol. 96, 1671–1676 (1983).

    Article  CAS  PubMed  Google Scholar 

  35. Cao, M. et al. Urothelium-derived Sonic hedgehog promotes mesenchymal proliferation and induces bladder smooth muscle differentiation. Differentiation 79, 244–250 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ayyaz, A. et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 569, 121–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560, 319–324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng, X. et al. Single-cell analysis reveals urothelial cell heterogeneity and regenerative cues following cyclophosphamide-induced bladder injury. Cell Death Dis. 12, 446 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clouston, D. & Lawrentschuk, N. Metaplastic conditions of the bladder. BJU Int. 112, 27–31 (2013).

    Article  PubMed  Google Scholar 

  41. Jin, X. W. et al. An experimental model of the epithelial to mesenchymal transition and pro-fibrogenesis in urothelial cells related to bladder pain syndrome/interstitial cystitis. Transl. Androl. Urol. 10, 4120–4131 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Varley, C. L., Stahlschmidt, J., Smith, B., Stower, M. & Southgate, J. Activation of peroxisome proliferator-activated receptor-gamma reverses squamous metaplasia and induces transitional differentiation in normal human urothelial cells. Am. J. Pathol. 164, 1789–1798 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khan, M. S., Thornhill, J. A., Gaffney, E., Loftus, B. & Butler, M. R. Keratinising squamous metaplasia of the bladder: natural history and rationalization of management based on review of 54 years experience. Eur. Urol. 42, 469–474 (2002).

    Article  PubMed  Google Scholar 

  44. Young, R. H. & Bostwick, D. G. Florid cystitis glandularis of intestinal type with mucin extravasation: a mimic of adenocarcinoma. Am. J. Surg. Pathol. 20, 1462–1468 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Varley, C. L. et al. Role of PPARgamma and EGFR signalling in the urothelial terminal differentiation programme. J. Cell Sci. 117, 2029–2036 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Islam, S. S. et al. TGF-β1 induces EMT reprogramming of porcine bladder urothelial cells into collagen producing fibroblasts-like cells in a Smad2/Smad3-dependent manner. J. Cell Commun. Signal. 8, 39–58 (2014).

    Article  PubMed  Google Scholar 

  47. Iguchi, N., Hou, A., Koul, H. K. & Wilcox, D. T. Partial bladder outlet obstruction in mice may cause E-cadherin repression through hypoxia induced pathway. J. Urol. 192, 964–972 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Kamoun, A. et al. A consensus molecular classification of muscle-invasive bladder cancer. Eur. Urol. 77, 420–433 (2020).

    Article  PubMed  Google Scholar 

  49. Amin, M. B. Histological variants of urothelial carcinoma: diagnostic, therapeutic and prognostic implications. Mod. Pathol. 22, S96–S118 (2009).

    Article  PubMed  Google Scholar 

  50. Cano Barbadilla, T. et al. The role of immunohistochemistry as a surrogate marker in molecular subtyping and classification of bladder cancer. Diagnostics 14, 2501 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dadhania, V. et al. Meta-analysis of the luminal and basal subtypes of bladder cancer and the identification of signature immunohistochemical markers for clinical use. EBioMedicine 12, 105–117 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Guo, C. C. et al. Assessment of luminal and basal phenotypes in bladder cancer. Sci. Rep. 10, 9743 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, L. et al. EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer. Nat. Commun. 9, 3503 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Batista da Costa, J. et al. Molecular characterization of neuroendocrine-like bladder cancer. Clin. Cancer Res. 25, 3908–3920 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Guo, C. C. et al. Molecular profile of bladder cancer progression to clinically aggressive subtypes. Nat. Rev. Urol. 21, 391–405 (2024).

    Article  CAS  PubMed  Google Scholar 

  56. Fontugne, J. et al. Progression-associated molecular changes in basal/squamous and sarcomatoid bladder carcinogenesis. J. Pathol. 259, 455–467 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Majewski, T. et al. Understanding the development of human bladder cancer by using a whole-organ genomic mapping strategy. Lab. Invest. 88, 694–721 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lobo, N. et al. What is the significance of variant histology in urothelial carcinoma? Eur. Urol. Focus 6, 653–663 (2020).

    Article  PubMed  Google Scholar 

  59. Ramal, M., Corral, S., Kalisz, M., Lapi, E. & Real, F. X. The urothelial gene regulatory network: understanding biology to improve bladder cancer management. Oncogene 43, 1–21 (2024).

    Article  CAS  PubMed  Google Scholar 

  60. Yang, D. et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 185, 1905–1923 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, Z. et al. Single-cell sequencing reveals variants in ARID1A, GPRC5A and MLL2 driving self-renewal of human bladder cancer stem cells. Eur. Urol. 71, 8–12 (2017).

    Article  PubMed  Google Scholar 

  62. Xiao, Y. et al. Integrative single cell atlas revealed intratumoral heterogeneity generation from an adaptive epigenetic cell state in human bladder urothelial carcinoma. Adv. Sci. 11, e2308438 (2024).

    Article  Google Scholar 

  63. He, F., Melamed, J., Tang, M. S., Huang, C. & Wu, X. R. Oncogenic HRAS activates epithelial-to-mesenchymal transition and confers stemness to p53-deficient urothelial cells to drive muscle invasion of basal subtype carcinomas. Cancer Res. 75, 2017–2028 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bakir, B., Chiarella, A. M., Pitarresi, J. R. & Rustgi, A. K. EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol. 30, 764–776 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Saitoh, M. Transcriptional regulation of EMT transcription factors in cancer. Semin. Cancer Biol. 97, 21–29 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Wang, H. et al. Single-cell analyses reveal mechanisms of cancer stem cell maintenance and epithelial-mesenchymal transition in recurrent bladder cancer. Clin. Cancer Res. 27, 6265–6278 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Biswas, A. et al. Transcriptional state dynamics lead to heterogeneity and adaptive tumor evolution in urothelial bladder carcinoma. Commun. Biol. 6, 1292 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee, S. H. et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173, 515–528 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sjödahl, G. et al. Metastasis and recurrence patterns in the molecular subtypes of urothelial bladder cancer. Int. J. Cancer 154, 180–190 (2024).

    Article  PubMed  Google Scholar 

  70. Cox, A. et al. Molecular urothelial tumor cell subtypes remain stable during metastatic evolution. Eur. Urol. 85, 328–332 (2024).

    Article  CAS  PubMed  Google Scholar 

  71. Loriot, Y. et al. The genomic and transcriptomic landscape of metastastic urothelial cancer. Nat. Commun. 15, 8603 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in cancer. Nature 575, 299–309 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhuang, J. et al. Cancer-associated fibroblast-derived miR-146a-5p generates a niche that promotes bladder cancer stemness and chemoresistance. Cancer Res. 83, 1611–1627 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Ooki, A. et al. YAP1 and COX2 coordinately regulate urothelial cancer stem-like cells. Cancer Res. 78, 168–181 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Oser, M. G., Niederst, M. J., Sequist, L. V. & Engelman, J. A. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. Lancet Oncol. 16, e165–e172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Deng, S. et al. Ectopic JAK-STAT activation enables the transition to a stem-like and multilineage state conferring AR-targeted therapy resistance. Nat. Cancer 3, 1071–1087 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lavallee, E., Sfakianos, J. P. & Mulholland, D. J. Tumor heterogeneity and consequences for bladder cancer treatment. Cancers 13, 5297 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chen, Y. et al. Twist confers chemoresistance to anthracyclines in bladder cancer through upregulating P-glycoprotein. Chemotherapy 58, 264–272 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Contreras-Sanz, A. et al. Proteomic profiling identifies muscle-invasive bladder cancers with distinct biology and responses to platinum-based chemotherapy. Nat. Commun. 16, 1240 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Groeneveld, C. S. et al. Basal/squamous and mixed subtype bladder cancers present poor outcomes after neoadjuvant chemotherapy in the VESPER trial. Ann. Oncol. 36, 89–98 (2025).

    Article  CAS  PubMed  Google Scholar 

  81. Song, B. N. et al. Identification of an immunotherapy-responsive molecular subtype of bladder cancer. EBioMedicine 50, 238–245 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Todenhöfer, T. & Seiler, R. Molecular subtypes and response to immunotherapy in bladder cancer patients. Transl. Androl. Urol. 8, S293–s295 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Liu, C. et al. Pparg promotes differentiation and regulates mitochondrial gene expression in bladder epithelial cells. Nat. Commun. 10, 4589 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Reddy, O. L. et al. Loss of FOXA1 drives sexually dimorphic changes in urothelial differentiation and is an independent predictor of poor prognosis in bladder cancer. Am. J. Pathol. 185, 1385–1395 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chopra, B., Hinley, J., Oleksiewicz, M. B. & Southgate, J. Trans-species comparison of PPAR and RXR expression by rat and human urothelial tissues. Toxicol. Pathol. 36, 485–495 (2008).

    Article  PubMed  Google Scholar 

  86. Pascual, G. et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437, 759–763 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tate, T. et al. Pparg signaling controls bladder cancer subtype and immune exclusion. Nat. Commun. 12, 6160 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hustler, A. et al. Differential transcription factor expression by human epithelial cells of buccal and urothelial derivation. Exp. Cell Res. 369, 284–294 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

    Article  Google Scholar 

  90. Ben-Yishay, R. et al. Class effect unveiled: PPARγ agonists and MEK inhibitors in cancer cell differentiation. Cells 13, 1506 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Robertson, A. G. et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171, 540–556 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Osei-Amponsa, V. et al. Hypermethylation of FOXA1 and allelic loss of PTEN drive squamous differentiation and promote heterogeneity in bladder cancer. Oncogene 39, 1302–1317 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Bi, M. et al. Enhancer reprogramming driven by high-order assemblies of transcription factors promotes phenotypic plasticity and breast cancer endocrine resistance. Nat. Cell Biol. 22, 701–715 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Adams, E. J. et al. FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature 571, 408–412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gillis, K. et al. FoxA1/2-dependent epigenomic reprogramming drives lineage switching in lung adenocarcinoma. Dev. Cell 60, 472–489 (2025).

    Article  CAS  PubMed  Google Scholar 

  96. Zhou, Q. et al. HER2 overexpression triggers the IL-8 to promote arsenic-induced EMT and stem cell-like phenotypes in human bladder epithelial cells. Ecotoxicol. Environ. Saf. 208, 111693 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Monteiro-Reis, S. et al. Vimentin epigenetic deregulation in bladder cancer associates with acquisition of invasive and metastatic phenotype through epithelial-to-mesenchymal transition. Int. J. Biol. Sci. 19, 1–12 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bocci, F. et al. NRF2 activates a partial epithelial-mesenchymal transition and is maximally present in a hybrid epithelial/mesenchymal phenotype. Integr. Biol. 11, 251–263 (2019).

    Article  Google Scholar 

  99. Davies, A. et al. An androgen receptor switch underlies lineage infidelity in treatment-resistant prostate cancer. Nat. Cell Biol. 23, 1023–1034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Guo, Y. et al. GABPA is a master regulator of luminal identity and restrains aggressive diseases in bladder cancer. Cell Death Differ. 27, 1862–1877 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Tash, J. A., David, S. G., Vaughan, E. E. & Herzlinger, D. A. Fibroblast growth factor-7 regulates stratification of the bladder urothelium. J. Urol. 166, 2536–2541 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Narla, S. T. et al. Loss of fibroblast growth factor receptor 2 (FGFR2) leads to defective bladder urothelial regeneration after cyclophosphamide injury. Am. J. Pathol. 191, 631–651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mysorekar, I. U., Mulvey, M. A., Hultgren, S. J. & Gordon, J. I. Molecular regulation of urothelial renewal and host defenses during infection with uropathogenic Escherichia coli. J. Biol. Chem. 277, 7412–7419 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Mysorekar, I. U., Isaacson-Schmid, M., Walker, J. N., Mills, J. C. & Hultgren, S. J. Bone morphogenetic protein 4 signaling regulates epithelial renewal in the urinary tract in response to uropathogenic infection. Cell Host Microbe 5, 463–475 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Paraskevopoulou, V. et al. Notch controls urothelial integrity in the mouse bladder. JCI Insight 5, e133232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Maraver, A. et al. NOTCH pathway inactivation promotes bladder cancer progression. J. Clin. Invest. 125, 824–830 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hayashi, T. et al. Not all NOTCH is created equal: the oncogenic role of NOTCH2 in bladder cancer and its implications for targeted therapy. Clin. Cancer Res. 22, 2981–2992 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Southgate, J., Hutton, K. A., Thomas, D. F. & Trejdosiewicz, L. K. Normal human urothelial cells in vitro: proliferation and induction of stratification. Lab. Invest. 71, 583–594 (1994).

    CAS  PubMed  Google Scholar 

  109. Gandhi, D. et al. Retinoid signaling in progenitors controls specification and regeneration of the urothelium. Dev. Cell 26, 469–482 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nagata, Y. & Miyamoto, H. The prognostic role of steroid hormone receptor signaling pathways in urothelial carcinoma. Transl. Cancer Res. 9, 6596–6608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen, J. et al. The androgen receptor in bladder cancer. Nat. Rev. Urol. 20, 560–574 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Jing, Y. et al. Activated androgen receptor promotes bladder cancer metastasis via Slug mediated epithelial-mesenchymal transition. Cancer Lett. 348, 135–145 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Jitao, W. et al. Androgen receptor inducing bladder cancer progression by promoting an epithelial-mesenchymal transition. Andrologia 46, 1128–1133 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Seitz, J. B. et al. Immunohistochemical analysis of sex hormone receptors in squamous changes of the urothelium. Int. J. Clin. Exp. Pathol. 15, 272–281 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Levra Levron, C. et al. Bridging tissue repair and epithelial carcinogenesis: epigenetic memory and field cancerization. Cell Death Differ. 32, 78–89 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Guo, C., Balsara, Z. R., Hill, W. G. & Li, X. Stage- and subunit-specific functions of polycomb repressive complex 2 in bladder urothelial formation and regeneration. Development 144, 400–408 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. van der Vos, K. E. et al. Epigenetic profiling demarcates molecular subtypes of muscle-invasive bladder cancer. Sci. Rep. 10, 10952 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Berger, A. et al. N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer. J. Clin. Invest. 129, 3924–3940 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Iyyanki, T. et al. Subtype-associated epigenomic landscape and 3D genome structure in bladder cancer. Genome Biol. 22, 105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Neyret-Kahn, H. et al. Epigenomic mapping identifies an enhancer repertoire that regulates cell identity in bladder cancer through distinct transcription factor networks. Oncogene 42, 1524–1542 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Aine, M. et al. Integrative epigenomic analysis of differential DNA methylation in urothelial carcinoma. Genome Med. 7, 23 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Bao, B. et al. Role of TET1 and 5hmC in an obesity-linked pathway driving cancer stem cells in triple-negative breast cancer. Mol. Cancer Res. 18, 1803–1814 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Eray, A., Güneri, P. Y., Yılmaz, G., Karakülah, G. & Erkek-Ozhan, S. Analysis of open chromatin regions in bladder cancer links β-catenin mutations and Wnt signaling with neuronal subtype of bladder cancer. Sci. Rep. 10, 18667 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ramakrishnan, S. et al. Decitabine, a DNA-demethylating agent, promotes differentiation via NOTCH1 signaling and alters immune-related pathways in muscle-invasive bladder cancer. Cell Death Dis. 8, 3217 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sahib, A. S. et al. miRNA/epithelial-mesenchymal axis (EMT) axis as a key player in cancer progression and metastasis: a focus on gastric and bladder cancers. Cell Signal. 112, 110881 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. Huang, S. Genetic and non-genetic instability in tumor progression: link between the fitness landscape and the epigenetic landscape of cancer cells. Cancer Metastasis Rev. 32, 423–448 (2013).

    Article  PubMed  Google Scholar 

  129. Bondaruk, J. et al. The origin of bladder cancer from mucosal field effects. iScience 25, 104551 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zhuang, J. et al. TGFβ1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci. Rep. 5, 11924 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Pignon, J. C. et al. p63-expressing cells are the stem cells of developing prostate, bladder, and colorectal epithelia. Proc. Natl Acad. Sci. USA 110, 8105–8110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Aitken, K. J. & Bägli, D. J. The bladder extracellular matrix. Part I: architecture, development and disease. Nat. Rev. Urol. 6, 596–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Hurst, R. E. et al. Matrix-dependent plasticity of the malignant phenotype of bladder cancer cells. Anticancer Res. 23, 3119–3128 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Poltavets, V., Kochetkova, M., Pitson, S. M. & Samuel, M. S. The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Front. Oncol. 8, 431 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Totaro, A. et al. Cell phenotypic plasticity requires autophagic flux driven by YAP/TAZ mechanotransduction. Proc. Natl Acad. Sci. USA 116, 17848–17857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rastegar-Pouyani, N. et al. The impact of cancer-associated fibroblasts on drug resistance, stemness, and epithelial-mesenchymal transition in bladder cancer: a comparison between recurrent and non-recurrent patient-derived CAFs. Cancer Invest. 41, 656–671 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Ping, Q. et al. TGF-β1 dominates stromal fibroblast-mediated EMT via the FAP/VCAN axis in bladder cancer cells. J. Transl. Med. 21, 475 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ma, Z. et al. Interferon-dependent SLC14A1+ cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer. Cancer Cell 40, 1550–1565 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Lau, E. Y. et al. Cancer-associated fibroblasts regulate tumor-initiating cell plasticity in hepatocellular carcinoma through c-Met/FRA1/HEY1 signaling. Cell Rep. 15, 1175–1189 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Zhu, J. et al. HIF-1α promotes ZEB1 expression and EMT in a human bladder cancer lung metastasis animal model. Oncol. Lett. 15, 3482–3489 (2018).

    PubMed  PubMed Central  Google Scholar 

  141. Hudson, B. N., Purves, J. T., Hughes, F. M. & Nagatomi, J. Enzyme-induced hypoxia leads to inflammation in urothelial cells in vitro. Int. Urol. Nephrol. 56, 1565–1575 (2024).

    Article  CAS  PubMed  Google Scholar 

  142. Yang, M. H. et al. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat. Cell Biol. 10, 295–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Chai, J., Yin, S., Feng, W., Zhang, T. & Ke, C. The role of hypoxia-inducible factor-1 in bladder cancer. Curr. Mol. Med. 24, 827–834 (2024).

    Article  CAS  PubMed  Google Scholar 

  144. Zhang, G. et al. MCT1 regulates aggressive and metabolic phenotypes in bladder cancer. J. Cancer 9, 2492–2501 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Wu, S. Q. et al. MicroRNA-200c affects bladder cancer angiogenesis by regulating the Akt2/mTOR/HIF-1 axis. Transl. Cancer Res. 8, 2713–2724 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Qi, J. et al. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell 18, 23–38 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Fang, D. & Kitamura, H. Cancer stem cells and epithelial-mesenchymal transition in urothelial carcinoma: Possible pathways and potential therapeutic approaches. Int. J. Urol. 25, 7–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Ristimäki, A. et al. Expression of cyclooxygenase-2 in human transitional cell carcinoma of the urinary bladder. Am. J. Pathol. 158, 849–853 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Okajima, E. et al. Chemopreventive effects of nimesulide, a selective cyclooxygenase-2 inhibitor, on the development of rat urinary bladder carcinomas initiated by N-butyl-N-(4-hydroxybutyl)nitrosamine. Cancer Res. 58, 3028–3031 (1998).

    CAS  PubMed  Google Scholar 

  150. Thanan, R. et al. Nuclear localization of COX-2 in relation to the expression of stemness markers in urinary bladder cancer. Mediators Inflamm. 2012, 165879 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ho, P. L., Lay, E. J., Jian, W., Parra, D. & Chan, K. S. Stat3 activation in urothelial stem cells leads to direct progression to invasive bladder cancer. Cancer Res. 72, 3135–3142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Abd-El-Raouf, R. et al. Escherichia coli foster bladder cancer cell line progression via epithelial mesenchymal transition, stemness and metabolic reprogramming. Sci. Rep. 10, 18024 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Somerville, T. D. et al. Squamous trans-differentiation of pancreatic cancer cells promotes stromal inflammation. eLife 9, e53381 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Lu, Y. T., Tingskov, S. J., Djurhuus, J. C., Nørregaard, R. & Olsen, L. H. Can bladder fibrosis in congenital urinary tract obstruction be reversed? J. Pediatr. Urol. 13, 574–580 (2017).

    Article  PubMed  Google Scholar 

  155. Biers, S. M., Venn, S. N. & Greenwell, T. J. The past, present and future of augmentation cystoplasty. BJU Int. 109, 1280–1293 (2012).

    Article  PubMed  Google Scholar 

  156. Drewa, T., Adamowicz, J. & Sharma, A. Tissue engineering for the oncologic urinary bladder. Nat. Rev. Urol. 9, 561–572 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Sopko, N. A., Kates, M. & Bivalacqua, T. J. Use of regenerative tissue for urinary diversion. Curr. Opin. Urol. 25, 578–585 (2015).

    Article  PubMed  Google Scholar 

  158. Jackson, A. R. et al. Krt5(+) urothelial cells are developmental and tissue repair progenitors in the kidney. Am. J. Physiol. Ren. Physiol. 317, F757–F766 (2019).

    Article  CAS  Google Scholar 

  159. Subramaniam, R., Hinley, J., Stahlschmidt, J. & Southgate, J. Tissue engineering potential of urothelial cells from diseased bladders. J. Urol. 186, 2014–2020 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. Bushweller, J. H. Targeting transcription factors in cancer - from undruggable to reality. Nat. Rev. Cancer 19, 611–624 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Jhaveri, K. L. et al. Imlunestrant, an oral selective estrogen receptor degrader, as monotherapy and in combination with targeted therapy in estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: phase Ia/Ib EMBER study. J. Clin. Oncol. 42, 4173–4186 (2024).

    Article  CAS  PubMed  Google Scholar 

  163. Rathkopf, D. E. et al. Safety and clinical activity of BMS-986365 (CC-94676), a dual androgen receptor ligand-directed degrader and antagonist, in heavily pretreated patients with metastatic castration-resistant prostate cancer. Ann. Oncol. 36, 76–88 (2025).

    Article  CAS  PubMed  Google Scholar 

  164. Dahl, E. et al. White paper: mimetics of class 2 tumor suppressor proteins as novel drug candidates for personalized cancer therapy. Cancers 14, 4386 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hu, B. et al. Immobilization of Wnt fragment peptides on magnetic nanoparticles or synthetic surfaces regulate Wnt signaling kinetics. Int. J. Mol. Sci. 23, 10164 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhang, S. et al. Targeting histone modifiers in bladder cancer therapy - preclinical and clinical evidence. Nat. Rev. Urol. 21, 495–511 (2024).

    Article  CAS  PubMed  Google Scholar 

  167. Guo, J. et al. A distinct subset of urothelial cells with enhanced EMT features promotes chemotherapy resistance and cancer recurrence by increasing COL4A1-ITGB1 mediated angiogenesis. Drug Resist. Updat. 76, 101116 (2024).

    Article  CAS  PubMed  Google Scholar 

  168. Caramelo, B., Zagorac, S., Corral, S., Marqués, M. & Real, F. X. Cancer-associated fibroblasts in bladder cancer: origin, biology, and therapeutic opportunities. Eur. Urol. Oncol. 6, 366–375 (2023).

    Article  PubMed  Google Scholar 

  169. Li, J. et al. Epithelial cell diversity and immune remodeling in bladder cancer progression: insights from single-cell transcriptomics. J. Transl. Med. 23, 135 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. de Thé, H. Differentiation therapy revisited. Nat. Rev. Cancer 18, 117–127 (2018).

    Article  PubMed  Google Scholar 

  171. Massard, C., Deutsch, E. & Soria, J. C. Tumour stem cell-targeted treatment: elimination or differentiation. Ann. Oncol. 17, 1620–1624 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Wong, Y. N. et al. Phase II trial of cetuximab with or without paclitaxel in patients with advanced urothelial tract carcinoma. J. Clin. Oncol. 30, 3545–3551 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Adam, L. et al. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin. Cancer Res. 15, 5060–5072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. De Sarkar, N. et al. Nucleosome patterns in circulating tumor DNA reveal transcriptional regulation of advanced prostate cancer phenotypes. Cancer Discov. 13, 632–653 (2023).

    Article  PubMed  Google Scholar 

  175. Beltran, H. et al. Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer. J. Clin. Invest. 130, 1653–1668 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Aziz, M. A. Multiomics approach towards characterization of tumor cell plasticity and its significance in precision and personalized medicine. Cancer Metastasis Rev. 43, 1549–1559 (2024).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the nationally funded Postdoctoral Researcher Program (GZC20231821), China Postdoctoral Science Foundation (2024M752256) and the National Natural Science Foundation of China (reference number 82403074).

Author information

Authors and Affiliations

Authors

Contributions

K.W. and X. Liu researched data for the article. K.W., J.Z., X. Liu and C.C. contributed substantially to discussion of the content. K.W., X. Liu and J.Z. wrote the article. X.W., K.W., C.C. and X. Li reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Xianding Wang, Xiang Li or Chong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Michael Rose, Hiroki Ide and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Liu, X., Zhang, J. et al. Mechanisms and implications of epithelial cell plasticity in the bladder. Nat Rev Urol 23, 70–88 (2026). https://doi.org/10.1038/s41585-025-01066-y

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41585-025-01066-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing