Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The opportunities and barriers for developing tumour-infiltrating lymphocyte therapy for patients with advanced genitourinary cancers

Abstract

Adoptive cell therapy using tumour-infiltrating lymphocytes (TILs) has been a very successful model of enhancing immune-based therapies. Clinical benefits have been shown for patients with advanced melanoma, leading to the first FDA approval for this immune modality in 2024. Although clinical trials conducted decades ago for advanced renal-cell cancer did not show significant clinical benefits, recent advances in the TIL generation process, manipulation techniques, preparative regimens and combination with immune checkpoint inhibitors offer new hope for reexploring optimized TIL therapy for genitourinary cancers. The current landscape of TIL therapy has seen progress in TIL manufacturing, optimization and delivery methodologies that have the potential to improve the safety and efficacy of TIL therapy in the management of advanced genitourinary malignancies. Furthermore, innovative combination approaches and novel strategies could enhance the clinical viability of TIL therapy and warrant evaluation in clinical trials treating patients with genitourinary cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The current process of TIL therapy.
Fig. 2: Strategies to optimize TIL therapy.
Fig. 3: Optimizing dosage, administration and specificity of TIL therapy.
Fig. 4: Challenges and potential solutions for TIL therapy in prostate, bladder and kidney cancers.

Similar content being viewed by others

References

  1. Scott, E. C. et al. Trends in the approval of cancer therapies by the FDA in the twenty-first century. Nat. Rev. Drug Discov. 22, 625–640 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Safa, H. et al. Patient-reported outcomes in clinical trials leading to cancer immunotherapy drug approvals from 2011 to 2018: a systematic review. J. Natl Cancer Inst. 113, 532–542 (2021).

    Article  PubMed  Google Scholar 

  3. Rohaan, M. W. et al. Tumor-infiltrating lymphocyte therapy or ipilimumab in advanced melanoma. N. Engl. J. Med. 387, 2113–2125 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Zang, P. D., Angeles, A., Dorff, T. B., Pal, S. K. & Gupta, S. Immuno-oncology advances in genitourinary cancers. Am. Soc. Clin. Oncol. Educ. Book 44, e430428 (2024).

    Article  PubMed  Google Scholar 

  5. Paravathaneni, M. et al. 15 years of patient-reported outcomes in clinical trials leading to GU cancer drug approvals: a systematic review on the quality of data reporting and analysis. EClinicalMedicine 68, 102413 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kaushik, G. et al. Preclinical in vitro and in vivo models for adoptive cell therapy of cancer. Cancer J. 28, 257–262 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Wong, Y. N. S. et al. Evolving adoptive cellular therapies in urological malignancies. Lancet Oncol. 18, e341–e353 (2017).

    Article  PubMed  Google Scholar 

  8. Kumar Yadav, R. et al. in Advances in Precision Medicine Oncology (eds Arnouk, H. & Hassan, B. A. R.) (IntechOpen, 2021).

  9. Zhang, L., Ding, J., Li, H. Y., Wang, Z. H. & Wu, J. Immunotherapy for advanced hepatocellular carcinoma, where are we? Biochim. Biophys. Acta Rev. Cancer 1874, 188441 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Kazemi, M. H. et al. Tumor-infiltrating lymphocytes for treatment of solid tumors: it takes two to tango? Front. Immunol. 13, 1018962 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang, W. H. & Lai, A. G. Pan-cancer analyses of the associations between 109 pre-existing conditions and cancer treatment patterns across 19 adult cancers. Sci. Rep. 14, 464 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zheng, Y. et al. Cardiovascular disease burden in patients with urological cancers: the new discipline of uro-cardio-oncology. Cancer Innov. 3, e108 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Braun, D. A. & Wu, C. J. Tumor-infiltrating T cells — a portrait. N. Engl. J. Med. 386, 992–994 (2022).

    Article  PubMed  Google Scholar 

  14. Shapiro, D. D. et al. Understanding the tumor immune microenvironment in renal cell carcinoma. Cancers 15, 649–661.e5 (2023).

    Article  Google Scholar 

  15. Li, Y., Liu, Y., Kang, Z., Guo, J. & Liu, N. Tumor microenvironment heterogeneity in bladder cancer identifies biologically distinct subtypes predicting prognosis and anti-PD-L1 responses. Sci. Rep. 13, 19563 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hirz, T. et al. Dissecting the immune suppressive human prostate tumor microenvironment via integrated single-cell and spatial transcriptomic analyses. Nat. Commun. 14, 663 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vassallo, J. et al. Pathologic and immunohistochemical characterization of tumoral inflammatory cell infiltrate in invasive penile squamous cell carcinomas: Fox-P3 expression is an independent predictor of recurrence. Tumor Biol. 36, 2509–2516 (2015).

    Article  CAS  Google Scholar 

  18. Chu, C. et al. Immunophenotypes based on the tumor immune microenvironment allow for unsupervised penile cancer patient stratification. Cancers 12, 1–17 (2020).

    Article  Google Scholar 

  19. Chesney, J. A. et al. Trial in progress: a phase 2 multicenter study (IOV-LUN-202) of autologous tumor-infiltrating lymphocyte (TIL) cell therapy (LN-145) in patients with metastatic non-small cell lung cancer (mNSCLC) [abstract). Cancer Res. 82, CT130 (2022).

    Article  Google Scholar 

  20. Matsuda, T. et al. TCR sequencing analysis of cancer tissues and tumor draining lymph nodes in colorectal cancer patients. Oncoimmunology 8, e1588085 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Okamura, K. et al. Lymphocytes in tumor-draining lymph nodes co-cultured with autologous tumor cells for adoptive cell therapy. J. Transl Med. 20, 241 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hopewell, E. L., Cox, C., Pilon-Thomas, S. & Kelley, L. L. Tumor-infiltrating lymphocytes: streamlining a complex manufacturing process. Cytotherapy 21, 307–314 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Braun, M. W. et al. Adherent cell depletion promotes the expansion of renal cell carcinoma infiltrating T cells with optimal characteristics for adoptive transfer. J. Immunother. Cancer 8, e000706 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Forget, M. A. et al. Activation and propagation of tumor-infiltrating lymphocytes on clinical-grade designer artificial antigen-presenting cells for adoptive immunotherapy of melanoma. J. Immunother. 37, 448–460 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tavera, R. J. et al. Utilizing T-cell activation signals 1, 2, and 3 for tumor-infiltrating lymphocytes (TIL) expansion: the advantage over the sole use of interleukin-2 in cutaneous and uveal melanoma. J. Immunother. 41, 399–405 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Geukes Foppen, M. H., Donia, M., Svane, I. M. & Haanen, J. B. Tumor-infiltrating lymphocytes for the treatment of metastatic cancer. Mol. Oncol. 9, 1918–1935 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baldran-Groves, L., Melief, J. & Lindqvist, A. in Immuno-Oncology and Immunotherapy Part D Vol. 196 Ch. 8 (eds Bloy, N., Charpentier, M. & Galluzzi, L.) 161–169 (Elsevier, 2025).

  28. Rosenberg, S. A. & Dudley, M. E. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol. 21, 233–240 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Noldner, P. K. et al. Improving lung cancer tumor-infiltrating lymphocyte (TIL) manufacturing. Cytotherapy 27, 1240–1250 (2025).

    Article  CAS  PubMed  Google Scholar 

  30. Lievense, J. J. et al. Defining the quality attributes for tumor-infiltrating lymphocyte medicinal products. Transplant. Cell. Ther. 31, S610–S625 (2025).

    Article  PubMed  Google Scholar 

  31. Rosenberg, S. A. et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. N. Engl. J. Med. 319, 1676–1680 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Bechman, N. & Maher, J. Lymphodepletion strategies to potentiate adoptive T-cell immunotherapy–what are we doing; where are we going? Expert. Opin. Biol. Ther. 21, 627–637 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wrzesinski, C. et al. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J. Immunother. 33, 1–7 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    PubMed  Google Scholar 

  37. Wang, Y., Chang, Q. & Li, Y. Racial differences in urinary bladder cancer in the United States. Sci. Rep. 8, 12521 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Abbas, N. F., Aoude, M. R., Kourie, H. R. & Al-Shamsi, H. O. Uncovering the epidemiology of bladder cancer in the Arab world: a review of risk factors, molecular mechanisms, and clinical features. Asian J. Urol. 11, 406–422 (2024).

    Article  PubMed  Google Scholar 

  39. Madureira, A. C. Programmed cell death-ligand-1 expression in bladder schistosomal squamous cell carcinoma — there’s room for immune checkpoint blockage? Front. Immunol. 13, 955000 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Dorp, J. & van der Heijden, M. S. The bladder cancer immune micro-environment in the context of response to immune checkpoint inhibition. Front. Immunol. 14, 1235884 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hatogai, K. & Sweis, R. F. The tumor microenvironment of bladder cancer. Adv. Exp. Med. Biol. 1296, 275–290 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Xu, L. et al. The tumour-associated stroma correlates with poor clinical outcomes and immunoevasive contexture in patients with upper tract urothelial carcinoma: results from a multicenter real-world study (TSU-01 study). Br. J. Cancer 128, 310–320 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Krpina, K., Babarović, E. & Jonjić, N. Correlation of tumor-infiltrating lymphocytes with bladder cancer recurrence in patients with solitary low-grade urothelial carcinoma. Virchows Arch. 467, 443–448 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, Q. et al. High CD4+ T cell density is associated with poor prognosis in patients with non-muscle-invasive bladder cancer. Int. J. Clin. Exp. Pathol. 8, 11510–11516 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Winerdal, M. E. et al. FOXP3 and survival in urinary bladder cancer. BJU Int. 108, 1672–1678 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Sjödahl, G. et al. Infiltration of CD3+ and CD68+ cells in bladder cancer is subtype specific and affects the outcome of patients with muscle-invasive tumors. Urol. Oncol. 32, 791–797 (2014).

    Article  PubMed  Google Scholar 

  48. Faraj, S. F. et al. Assessment of tumoral PD-L1 expression and intratumoral CD8+ T cells in urothelial carcinoma. Urology 85, 703.e1–703.e6 (2015).

    Article  PubMed  Google Scholar 

  49. Horn, T. et al. The prognostic effect of tumour-infiltrating lymphocytic subpopulations in bladder cancer. World J. Urol. 34, 181–187 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, S., Wang, J., Zhang, X. & Zhou, F. Tumor-infiltrating CD8+ lymphocytes predict different clinical outcomes in organ- and non-organ-confined urothelial carcinoma of the bladder following radical cystectomy. PeerJ 5, e3921 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yu, A. et al. Presence of lymphocytic infiltrate cytotoxic T lymphocyte CD3+, CD8+, and immunoscore as prognostic marker in patients after radical cystectomy. PLoS ONE 13, e0205746 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Huang, H. S. et al. Prognostic impact of tumor infiltrating lymphocytes on patients with metastatic urothelial carcinoma receiving platinum based chemotherapy. Sci. Rep. 8, 7485 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wahlin, S., Nodin, B., Leandersson, K., Boman, K. & Jirström, K. Clinical impact of T cells, B cells and the PD-1/PD-L1 pathway in muscle invasive bladder cancer: a comparative study of transurethral resection and cystectomy specimens. Oncoimmunology 8, e1644108 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shi, M. J., Meng, X. Y., Wu, Q. J. & Zhou, X. H. High CD3D/CD4 ratio predicts better survival in muscle-invasive bladder cancer. Cancer Manag. Res. 11, 2987–2995 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kawashima, A. et al. Tumour grade significantly correlates with total dysfunction of tumour tissue-infiltrating lymphocytes in renal cell carcinoma. Sci. Rep. 10, 6220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schubert, T. et al. Prognostic impact of tumor-associated immune cell infiltrates at radical cystectomy for bladder cancer. Urol. Oncol.38, 4.e7–4.e15 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Sikic, D. et al. Utility of stromal tumor infiltrating lymphocyte scoring (sTILs) for risk stratification of patients with muscle-invasive urothelial bladder cancer after radical cystectomy. Urol. Oncol.40, 63.e19–63.e26 (2022).

    Article  PubMed  Google Scholar 

  58. Ledderose, S., Rodler, S., Eismann, L., Ledderose, G. & Ledderose, C. Tumor-infiltrating lymphocytes predict survival in ≥pT2 urothelial bladder cancer. Pathol. Res. Pract. 237, 154037 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Benítez, R., Yu, K., Sirota, M., Malats, N. & Pineda, S. Characterization of the tumor-infiltrating immune repertoire in muscle invasive bladder cancer. Front. Immunol. 14, 986598 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sharma, P. et al. CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc. Natl Acad. Sci. USA 104, 3967–3972 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, Z. et al. Intratumoral TIGIT+ CD8+ T-cell infiltration determines poor prognosis and immune evasion in patients with muscle-invasive bladder cancer. J. Immunother. Cancer 8, e000978 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kawada, T. et al. The prognostic value of tumor infiltrating lymphocytes after radical cystectomy for bladder cancer: a systematic review and meta-analysis. Clin. Genitourin. Cancer 22, 535–543.e4 (2024).

    Article  PubMed  Google Scholar 

  63. Wong, Y. N. S. et al. Urine-derived lymphocytes as a non-invasive measure of the bladder tumor immune microenvironment. J. Exp. Med. 215, 2748–2759 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Poch, M. et al. Expansion of tumor infiltrating lymphocytes (TIL) from bladder cancer. Oncoimmunology 7, e1476816 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Aydin, A. M. et al. The factors affecting expansion of reactive tumor infiltrating lymphocytes (TIL) from bladder cancer and potential therapeutic applications. Front. Immunol. 12, 628063 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05768347 (2025).

  67. Chahoud, J., Pham, R. & Sonpavde, G. Innovative systemic therapies for penile cancer. Curr. Opin. Urol. 32, 8–16 (2022).

    Article  PubMed  Google Scholar 

  68. Joshi, V. B., Chadha, J. & Chahoud, J. Penile cancer: updates in systemic therapy. Asian J. Urol. 9, 374–388 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rose, K. M. et al. Neoadjuvant platinum-based chemotherapy and lymphadenectomy for penile cancer: an international, multi-institutional, real-world study. J. Natl Cancer Inst. 116, 966–973 (2024).

    Article  CAS  PubMed  Google Scholar 

  70. Safa, H., Mercinelli, C., Spiess, P. E., Necchi, A. & Chahoud, J. Insights into the management of penile squamous cell carcinoma: from conventional approaches to emerging novel therapies. Expert Opin. Pharmacother. 25, 447–465 (2024).

    Article  CAS  PubMed  Google Scholar 

  71. Thumma, N., Pitla, N., Gorantla, V. & du Plessis, M. A comprehensive review of current knowledge on penile squamous cell carcinoma. Front. Oncol. 14, 1235884 (2024).

    Article  Google Scholar 

  72. Joshi, V. B., Spiess, P. E., Necchi, A., Pettaway, C. A. & Chahoud, J. Immune-based therapies in penile cancer. Nat. Rev. Urol. 19, 457–474 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Czajkowski, M., Wierzbicki, P. M., Dolny, M., Matuszewski, M. & Hakenberg, O. W. Inflammation in penile squamous cell carcinoma: a comprehensive review. Int. J. Mol. Sci. 26, 2785 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guimarães, S. J. A. et al. Human papillomavirus infection affects the immune microenvironment and antigen presentation in penile cancer. Front. Oncol. 14, 1463445 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jiang, X. et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol. Cancer 18, 10 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tang, Y., Hu, X., Wu, K. & Li, X. Immune landscape and immunotherapy for penile cancer. Front. Immunol. 13, 1055235 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ottenhof, S. R. et al. The prognostic value of immune factors in the tumor microenvironment of penile squamous cell carcinoma. Front. Immunol. 9, 1253 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hladek, L. et al. Tumor-associated immune cell infiltrate density in penile squamous cell carcinomas. Virchows Arch. 480, 1159–1169 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Aydin, A. M. et al. Expansion of tumor-infiltrating lymphocytes (TIL) from penile cancer patients. Int. Immunopharmacol. 94, 107481 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stevanovic, S. et al. A phase II study of tumor-infiltrating lymphocyte therapy for human papillomavirus–associated epithelial cancers. Clin. Cancer Res. 25, 1486–1493 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01585428 (2018).

  82. Guo, C. C. & Czerniak, B. Updates of prostate cancer from the 2022 World Health Organization classification of the urinary and male genital tumors. J. Clin. Transl Pathol. 3, 26 (2023).

    PubMed  PubMed Central  Google Scholar 

  83. Bilusic, M., Madan, R. A. & Gulley, J. L. Immunotherapy of prostate cancer: facts and hopes. Clin. Cancer Res. 23, 6764–6770 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Novysedlak, R. et al. The immune microenvironment in prostate cancer: a comprehensive review. Oncology 103, 521–545 (2025).

    Article  CAS  PubMed  Google Scholar 

  85. Maselli, F. M. et al. Immunotherapy in prostate cancer: state of art and new therapeutic perspectives. Curr. Oncol. 30, 5769–5794 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mohamed, O. A. A. et al. The role of hypoxia on prostate cancer progression and metastasis. Mol. Biol. Rep. 50, 3873–3884 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shi, S., Ou, X., Liu, C., Wen, H. & Ke, J. Research progress of HIF-1a on immunotherapy outcomes in immune vascular microenvironment. Front. Immunol. 16, 1549276 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nardone, V. et al. Tumor infiltrating T lymphocytes expressing FoxP3, CCR7 or PD-1 predict the outcome of prostate cancer patients subjected to salvage radiotherapy after biochemical relapse. Cancer Biol. Ther. 17, 1213–1220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang, Y. et al. High intratumoral CD8+ T-cell infiltration is associated with improved survival in prostate cancer patients undergoing radical prostatectomy. Prostate 81, 20–28 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Watanabe, M. et al. Increased infiltration of CCR4-positive regulatory T cells in prostate cancer tissue is associated with a poor prognosis. Prostate 79, 1658–1665 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Flammiger, A. et al. Intratumoral T but not B lymphocytes are related to clinical outcome in prostate cancer. APMIS 120, 901–908 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Apusiga, K. Immune cell infiltration-based prognosis in prostate cancer: a review of current knowledge. Bull. Natl Res. Cent. 47, 131 (2023).

    Article  Google Scholar 

  93. Yunger, S. et al. Tumor-infiltrating lymphocytes from human prostate tumors reveal anti-tumor reactivity and potential for adoptive cell therapy. Oncoimmunology 8, e1672494 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Karbach, J. et al. Tumor-infiltrating lymphocytes mediate complete and durable remission in a patient with NY-ESO-1 expressing prostate cancer. J. Immunother. Cancer 11, e005847 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gilligan, T. et al. Testicular cancer, version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl Compr. Cancer Netw. 17, 1529–1554 (2019).

    Article  CAS  Google Scholar 

  96. Siegel, R. L., Giaquinto, A. N. & Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 74, 12–49 (2024).

    PubMed  Google Scholar 

  97. Fung, C., Dinh, P. C., Fossa, S. D. & Travis, L. B. Testicular cancer survivorship. J. Natl Compr. Cancer Netw. 17, 1557–1568 (2019).

    Article  CAS  Google Scholar 

  98. Schepisi, G. et al. Immune checkpoint inhibitors and chimeric antigen receptor (CAR)-T cell therapy: potential treatment options against testicular germ cell tumors. Front. Immunol. 14, 1118610 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Parker, C. et al. The prognostic significance of the tumour infiltrating lymphocyte count in stage I testicular seminoma managed by surveillance. Eur. J. Cancer 38, 2014–2019 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Haas, G. P., Solomon, D. & Rosenberg, S. A. Tumor-infiltrating lymphocytes from nonrenal urological malignancies. Cancer Immunol. Immunother. 30, 342–350 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mackensen, A. et al. CLDN6-specific CAR-T cells plus amplifying RNA vaccine in relapsed or refractory solid tumors: the phase 1 BNT211-01 trial. Nat. Med. 29, 2844–2853 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rose, T. L. & Kim, W. Y. Renal cell carcinoma: a review. JAMA 332, 1001–1010 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lopez-Beltran, A., Scarpelli, M., Montironi, R. & Kirkali, Z. 2004 WHO classification of the renal tumors of the adults. Eur. Urol. 49, 798–805 (2006).

    Article  PubMed  Google Scholar 

  104. Che, X. et al. Angiogenesis pathway in kidney renal clear cell carcinoma and its prognostic value for cancer risk prediction. Front. Med. 8, 731214 (2021).

    Article  Google Scholar 

  105. Zhu, Z. et al. PD1/PD-L1 blockade in clear cell renal cell carcinoma: mechanistic insights, clinical efficacy, and future perspectives. Mol. Cancer 23, 146 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Monjaras-Avila, C. U. et al. The tumor immune microenvironment in clear cell renal cell carcinoma. Int. J. Mol. Sci. 24, 7946 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, S. et al. Immune infiltration in renal cell carcinoma. Cancer Sci. 110, 1564–1572 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Huang, Y. et al. Clonal architectures predict clinical outcome in clear cell renal cell carcinoma. Nat. Commun. 10, 1245 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Yao, J. et al. Checkpoint molecule PD-1-assisted CD8+ T lymphocyte count in tumor microenvironment predicts overall survival of patients with metastatic renal cell carcinoma treated with tyrosine kinase inhibitors. Cancer Manag. Res. 10, 3419–3431 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Davis, D. et al. Abundant CD8+ tumor infiltrating lymphocytes and beta-2-microglobulin are associated with better outcome and response to interleukin-2 therapy in advanced stage clear cell renal cell carcinoma. Ann. Diagn. Pathol. 47, 151537 (2020).

    Article  PubMed  Google Scholar 

  111. Geissler, K. et al. Immune signature of tumor infiltrating immune cells in renal cancer. Oncoimmunology 4, 985082 (2015).

    Article  Google Scholar 

  112. Remark, R. et al. Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin. Clin. Cancer Res. 19, 4079–4091 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Siddiqui, S. A. et al. Tumor-infiltrating Foxp3CD4+ CD25+ T cells predict poor survival in renal cell carcinoma. Clin. Cancer Res. 13, 2075–2081 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Bromwich, E. J. et al. The relationship between T-lymphocyte infiltration, stage, tumour grade and survival in patients undergoing curative surgery for renal cell cancer. Br. J. Cancer 89, 1906–1908 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li, J. F. et al. The prognostic value of peritumoral regulatory T cells and its correlation with intratumoral cyclooxygenase-2 expression in clear cell renal cell carcinoma. BJU Int. 103, 399–405 (2009).

    Article  PubMed  Google Scholar 

  116. Jensen, H. K., Donskov, F., Nordsmark, M., Marcussen, N. & von der Maase, H. Increased intratumoral FOXP3-positive regulatory immune cells during interleukin-2 treatment in metastatic renal cell carcinoma. Clin. Cancer Res. 15, 1052–1058 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Braun, D. A. et al. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat. Med. 26, 909–918 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02926053 (2024).

  119. Andersen, R. et al. T-cell responses in the microenvironment of primary renal cell carcinoma-implications for adoptive cell therapy. Cancer Immunol. Res. 6, 222–235 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Topalian, S. L. et al. Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2: a pilot study. J. Clin. Oncol. 6, 839–853 (1988).

    Article  CAS  PubMed  Google Scholar 

  121. Kradin, R. et al. Adoptive immunotherapy with interleukin-2 (IL-2) results in diminished IL-2 production by stimulated peripheral blood lymphocytes. J. Clin. Immunol. 9, 378–385 (1989).

    Article  CAS  PubMed  Google Scholar 

  122. Bukowski, R. M. et al. Clinical results and characterization of tumor-infiltrating lymphocytes with or without recombinant interleukin 2 in human metastatic renal cell carcinoma. Cancer Res. 51, 4199–4205 (1991).

    CAS  PubMed  Google Scholar 

  123. Thiounn, N. et al. CD4 TIL (tumor infiltrating lymphocytes) induce complete response in patients treated with IL-2 (interleukin-2): preliminary study [French]. J. Urol. 100, 185–188 (1994).

    CAS  Google Scholar 

  124. Goedegebuure, P. S. et al. Adoptive immunotherapy with tumor-infiltrating lymphocytes and interleukin-2 in patients with metastatic malignant melanoma and renal cell carcinoma: a pilot study. J. Clin. Oncol. 13, 1939–1949 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Figlin, R. et al. Treatment of metastatic renal cell carcinoma with nephrectomy, interleukin-2 and cytokine-primed or CD8+ selected tumor infiltrating lymphocytes from primary tumor. J. Urol. 158, 740–745 (1997).

    Article  CAS  PubMed  Google Scholar 

  126. Figlin, R. A. et al. Multicenter, randomized, phase III trial of CD8 tumor-infiltrating lymphocytes in combination with recombinant interleukin-2 in metastatic renal cell carcinoma. J. Clin. Oncol. 17, 2521–2529 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Dillman, R. et al. Tumor-infiltrating lymphocytes and interleukin-2: dose and schedules of administration in the treatment of metastatic cancer. Cancer Biother. Radiopharm. 19, 730–737 (2004).

    CAS  PubMed  Google Scholar 

  128. Belldegrun, A. et al. Interferon-α primed tumor-infiltrating lymphocytes combined with interleukin-2 and interferon-α as therapy for metastatic renal cell carcinoma. J. Urol. 150, 1384–1390 (1993).

    Article  CAS  PubMed  Google Scholar 

  129. Kradin, R. et al. Tumour-infiltrating lymphocytes and interleukin-2 in treatment of advanced cancer. Lancet 333, 577–580 (1989).

    Article  Google Scholar 

  130. Baldan, V., Griffiths, R., Hawkins, R. E. & Gilham, D. E. Efficient and reproducible generation of tumour-infiltrating lymphocytes for renal cell carcinoma. Br. J. Cancer 112, 1510–1518 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, S. et al. Perspectives of tumor-infiltrating lymphocyte treatment in solid tumors. BMC Med. 19, 140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wu, Q. et al. Molecular imaging of renal cell carcinomas: ready for prime time. Nat. Rev. Urol. 22, 336–353 (2025).

    Article  PubMed  Google Scholar 

  133. Pal, S. K. et al. CD70-targeted allogeneic CAR T-cell therapy for advanced clear cell renal cell carcinoma. Cancer Discov. 14, 1176–1189 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Srour, S. et al. A phase 1 multicenter study (TRAVERSE) evaluating the safety and efficacy of ALLO-316 following conditioning regimen in pts with advanced or metastatic clear cell renal cell carcinoma (ccRCC) [abstract]. Cancer Res. 83, CT011 (2023).

    Article  Google Scholar 

  135. Dudley, M. E. et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23, 2346–2357 (2025).

    Article  Google Scholar 

  136. Muranski, P. et al. Increased intensity lymphodepletion and adoptive immunotherapy — how far can we go? Nat. Clin. Pract. Oncol. 3, 668–681 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nissani, A. et al. Comparison of non-myeloablative lymphodepleting preconditioning regimens in patients undergoing adoptive T cell therapy. J. Immunother. Cancer 9, e001743 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Frame, D. G. et al. Comparing 2-day vs 3-day flu-CY lymphodepleting regimens for CD19 CAR T-cell therapy in patients with non-Hodgkin’s lymphoma. Front. Immunol. 15, 1403145 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Filioglou, D., Husnain, M., Khurana, S., Simpson, R. J. & Katsanis, E. Has the shortage of fludarabine altered the current paradigm of lymphodepletion in favor of bendamustine? Front. Immunol. 14, 1329850 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cheng, L. E., Öhlén, C., Nelson, B. H. & Greenberg, P. D. Enhanced signaling through the IL-2 receptor in CD8+ T cells regulated by antigen recognition results in preferential proliferation and expansion of responding CD8+ T cells rather than promotion of cell death. Proc. Natl Acad. Sci. USA 99, 3001–3006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Grimm, E. A., Mazumder, A., Zhang, H. Z. & Rosenberg, S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J. Exp. Med. 155, 1823–1841 (1982).

    Article  CAS  PubMed  Google Scholar 

  142. Lotze, M. T. et al. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res. 41, 4420–4425.

  143. Goff, S. L. et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J. Clin. Oncol. 34, 2389–2397 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ellebaek, E. et al. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose interleukin-2 in metastatic melanoma patients. J. Transl Med. 10, 169 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ullenhag, G. J. et al. Adoptive T-cell therapy for malignant melanoma patients with TILs obtained by ultrasound-guided needle biopsy. Cancer Immunol. Immunother. 61, 725–732 (2012).

    Article  PubMed  Google Scholar 

  146. Nguyen, L. T. et al. Phase II clinical trial of adoptive cell therapy for patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and low-dose interleukin-2. Cancer Immunol. Immunother. 68, 773–785 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hsu, E. J. et al. A cytokine receptor-masked IL2 prodrug selectively activates tumor-infiltrating lymphocytes for potent antitumor therapy. Nat. Commun. 12, 1–13 (2021).

    Article  Google Scholar 

  148. Sudarsanam, H., Buhmann, R. & Henschler, R. Influence of culture conditions on ex vivo expansion of T lymphocytes and their function for therapy: current insights and open questions. Front. Bioeng. Biotechnol. 10, 886637 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Klobuch, S., Seijkens, T. T. P., Schumacher, T. N. & Haanen, J. B. A. G. Tumour-infiltrating lymphocyte therapy for patients with advanced-stage melanoma. Nat. Rev. Clin. Oncol. 21, 173–184 (2024).

    Article  CAS  PubMed  Google Scholar 

  150. Markley, J. C. & Sadelain, M. IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell-mediated rejection of systemic lymphoma in immunodeficient mice. Blood 115, 3508–3519 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chinen, T. et al. An essential role for the IL-2 receptor in T reg cell function. Nat. Immunol. 17, 1322–1333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Berglund, S., Gertow, J., Magalhaes, I., Mattsson, J. & Uhlin, M. Cord blood T cells cultured with IL-7 in addition to IL-2 exhibit a higher degree of polyfunctionality and superior proliferation potential. J. Immunother. 36, 432–441 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Caserta, S., Alessi, P., Basso, V. & Mondino, A. IL-7 is superior to IL-2 for ex vivo expansion of tumour-specific CD4+ T cells. Eur. J. Immunol. 40, 470–479 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Robinson, T. O. & Schluns, K. S. The potential and promise of IL-15 in immuno-oncogenic therapies. Immunol. Lett. 190, 159–168 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chruściel, E. et al. Adoptive cell therapy-harnessing antigen-specific T cells to target solid tumours. Cancers 12, 683 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Chen, Y. et al. Adoptive transfer of interleukin-21-stimulated human CD8+ T memory stem cells efficiently inhibits tumor growth. J. Immunother. 41, 274–283 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kunert, A. et al. Intra-tumoral production of IL18, but not IL12, by TCR-engineered T cells is non-toxic and counteracts immune evasion of solid tumors. Oncoimmunology 7, e1378842 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Schoenfeld, D. A. et al. Decoy-resistant IL-18 reshapes the tumor microenvironment and enhances rejection by anti-CTLA-4 in renal cell carcinoma. JCI Insight 10, e184545 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Zhou, T. et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 583, 609–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ma, L. et al. A precision engineered interleukin-2 for bolstering CD8+ T- and NK-cell activity without eosinophilia and vascular leak syndrome in nonhuman primates. Cancer Res. Commun. 4, 2799–2814 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Vaishampayan, U. N. et al. Nemvaleukin alfa, a modified interleukin-2 cytokine, as monotherapy and with pembrolizumab in patients with advanced solid tumors (ARTISTRY-1). J. Immunother. Cancer 12, e010143 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Matsueda, S., Chen, L., Li, H., Yao, H. & Yu, F. Recent clinical researches and technological development in TIL therapy. Cancer Immunol. Immunother. 73, 232 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Palomba, M. L. et al. A phase 1 study to evaluate the safety and tolerability of a combination autologous CD19 CAR T cell therapy (SYNCAR-001) and orthogonal IL-2 (STK-009) in subjects with relapsed or refractory CD19 expressing hematologic malignancies (NCT05665062). Blood 144, 3453 (2024).

    Article  Google Scholar 

  164. Santos, J. M. et al. Adenovirus coding for interleukin-2 and tumor necrosis factor alpha replaces lymphodepleting chemotherapy in adoptive T cell therapy. Mol. Ther. 26, 2243–2254 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ravaud, A. et al. A phase I trial of repeated tumour-infiltrating lymphocyte (TIL) infusion in metastatic melanoma. Br. J. Cancer 71, 331–336 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Quattrocchi, K. B. et al. Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J. Neurooncol. 45, 141–157 (1999).

    Article  CAS  PubMed  Google Scholar 

  168. De Lombaerde, E., De Wever, O. & De Geest, B. G. Delivery routes matter: safety and efficacy of intratumoral immunotherapy. Biochim. Biophys Acta Rev. Cancer 1875, 188526 (2021).

    Article  PubMed  Google Scholar 

  169. Chu, H. et al. Better clinical efficiency of TILs for malignant pleural effusion and ascites than cisplatin through intrapleural and intraperitoneal infusion. Anticancer Res. 37, 4587–4591 (2017).

    CAS  PubMed  Google Scholar 

  170. Morales, A., Eidinger, D. & Bruce, A. W. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J. Urol. 116, 180–182 (1976).

    Article  CAS  PubMed  Google Scholar 

  171. Bunch, B. L. et al. Systemic and intravesical adoptive cell therapy of tumor-reactive T cells can decrease bladder tumor growth in vivo. J. Immunother. Cancer 8, e001673 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Bazargan, S. et al. Targeting myeloid-derived suppressor cells with gemcitabine to enhance efficacy of adoptive cell therapy in bladder cancer. Front. Immunol. 14, 1275375 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Vohra, J., Barbosa, G., Pascoal, L. B. & Reis, L. O. Advances in genitourinary tumor genomics and immunotherapy. Genes 16, 667 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ben-Avi, R. et al. Establishment of adoptive cell therapy with tumor infiltrating lymphocytes for non-small cell lung cancer patients. Cancer Immunol. Immunother. 67, 1221–1230 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Qiu, X. et al. Advances and prospects in tumor infiltrating lymphocyte therapy. Discov. Oncol. 15, 630 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Besser, M. J. et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin. Cancer Res. 16, 2646–2655 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Aebersold, P. et al. Lysis of autologous melanoma cells by tumor-infiltrating lymphocytes: association with clinical response. J. Natl Cancer Inst. 83, 932–937 (1991).

    Article  CAS  PubMed  Google Scholar 

  178. Schwartzentruber, D. J. et al. In vitro predictors of therapeutic response in melanoma patients receiving tumor-infiltrating lymphocytes and interleukin-2. J. Clin. Oncol. 12, 1475–1483 (1994).

    Article  CAS  PubMed  Google Scholar 

  179. Shoushtari, A. N. & Powell, D. J. Tumor-infiltrating lymphocyte therapy for melanoma and other solid tumors: looking back, yet moving forward. Transplant. Cell. Ther. 31, S581–S590 (2025).

    Article  PubMed  Google Scholar 

  180. Zhao, Y. et al. Tumor infiltrating lymphocyte (TIL) therapy for solid tumor treatment: progressions and challenges. Cancers 14, 4160 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Huang, J. et al. Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression. J. Immunother. 28, 258–267 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Powell, D. J., Dudley, M. E., Robbins, P. F. & Rosenberg, S. A. Transition of late-stage effector T cells to CD27+CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105, 241–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  183. Donia, M. et al. Characterization and comparison of ‘standard’ and ‘young’ tumour-infiltrating lymphocytes for adoptive cell therapy at a Danish translational research institution. Scand. J. Immunol. 75, 157–167 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Dudley, M. E. et al. CD8+ enriched ‘young’ tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin. Cancer Res. 16, 6122–6131 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Dudley, M. E. et al. Randomized selection design trial evaluating CD8+-enriched versus unselected tumor-infiltrating lymphocytes for adoptive cell therapy for patients with melanoma. J. Clin. Oncol. 31, 2152–2159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Itzhaki, O. et al. Establishment and large-scale expansion of minimally cultured young tumor infiltrating lymphocytes for adoptive transfer therapy. J. Immunother. 34, 212–220 (2011).

    Article  PubMed  Google Scholar 

  187. Tran, K. Q. et al. Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J. Immunother. 31, 742–751 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chacon, J. A. et al. Manipulating the tumor microenvironment ex vivo for enhanced expansion of tumor-infiltrating lymphocytes for adoptive cell therapy. Clin. Cancer Res. 21, 611–621 (2015).

    Article  PubMed  Google Scholar 

  189. Chacon, J. A. et al. Co-stimulation through 4-1BB/CD137 improves the expansion and function of CD8+ melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy. PLoS ONE 8, e60031 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Chacon, J. A., Sarnaik, A. A., Pilon-Thomas, S. & Radvanyi, L. Triggering co-stimulation directly in melanoma tumor fragments drives CD8+ tumor-infiltrating lymphocyte expansion with improved effector-memory properties. Oncoimmunology 4, e1040219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Song, A., Song, J., Tang, X. & Croft, M. Cooperation between CD4 and CD8 T cells for anti-tumor activity is enhanced by OX40 signals. Eur. J. Immunol. 37, 1224–1232 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Padmanabhan, A. Cellular collection by apheresis. Transfusion 58, 598–604 (2018).

    Article  PubMed  Google Scholar 

  193. Lee, H. H. J., Kim, K., Chung, J., Hossain, M. & Lee, H. H. J. Tumor-infiltrating lymphocyte therapy: clinical aspects and future developments in this breakthrough cancer treatment. Bioessays 45, 2200204 (2023).

    Article  CAS  Google Scholar 

  194. Gitto, S. B., Ihewulezi, C. J. N. & Powell, D. J. Adoptive T cell therapy for ovarian cancer. Gynecol. Oncol. 186, 77–84 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Dong, M. B. et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell 178, 1189–1204.e23 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Fix, S. M. et al. CRISPR-mediated TGFBR2 knockout renders human ovarian cancer tumor-infiltrating lymphocytes resistant to TGF-β signaling. J. Immunother. Cancer 10, 3750 (2022).

    Article  Google Scholar 

  198. Singer, M. et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 166, 1500–1511.e9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Crompton, J. G. et al. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res. 75, 296–305 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Xu, B. et al. S-15 in combination of Akt inhibitor promotes the expansion of CD45RACCR7+ tumor infiltrating lymphocytes with high cytotoxic potential and downregulating PD-1+ Tim-3+ cells as well as regulatory T cells. Cancer Cell Int. 19, 1–11 (2019).

    Article  Google Scholar 

  202. Chu, J. et al. Coupling programmed cell death 1-positive tumor-infiltrating T cells with anti-programmed cell death 1 antibody improves the efficacy of adoptive T-cell therapy. Cytotherapy 24, 291–301 (2022).

    Article  CAS  PubMed  Google Scholar 

  203. Liu, Y. et al. IL-2 regulates tumor-reactive CD8+ T cell exhaustion by activating the aryl hydrocarbon receptor. Nat. Immunol. 22, 358–369 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Feng, H. et al. Modulation of intracellular kinase signaling to improve TIL stemness and function for adoptive cell therapy. Cancer Med. 12, 3313–3327 (2023).

    Article  CAS  PubMed  Google Scholar 

  205. Johnson, M. O. et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175, 1780–1795.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kumar, J. et al. Deletion of Cbl-b inhibits CD8+ T-cell exhaustion and promotes CAR T-cell function. J. Immunother. Cancer 9, 1688 (2021).

    Article  Google Scholar 

  207. Beane, J. D. et al. Clinical scale zinc finger nuclease-mediated gene editing of PD-1 in tumor infiltrating lymphocytes for the treatment of metastatic melanoma. Mol. Ther. 23, 1380–1390 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Chamberlain, C. A. et al. Highly efficient PD-1-targeted CRISPR-Cas9 for tumor-infiltrating lymphocyte-based adoptive T cell therapy. Mol. Ther. Oncolytics 24, 417–428 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Ritthipichai, K. et al. Genetic modification of Iovance’s TIL through TALEN-mediated knockout of PD-1 as a strategy to empower TIL therapy for cancer [abstract 1052P]. Ann. Oncol. 31, S720 (2020).

    Article  Google Scholar 

  210. Palmer, D. C. et al. Internal checkpoint regulates T cell neoantigen reactivity and susceptibility to PD1 blockade. Med 3, 682–704.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  211. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04426669 (2025).

  212. Huang, D., Miller, M., Ashok, B., Jain, S. & Peppas, N. A. CRISPR/Cas systems to overcome challenges in developing the next generation of T cells for cancer therapy. Adv. Drug Deliv. Rev. 158, 17–35 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lopes, R. & Prasad, M. K. Beyond the promise: evaluating and mitigating off-target effects in CRISPR gene editing for safer therapeutics. Front. Bioeng. Biotechnol. 11, 1339189 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Heidegger, I., Pircher, A. & Pichler, R. Targeting the tumor microenvironment in renal cell cancer biology and therapy. Front. Oncol. 9, 454165 (2019).

    Article  Google Scholar 

  215. Cunha, P. P. et al. Oxygen levels at the time of activation determine T cell persistence and immunotherapeutic efficacy. eLife 12, e84280 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Sethumadhavan, S. et al. Hypoxia and hypoxia-inducible factor (HIF) downregulate antigen-presenting MHC class I molecules limiting tumor cell recognition by T cells. PLoS ONE 12, e0187314 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Bannoud, N. et al. Hypoxia supports differentiation of terminally exhausted CD8 T cells. Front. Immunol. 12, 660944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Noman, M. Z. et al. Hypoxia: a key player in antitumor immune response. A review in the theme: cellular responses to hypoxia. Am. J. Physiol. Cell Physiol. 309, C569–C579 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Liu, Y. N. et al. Hypoxia induces mitochondrial defect that promotes T cell exhaustion in tumor microenvironment through MYC-regulated pathways. Front. Immunol. 11, 1906 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Pillai, S. R. et al. Causes, consequences, and therapy of tumors acidosis. Cancer Metastasis Rev. 38, 205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Pilon-Thomas, S. et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 76, 1381–1390 (2016).

    Article  CAS  PubMed  Google Scholar 

  223. Finisguerra, V. et al. Metformin improves cancer immunotherapy by directly rescuing tumor-infiltrating CD8 T lymphocytes from hypoxia-induced immunosuppression. J. Immunother. Cancer 11, e005719 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Scharping, N. E., Menk, A. V., Whetstone, R. D., Zeng, X. & Delgoffe, G. M. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol. Res. 5, 9–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  225. Park, J. H. et al. Tumor hypoxia represses γδ T cell-mediated antitumor immunity against brain tumors. Nat. Immunol. 22, 336–346 (2021).

    Article  CAS  PubMed  Google Scholar 

  226. Eikawa, S. et al. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc. Natl Acad. Sci. USA 112, 1809–1814 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Munoz, L. E. et al. Metformin reduces PD-L1 on tumor cells and enhances the anti-tumor immune response generated by vaccine immunotherapy. J. Immunother. Cancer 9, e002614 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Zannella, V. E. et al. Reprogramming metabolism with metformin improves tumor oxygenation and radiotherapy response. Clin. Cancer Res. 19, 6741–6750 (2013).

    Article  CAS  PubMed  Google Scholar 

  230. Böhme, J. et al. Metformin enhances anti-mycobacterial responses by educating CD8+ T-cell immunometabolic circuits. Nat. Commun. 11, 5225 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Gropper, Y. et al. Culturing CTLs under hypoxic conditions enhances their cytolysis and improves their anti-tumor function. Cell Rep. 20, 2547–2555 (2017).

    Article  CAS  PubMed  Google Scholar 

  232. Nakagawa, Y. et al. Effects of extracellular pH and hypoxia on the function and development of antigen-specific cytotoxic T lymphocytes. Immunol. Lett. 167, 72–86 (2015).

    Article  CAS  PubMed  Google Scholar 

  233. Vuillefroy de silly, R. et al. Phenotypic switch of CD8+ T cells reactivated under hypoxia toward IL-10 secreting, poorly proliferative effector cells. Eur. J. Immunol. 45, 2263–2275 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Finlay, D. K. et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med. 209, 2441–2453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Nakamura, H. et al. TCR engagement increases hypoxia-inducible factor-1 alpha protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells. J. Immunol. 174, 7592–7599 (2005).

    Article  CAS  PubMed  Google Scholar 

  236. Palazon, A. et al. An HIF-1α/VEGF-A axis in cytotoxic T cells regulates tumor progression. Cancer Cell 32, 669–683.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Heemskerk, B. et al. Adoptive cell therapy for patients with melanoma, using tumor-infiltrating lymphocytes genetically engineered to secrete interleukin-2. Hum. Gene Ther. 19, 496–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  238. Vignali, D. A. A. & Kuchroo, V. K. IL-12 family cytokines: immunological playmakers. Nat. Immunol. 13, 722–728 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Brunda, M. J. et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J. Exp. Med. 178, 1223–1230 (1993).

    Article  CAS  PubMed  Google Scholar 

  240. Zhang, L. et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin. Cancer Res. 21, 2278–2288 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Haghnegahdar, H. et al. The tumorigenic and angiogenic effects of MGSA/GRO proteins in melanoma. J. Leukoc. Biol. 67, 53–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  242. Kruizinga, R. et al. Role of chemokines and their receptors in cancer. Curr. Pharm. Des. 15, 3396–3416 (2009).

    Article  CAS  PubMed  Google Scholar 

  243. Peng, W. et al. Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clin. Cancer Res. 16, 5458–5468 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Idorn, M., Straten, P. T., Svane, I. M. & Met, Ö Transfection of tumor-infiltrating T cells with mRNA encoding CXCR2. Methods Mol. Biol. 1428, 261–276 (2016).

    Article  CAS  PubMed  Google Scholar 

  245. Forget, M. A. et al. A novel method to generate and expand clinical-grade, genetically modified, tumor-infiltrating lymphocytes. Front. Immunol. 8, 285318 (2017).

    Article  Google Scholar 

  246. Kershaw, M. H. et al. Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum. Gene Ther. 13, 1971–1980 (2002).

    Article  CAS  PubMed  Google Scholar 

  247. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01740557 (2024).

  248. Kazemi, M. H. et al. Oncolytic virotherapy in hematopoietic stem cell transplantation. Hum. Immunol. 82, 640–648 (2021).

    Article  CAS  PubMed  Google Scholar 

  249. Santos, J. M. et al. Oncolytic adenovirus shapes the ovarian tumor microenvironment for potent tumor-infiltrating lymphocyte tumor reactivity. J. Immunother. Cancer 8, e000188 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Feist, M. et al. Oncolytic virus promotes tumor-reactive infiltrating lymphocytes for adoptive cell therapy. Cancer Gene Ther. 28, 98–111 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Khammari, A. et al. Adoptive T cell therapy combined with intralesional administrations of TG1042 (adenovirus expressing interferon-γ) in metastatic melanoma patients. Cancer Immunol. Immunother. 64, 805–815 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Cervera-Carrascon, V. et al. Tumor microenvironment remodeling by an engineered oncolytic adenovirus results in improved outcome from PD-L1 inhibition. Oncoimmunology 9, 1761229 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Santos, J. et al. Systemic delivery of oncolytic adenovirus to tumors using tumor-infiltrating lymphocytes as carriers. Cells 10, 978 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Ye, K. et al. An armed oncolytic virus enhances the efficacy of tumor-infiltrating lymphocyte therapy by converting tumors to artificial antigen-presenting cells in situ. Mol. Ther. 30, 3658–3676 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Lauss, M. et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat. Commun. 8, 1738 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  257. Leko, V. et al. Identification of neoantigen-reactive tumor-infiltrating lymphocytes in primary bladder cancer. J. Immunol. 202, 3458–3467 (2019).

    Article  CAS  PubMed  Google Scholar 

  258. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer–immune set point. Nature 541, 321–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  259. Tas, L., Jedema, I. & Haanen, J. B. A. G. Novel strategies to improve efficacy of treatment with tumor-infiltrating lymphocytes (TILs) for patients with solid cancers. Curr. Opin. Oncol. 35, 107 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Robbins, P. F. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat. Med. 19, 747–752 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Parkhurst, M. et al. Isolation of T-cell receptors specifically reactive with mutated tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137 expression. Clin. Cancer Res. 23, 2491–2505 (2017).

    Article  CAS  PubMed  Google Scholar 

  262. Stevanović, S. et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science 356, 200–205 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Parmiani, G., De Filippo, A., Novellino, L. & Castelli, C. Unique human tumor antigens: immunobiology and use in clinical trials. J. Immunol. 178, 1975–1979 (2007).

    Article  CAS  PubMed  Google Scholar 

  264. Braun, D. A. et al. A neoantigen vaccine generates antitumour immunity in renal cell carcinoma. Nature 639, 474–482 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Rastogi, I., Muralidhar, A. & McNeel, D. G. Vaccines as treatments for prostate cancer. Nat. Rev. Urol. 20, 544–559 (2023).

    Article  CAS  PubMed  Google Scholar 

  266. Van Willigen, W. W. et al. Dendritic cell cancer therapy: vaccinating the right patient at the right time. Front. Immunol. 9, 415108 (2018).

    Google Scholar 

  267. Zhang, R. et al. Personalized neoantigen-pulsed dendritic cell vaccines show superior immunogenicity to neoantigen-adjuvant vaccines in mouse tumor models. Cancer Immunol. Immunother.69, 135–145 (2020).

    Article  CAS  PubMed  Google Scholar 

  268. Garg, A. D., Coulie, P. G., Van den Eynde, B. J. & Agostinis, P. Integrating next-generation dendritic cell vaccines into the current cancer immunotherapy landscape. Trends Immunol. 38, 577–593 (2017).

    Article  CAS  PubMed  Google Scholar 

  269. Su, Z. et al. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res. 63, 2127–2133 (2003).

    CAS  PubMed  Google Scholar 

  270. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00006431 (2005).

  271. Mu, L. J. et al. Immunotherapy with allotumour mRNA-transfected dendritic cells in androgen-resistant prostate cancer patients. Br. J. Cancer 93, 749–756 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Anderson, E. M., Thomassian, S., Gong, J., Hendifar, A. & Osipov, A. Advances in pancreatic ductal adenocarcinoma treatment. Cancers 13, 5510 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Lövgren, T. et al. Complete and long-lasting clinical responses in immune checkpoint inhibitor-resistant, metastasized melanoma treated with adoptive T cell transfer combined with DC vaccination. Oncoimmunology 9, 1792058 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Zacharakis, N. et al. Breast cancers are immunogenic: immunologic analyses and a phase II pilot clinical trial using mutation-reactive autologous lymphocytes. J. Clin. Oncol. 40, 1741–1754 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Lybaert, L. et al. Neoantigen-directed therapeutics in the clinic: where are we? Trends Cancer 9, 503–519 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Rafiq, Z. et al. Enhancing immunotherapy efficacy with synergistic low-dose radiation in metastatic melanoma: current insights and prospects. J. Exp. Clin. Cancer Res. 44, 31 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Yu, W. D., Sun, G., Li, J., Xu, J. & Wang, X. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett. 452, 66–70 (2019).

    Article  CAS  PubMed  Google Scholar 

  278. Lai, J.-Z., Zhu, Y.-Y., Ruan, M., Chen, L. & Zhang, Q.-Y. Local irradiation sensitized tumors to adoptive T cell therapy via enhancing the cross-priming, homing, and cytotoxicity of antigen-specific CD8 T cells. Front. Immunol. 10, 2857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Rogers, M. et al. Tolerability and response of palliative radiotherapy in patients receiving tumor-infiltrating lymphocyte therapy. J. Clin. Oncol. 41, e14527 (2023).

    Article  Google Scholar 

  280. König, D. et al. Adoptive cell therapy with tumor-infiltrating lymphocytes in combination with nivolumab in patients with advanced melanoma. Immunooncol. Technol. 24, 100728 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Creelan, B. C. et al. Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: a phase 1 trial. Nat. Med. 27, 1410–1418 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Hall, M. S. et al. Combination nivolumab, CD137 agonism, and adoptive cell therapy with tumor-infiltrating lymphocytes for patients with metastatic melanoma. Clin. Cancer Res. 28, 5317–5329 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussion of the content, wrote the manuscript, and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Shari Pilon-Thomas or Jad Chahoud.

Ethics declarations

Competing interests

J.C. declares consulting or advisory roles at AVEO, DAVA Pharmaceuticals, Pfizer, Exelixis, Eisai and Merck. P.E.S. declares honoraria at UptoDate. S.P.-T. is an inventor on intellectual property related to the proliferation and expansion of tumour-infiltrating lymphocytes (TILs) that Moffitt Cancer Center has licensed to Iovance Biotherapeutics. Moffitt has also licensed IP to Tuhura Biopharma. S.P.-T. is also listed as a co-inventor on a patent application with Provectus Biopharmaceuticals and participates in sponsored research agreements with Provectus Biopharmaceuticals, Celgene, Iovance Biotherapeutics, Intellia Therapeutics, Dyve Biosciences and Turnstone Biologics that are not related to this research. S.P.-T. has received consulting fees from Seagen, Morphogenesis and KSQ Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Marco Donia, who co-reviewed with Edoardo Dionisio; David Aggen; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potez, M., Roman Souza, G., Spiess, P.E. et al. The opportunities and barriers for developing tumour-infiltrating lymphocyte therapy for patients with advanced genitourinary cancers. Nat Rev Urol (2025). https://doi.org/10.1038/s41585-025-01088-6

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41585-025-01088-6

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer