Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Circulating tumour cells as a window into lethality in prostate cancer

Abstract

Prostate cancer is characterized by multifocality, inter- and intra-patient tumour heterogeneity, and differences in risk of progression to metastatic disease, castration resistance and lethality, which can make prognosis challenging. Consequently, sampling methods that provide accurate insight into disease phenotype to facilitate risk-stratification of patients are crucial. The variable biology of prostate cancer seems to be recapitulated in the phenotypic heterogeneity of circulating tumour cells (CTCs). CTC sampling offers a liquid biopsy method to achieve minimally invasive longitudinal sampling for disease monitoring. CTC analysis has also offered a crucial insight into aggressive phenotypes, disease metastasis and treatment response, particularly in clinical trials. The clinical use of CTC count for prognosis in advanced prostate cancer has been approved by the FDA, but is not routinely used clinically, as these cells are technically challenging to isolate and analyse. However, methodological advances continue to improve CTC enrichment and profiling. Understanding the clinical utility of CTCs and future innovations is crucial to incorporating CTCs into the clinical management of prostate cancer.

Key points

  • Circulating tumour cells (CTCs) can be detected in blood from subsets of patients with prostate cancer by using antigen-dependent or -independent methods of enrichment.

  • New label-free enrichment strategies are renewing interest in CTCs after advances in next-generation sequencing had previously shifted the focus of liquid biopsy to cell-free DNA (cfDNA).

  • Molecular profiling of prostate cancer CTCs might offer a stratification tool for selecting patients for systemic therapy.

  • CTCs provide insight into the clinical and biological heterogeneity of prostate cancer, potentially offering markers of prognosis and/or treatment response.

  • Further study is needed on the role of CTCs in localized prostate cancer, requiring increased sensitivity and specificity of enrichment methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Isolation, detection and profiling workflow of circulating tumour cells.
Fig. 2: Current clinical utility for circulating tumour cell detection in localized and metastatic prostate cancer.

Similar content being viewed by others

References

  1. Erickson, A. et al. Spatially resolved clonal copy number alterations in benign and malignant tissue. Nature 608, 360–367 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Haffner, M. C. et al. Genomic and phenotypic heterogeneity in prostate cancer. Nat. Rev. Urol. 18, 79–92 (2021).

    Article  PubMed  Google Scholar 

  3. Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Delanoy, N. et al. Clinical progression is associated with poor prognosis whatever the treatment line in metastatic castration resistant prostate cancer: the CATS international database. Eur. J. Cancer 125, 153–163 (2020).

    Article  PubMed  Google Scholar 

  5. Ramos-Montoya, A. et al. HES6 drives a critical AR transcriptional programme to induce castration-resistant prostate cancer through activation of an E2F1-mediated cell cycle network. EMBO Mol. Med. 6, 651–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lamb, A. D., Massie, C. E. & Neal, D. E. The transcriptional programme of the androgen receptor (AR) in prostate cancer. BJU Int. 113, 358–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Ross-Adams, H. et al. Integration of copy number and transcriptomics provides risk stratification in prostate cancer: a discovery and validation cohort study. EBioMedicine 2, 1133–1144 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dijkstra, S., Hamid, A. R. A. H., Leyten, G. H. J. M. & Schalken, J. A. Personalized management in low-risk prostate cancer: role of biomarkers. Prostate Cancer 2012, 1–7 (2012).

    Article  Google Scholar 

  9. Singhal, U. et al. Integrative multi-region molecular profiling of primary prostate cancer in men with synchronous lymph node metastasis. Nat. Commun. 15, 1–9 (2024).

    Article  Google Scholar 

  10. Cooper, C. S. et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat. Genet. 47, 367–372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Erickson, A. et al. A systematic review of prostate cancer heterogeneity: understanding the clonal ancestry of multifocal disease. Eur. Urol. Oncol. 4, 358–369 (2021).

    Article  PubMed  Google Scholar 

  12. Marklund, M. et al. Spatio-temporal analysis of prostate tumors in situ suggests pre-existence of treatment-resistant clones. Nat. Commun. 13, 5475 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miller, M. C., Doyle, G. V. & Terstappen, L. W. M. M. Significance of circulating tumor cells detected by the CellSearch system in patients with metastatic breast colorectal and prostate cancer. J. Oncol. 2010, 1–8 (2010).

    Article  Google Scholar 

  14. Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Fonseca, N. M. et al. Prediction of plasma ctDNA fraction and prognostic implications of liquid biopsy in advanced prostate cancer. Nat. Commun. 15, 1828 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tolmeijer, S. H. et al. Early on-treatment changes in circulating tumor DNA fraction and response to enzalutamide or abiraterone in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 29, 2835–2844 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Tukachinsky, H. et al. Genomic analysis of circulating tumor DNA in 3,334 patients with advanced prostate cancer identifies targetable BRCA alterations and AR resistance mechanisms. Clin. Cancer Res. 27, 3094–3105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Helzer, K. T. et al. Fragmentomic analysis of circulating tumor DNA-targeted cancer panels. Ann. Oncol. 34, 813–825 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Conteduca, V. et al. Circulating androgen receptor for prognosis and treatment selection in prostate cancer. Eur. Urol. Oncol. 4, 740–744 (2021).

    Article  PubMed  Google Scholar 

  20. Wyatt, A. W. et al. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in prostate cancer. J. Natl Cancer Inst. 109, djx118 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Beltran, H. et al. Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer. J. Clin. Invest. 130, 1653–1668 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Herberts, C. et al. Deep whole-genome ctDNA chronology of treatment-resistant prostate cancer. Nature 608, 199–208 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Garofoli, M. et al. Circulating tumor DNA: a new research frontier in urological oncology from localized to metastatic disease. Eur. Urol. Oncol. 8, 805–817 (2025).

    Article  PubMed  Google Scholar 

  24. Maia, M. C., Salgia, M. & Pal, S. K. Harnessing cell-free DNA: plasma circulating tumour DNA for liquid biopsy in genitourinary cancers. Nat. Rev. Urol. 17, 271–291 (2020).

    Article  PubMed  Google Scholar 

  25. Lin, D. et al. Circulating tumor cells: biology and clinical significance. Signal. Transduct. Target. Ther. 6, 404 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Ring, A., Nguyen-Strauli, B. D., Wicki, A. & Aceto, N. Biology, vulnerabilities and clinical applications of circulating tumour cells. Nat. Rev. Cancer 23, 95–111 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 133, 571–573 (1889).

    Article  Google Scholar 

  29. Akhtar, M., Haider, A., Rashid, S. & Al-Nabet, A. D. M. H. Paget’s “seed and soil” theory of cancer metastasis: an idea whose time has come. Adv. Anat. Pathol. 26, 69–74 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Heidrich, I., Deitert, B., Werner, S. & Pantel, K. Liquid biopsy for monitoring of tumor dormancy and early detection of disease recurrence in solid tumors. Cancer Metastasis Rev. 42, 161–182 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chu, X. et al. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal. Transduct. Target. Ther. 9, 170 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mei, W. et al. The contributions of prostate cancer stem cells in prostate cancer initiation and metastasis. Cancers 11, 434 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu, L. et al. The novel association of circulating tumor cells and circulating megakaryocytes with prostate cancer prognosis. Clin. Cancer Res. 23, 5112–5122 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Massard, C. et al. Phenotypic and genetic heterogeneity of tumor tissue and circulating tumor cells in patients with metastatic castration-resistant prostate cancer: a report from the PETRUS prospective study. Oncotarget 7, 55069–55082 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gupta, S. et al. Whole genomic copy number alterations in circulating tumor cells from men with abiraterone or enzalutamide-resistant metastatic castration-resistant prostate cancer. Clin. Cancer Res. 23, 1346–1357 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Wu, C., Xu, C., Wang, G., Zhang, D. & Zhao, X. Noninvasive circulating tumor cell and urine cellular XPC (rs2228001, A2815C) and XRCC1 (rs25487, G1196A) polymorphism detection as an effective screening panel for genitourinary system cancers. Transl. Cancer Res. 8, 2803–2812 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Punnoose, E. A. et al. PTEN loss in circulating tumour cells correlates with PTEN loss in fresh tumour tissue from castration-resistant prostate cancer patients. Br. J. Cancer 113, 1225–1233 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pezzi, H. M. et al. Versatile exclusion-based sample preparation platform for integrated rare cell isolation and analyte extraction. Lab. Chip 18, 3446–3458 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheng, Y. et al. Prognostic value of circulating tumor cells in castration resistant prostate cancer: a meta-analysis. Urol. J. 13, 2881–2888 (2016).

    PubMed  Google Scholar 

  40. Salami, S. S. et al. Circulating tumor cells as a predictor of treatment response in clinically localized prostate cancer. JCO Precis. Oncol. 3, PO.18.00352 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. Al-Hammouri, T. et al. Protocol for a prospective study evaluating circulating tumour cells status to predict radical prostatectomy treatment failure in localised prostate cancer patients (C-ProMeta-1). BMC Cancer 23, 581 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lawrence, R., Watters, M., Davies, C. R., Pantel, K. & Lu, Y.-J. Circulating tumour cells for early detection of clinically relevant cancer. Nat. Rev. Clin. Oncol. 20, 487–500 (2023).

    Article  PubMed  Google Scholar 

  43. Xu, L. et al. Noninvasive detection of clinically significant prostate cancer using circulating tumor cells. J. Urol. 203, 73–82 (2020).

    Article  PubMed  Google Scholar 

  44. Ren, X., He, X., Xu, C., Han, D. & Cheng, S. Functional tumor targeting nano-systems for reprogramming circulating tumor cells with in situ evaluation on therapeutic efficiency at the single-cell level. Adv. Sci. 9, e2105806 (2022).

    Article  Google Scholar 

  45. Reichert, Z. R. et al. Multigene profiling of circulating tumor cells (CTCs) for prognostic assessment in treatment-naïve metastatic hormone-sensitive prostate cancer (mHSPC). Int. J. Mol. Sci. 23, 4 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Davies, C. R. et al. The potential of using circulating tumour cells and their gene expression to predict docetaxel response in metastatic prostate cancer. Front. Oncol. 12, 1060864 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vandekerkhove, G., Chi, K. N. & Wyatt, A. W. Clinical utility of emerging liquid biomarkers in advanced prostate cancer. Cancer Genet. 228–229, 151–158 (2018).

    Article  PubMed  Google Scholar 

  48. Kruck, S., Gakis, G. & Stenzl, A. Disseminated and circulating tumor cells for monitoring chemotherapy in urological tumors. Anticancer Res. 31, 2053–2057 (2011).

    PubMed  Google Scholar 

  49. Cieślikowski, W. A., Antczak, A., Nowicki, M., Zabel, M. & Budna-Tukan, J. Clinical relevance of circulating tumor cells in prostate cancer management. Biomedicines 9, 1179 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang, T. & Armstrong, A. J. Clinical utility of circulating tumor cells in advanced prostate cancer. Curr. Oncol. Rep. 18, 3 (2016).

    Article  PubMed  Google Scholar 

  51. Strati, A., Markou, A., Kyriakopoulou, E. & Lianidou, E. Detection and molecular characterization of circulating tumour cells: challenges for the clinical setting. Cancers 15, 2185 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Templeman, A. et al. Analytical performance of the FDA-cleared Parsortix® PC1 system. J. Circ. Biomark. 12, 26–33 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Millner, L. M., Linder, M. W. & Valdes, R. Circulating tumor cells: a review of present methods and the need to identify heterogeneous phenotypes. Ann. Clin. Lab. Sci. 43, 295–304 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Shen, W. et al. Combined immunomagnetic capture coupled with ultrasensitive plasmonic detection of circulating tumor cells in blood. Biomed. Microdevices 20, 99 (2018).

    Article  PubMed  Google Scholar 

  55. Bitting, R. L. et al. Development of a method to isolate circulating tumor cells using mesenchymal-based capture. Methods 64, 129–136 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, T. et al. Development of a novel c-MET-based CTC detection platform. Mol. Cancer Res. 14, 539–547 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Cha, J., Cho, H., Chung, J.-S., Park, J. S. & Han, K.-H. Effective circulating tumor cell isolation using epithelial and mesenchymal markers in prostate and pancreatic cancer patients. Cancers 15, 2825 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vila, A. et al. EGFR-based immunoisolation as a recovery target for low-EpCAM CTC subpopulation. PLoS ONE 11, e0163705 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Magbanua, M. J. M. et al. Isolation and genomic analysis of circulating tumor cells from castration resistant metastatic prostate cancer. BMC Cancer 12, 78 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Autebert, J. et al. High purity microfluidic sorting and analysis of circulating tumor cells: towards routine mutation detection. Lab. Chip 15, 2090–2101 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Glia, A. et al. Herringbone microfluidic probe for multiplexed affinity-capture of prostate circulating tumor cells. Adv. Mater. Technol. 6, 2100053 (2021).

    Article  CAS  Google Scholar 

  62. Yin, C. et al. Molecular profiling of pooled circulating tumor cells from prostate cancer patients using a dual-antibody-functionalized microfluidic device. Anal. Chem. 90, 3744–3751 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Zhao, L. et al. High-purity prostate circulating tumor cell isolation by a polymer nanofiber-embedded microchip for whole exome sequencing. Adv. Mater. 25, 2897–2902 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chu, C.-H. et al. Negative enrichment of circulating tumor cells from unmanipulated whole blood with a 3D printed device. Sci. Rep. 11, 20583 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang, Y.-Y. et al. Screening and molecular analysis of single circulating tumor cells using micromagnet array. Sci. Rep. 5, 16047 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fachin, F. et al. Monolithic chip for high-throughput blood cell depletion to sort rare circulating tumor cells. Sci. Rep. 7, 10936 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mentink, A., Isebia, K. T., Kraan, J., Terstappen, L. W. M. M. & Stevens, M. Measuring antigen expression of cancer cell lines and circulating tumour cells. Sci. Rep. 13, 6051 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. de Wit, S. et al. EpCAMhigh and EpCAMlow circulating tumor cells in metastatic prostate and breast cancer patients. Oncotarget 9, 35705–35716 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Saxena, K., Subbalakshmi, A. R. & Jolly, M. K. Phenotypic heterogeneity in circulating tumor cells and its prognostic value in metastasis and overall survival. EBioMedicine 46, 4–5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brouwer, A. et al. Evaluation and consequences of heterogeneity in the circulating tumor cell compartment. Oncotarget 7, 48625–48643 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jiang, W. et al. Bait-trap chip for accurate and ultrasensitive capture of living circulating tumor cells. Acta Biomater. 162, 226–239 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Myung, J. H. et al. Dendrimer-based platform for effective capture of tumor cells after TGFβ 1-induced epithelial–mesenchymal transition. Anal. Chem. 91, 8374–8382 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Witek, M. A. et al. Discrete microfluidics for the isolation of circulating tumor cell subpopulations targeting fibroblast activation protein alpha and epithelial cell adhesion molecule. NPJ Precis. Oncol. 1, 24 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chen, J. et al. Feasibility study of expressing epcam + /vimentin + CTC in prostate cancer diagnosis. J. Cancer Res. Clin. Oncol. 149, 8699–8709 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hughes, A. D. et al. Microtube device for selectin-mediated capture of viable circulating tumor cells from blood. Clin. Chem. 58, 846–853 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Deliorman, M. et al. AFM-compatible microfluidic platform for affinity-based capture and nanomechanical characterization of circulating tumor cells. Microsyst. Nanoeng. 6, 20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, B. et al. Evaporation-induced rGO coatings for highly sensitive and non-invasive diagnosis of prostate cancer in the PSA gray zone. Adv. Mater. 33, e2103999 (2021).

    Article  PubMed  Google Scholar 

  78. Gleghorn, J. P. et al. Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab. Chip 10, 27–29 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, J., Chen, K. & Fan, Z. H. Circulating tumor cell isolation and analysis. Adv. Clin. Chem. 75, 1–31 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sperger, J. M. et al. Expression and therapeutic targeting of TROP-2 in treatment-resistant prostate cancer. Clin. Cancer Res. 29, 2324–2335 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gires, O., Pan, M., Schinke, H., Canis, M. & Baeuerle, P. A. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer Metastasis Rev. 39, 969–987 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chiu, J.-J. et al. Mechanisms of induction of endothelial cell E-selectin expression by smooth muscle cells and its inhibition by shear stress. Blood 110, 519–528 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chang, S. S. Overview of prostate-specific membrane antigen. Rev. Urol. 6 (Suppl. 10), S13–S18 (2004).

    PubMed  PubMed Central  Google Scholar 

  84. Balk, S. P., Ko, Y.-J. & Bubley, G. J. Biology of prostate-specific antigen. J. Clin. Oncol. 21, 383–391 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Ivaska, J. Vimentin: central hub in EMT induction? Small GTPases 2, 51–53 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rajaram, P. et al. Epidermal growth factor receptor: role in human cancer. Indian J. Dental Res. 28, 687 (2017).

    Article  Google Scholar 

  87. Zhang, Y. et al. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol. Cancer 17, 45 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lira, C. B. B., Chu, K., Lee, Y.-C., Hu, M. C.-T. & Lin, S.-H. Expression of the extracellular domain of OB-cadherin as an Fc fusion protein using bicistronic retroviral expression vector. Protein Expr. Purif. 61, 220–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Day, K. C. et al. HER2 and EGFR overexpression support metastatic progression of prostate cancer to bone. Cancer Res. 77, 74–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Shen, M., Liu, S. & Stoyanova, T. The role of Trop2 in prostate cancer: an oncogene, biomarker, and therapeutic target. Am. J. Clin. Exp. Urol. 9, 73–87 (2021).

    PubMed  PubMed Central  Google Scholar 

  91. Saeki, N., Gu, J., Yoshida, T. & Wu, X. Prostate stem cell antigen: a Jekyll and Hyde molecule? Clin. Cancer Res. 16, 3533–3538 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Theil, G., Bialek, J., Weiß, C., Lindner, F. & Fornara, P. Strategies for isolating and propagating circulating tumor cells in men with metastatic prostate cancer. Diagnostics 12, 497 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hupert, M. L. et al. Arrays of high-aspect ratio microchannels for high-throughput isolation of circulating tumor cells (CTCs). Microsyst. Technol. 20, 1815–1825 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Awe, J. A., Saranchuk, J., Drachenberg, D. & Mai, S. Filtration-based enrichment of circulating tumor cells from all prostate cancer risk groups. Urol. Oncol. 35, 300–309 (2017).

    Article  PubMed  Google Scholar 

  95. Mendelaar, P. A. J. et al. Defining the dimensions of circulating tumor cells in a large series of breast, prostate, colon, and bladder cancer patients. Mol. Oncol. 15, 116–125 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Schmid-Schonbein, G., Shih, Y. & Chien, S. Morphometry of human leukocytes. Blood 56, 866–875 (1980).

    Article  CAS  PubMed  Google Scholar 

  97. Diez-Silva, M., Dao, M., Han, J., Lim, C.-T. & Suresh, S. Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull. 35, 382–388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Adebayo Awe, J. et al. Three-dimensional telomeric analysis of isolated circulating tumor cells (CTCs) defines CTC subpopulations. Transl. Oncol. 6, 51–65 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Xu, L. et al. Optimization and evaluation of a novel size based circulating tumor cell isolation system. PLoS ONE 10, e0138032 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Augustsson, P., Magnusson, C., Nordin, M., Lilja, H. & Laurell, T. Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal. Chem. 84, 7954–7962 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Di Trapani, M., Manaresi, N. & Medoro, G. DEPArray™ system: an automatic image-based sorter for isolation of pure circulating tumor cells. Cytometry Part. A 93, 1260–1266 (2018).

    Article  Google Scholar 

  102. Wu, M. et al. Circulating tumor cell phenotyping via high-throughput acoustic separation. Small 14, e1801131 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Liu, J. et al. Circulating tumor cells (CTCs): a unique model of cancer metastases and non-invasive biomarkers of therapeutic response. Front. Genet. 12, 734595 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Andree, K. C. et al. Toward a real liquid biopsy in metastatic breast and prostate cancer: diagnostic leukapheresis increases CTC yields in a European prospective multicenter study (CTCTrap). Int. J. Cancer 143, 2584–2591 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Theil, G. et al. In vivo isolation of circulating tumor cells in patients with different stages of prostate cancer. Oncol. Lett. 21, 357 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Theil, G. et al. The use of a new CellCollector to isolate circulating tumor cells from the blood of patients with different stages of prostate cancer and clinical outcomes — a proof-of-concept study. PLoS ONE 11, e0158354 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zapatero, A. et al. Detection and dynamics of circulating tumor cells in patients with high-risk prostate cancer treated with radiotherapy and hormones: a prospective phase II study. Radiat. Oncol. 15, 137 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ligthart, S. T. et al. Circulating tumor cells count and morphological features in breast, colorectal and prostate cancer. PLoS ONE 8, e67148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ju, S. et al. Detection of circulating tumor cells: opportunities and challenges. Biomark. Res. 10, 58 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Pal, S. K. et al. Detection and phenotyping of circulating tumor cells in high-risk localized prostate cancer. Clin. Genitourin. Cancer 13, 130–136 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Kerr, B. A. et al. CD117+ cells in the circulation are predictive of advanced prostate cancer. Oncotarget 6, 1889–1897 (2015).

    Article  PubMed  Google Scholar 

  112. Murray, N. P., Reyes, E., Orellana, N., Fuentealba, C. & Dueñas, R. A comparative performance analysis of total PSA, percentage free PSA, PSA velocity, and PSA density versus the detection of primary circulating prostate cells in predicting initial prostate biopsy findings in Chilean men. Biomed. Res. Int. 2014, 1–8 (2014).

    Article  Google Scholar 

  113. Limaye, S. et al. Accurate prostate cancer detection based on enrichment and characterization of prostate cancer specific circulating tumor cells. Cancer Med. 12, 9116–9127 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. de Bono, J. S. et al. Potential applications for circulating tumor cells expressing the insulin-like growth factor-I receptor. Clin. Cancer Res. 13, 3611–3616 (2007).

    Article  PubMed  Google Scholar 

  115. Pal, S. K. et al. Synaptophysin expression on circulating tumor cells in patients with castration resistant prostate cancer undergoing treatment with abiraterone acetate or enzalutamide. Urol. Oncol. 36, 162.e1–162.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Saha, S. K., Islam, S. M. R., Kwak, K.-S., Rahman, M. S. & Cho, S.-G. PROM1 and PROM2 expression differentially modulates clinical prognosis of cancer: a multiomics analysis. Cancer Gene Ther. 27, 147–167 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. van Roy, F. & Berx, G. The cell-cell adhesion molecule E-cadherin. Cell. Mol. Life Sci. 65, 3756–3788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gatalica, Z., Stafford, P. & Vranic, S. Alpha-methylacyl-CoA racemase (AMACR) protein is upregulated in early proliferative lesions of the breast irrespective of apocrine differentiation. Hum. Pathol. 129, 40–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Gladson, C. L. & Welch, D. R. New insights into the role of CXCR4 in prostate cancer metastasis. Cancer Biol. Ther. 7, 1849–1851 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Radu, P. et al. CD34-structure, functions and relationship with cancer stem cells. Medicina 59, 938 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Harris, K. S. et al. CD117/c-kit defines a prostate CSC-like subpopulation driving progression and TKI resistance. Sci. Rep. 11, 1465 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wu, J. & Yu, E. Insulin-like growth factor receptor-1 (IGF-IR) as a target for prostate cancer therapy. Cancer Metastasis Rev. 33, 607–617 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wiedenmann, B., Franke, W. W., Kuhn, C., Moll, R. & Gould, V. E. Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc. Natl Acad. Sci. 83, 3500–3504 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Toss, A., Mu, Z., Fernandez, S. & Cristofanilli, M. CTC enumeration and characterization: moving toward personalized medicine. Ann. Transl. Med. 2, 108 (2014).

    PubMed  PubMed Central  Google Scholar 

  125. Enikeev, D., Morozov, A., Babaevskaya, D., Bazarkin, A. & Malavaud, B. A systematic review of circulating tumor cells clinical application in prostate cancer diagnosis. Cancers 14, 3802 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Helo, P. et al. Circulating prostate tumor cells detected by reverse transcription-PCR in men with localized or castration-refractory prostate cancer: concordance with CellSearch assay and association with bone metastases and with survival. Clin. Chem. 55, 765–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Skerenova, M., Mikulova, V., Capoun, O., Zima, T. & Tesarova, P. Circulating tumor cells and serum levels of MMP-2, MMP-9 and VEGF as markers of the metastatic process in patients with high risk of metastatic progression. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 161, 272–280 (2017).

    Article  PubMed  Google Scholar 

  128. Albino, G., Vendittelli, F., Paolillo, C., Zuppi, C. & Capoluongo, E. Potential usefulness of CTC detection in follow up of prostate cancer patients. A preliminary report obtained by using Adnagene platform. Arch. Ital. Urol. Androl. 85, 164–169 (2013).

    Article  PubMed  Google Scholar 

  129. Todenhöfer, T. et al. Preliminary experience on the use of the Adnatest® system for detection of circulating tumor cells in prostate cancer patients. Anticancer. Res. 32, 3507–3513 (2012).

    PubMed  Google Scholar 

  130. Sperger, J. M. et al. Prospective evaluation of clinical outcomes using a multiplex liquid biopsy targeting diverse resistance mechanisms in metastatic prostate cancer. J. Clin. Oncol. 39, 2926–2937 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Thiounn, N. et al. Positive prostate-specific antigen circulating cells detected by reverse transcriptase-polymerase chain reaction does not imply the presence of prostatic micrometastases. Urology 50, 245–250 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Bos, M. K., Kraan, J., Sleijfer, S., Martens, J. W. M. & Beije, N. Prognostic value of circulating tumor cell characteristics may be biased by their quantity. J. Clin. Oncol. 40, 519–520 (2022).

    Article  PubMed  Google Scholar 

  133. Xu, C., He, X.-Y., Ren, X.-H., Han, D. & Cheng, S.-X. Detection of mRNAs of ribosomal protein L15 and E-cadherin in living circulating tumor cells at single cell resolution to study tumor heterogeneity. Anal. Chem. 94, 10610–10616 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Kuske, A. et al. Improved detection of circulating tumor cells in non-metastatic high-risk prostate cancer patients. Sci. Rep. 6, 1–9 (2016).

    Article  Google Scholar 

  135. Chen, S. et al. In vivo detection of circulating tumor cells in high-risk non-metastatic prostate cancer patients undergoing radiotherapy. Cancers 11, 933 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Budna-Tukan, J. et al. Analysis of circulating tumor cells in patients with non-metastatic high-risk prostate cancer before and after radiotherapy using three different enumeration assays. Cancers 11, 802 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gao, Y. et al. Single-cell sequencing deciphers a convergent evolution of copy number alterations from primary to circulating tumor cells. Genome Res. 27, 1312–1322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dago, A. E. et al. Rapid phenotypic and genomic change in response to therapeutic pressure in prostate cancer inferred by high content analysis of single circulating tumor cells. PLoS ONE 9, e101777 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Stankiewicz, E. et al. Identification of FBXL4 as a metastasis associated gene in prostate cancer. Sci. Rep. 7, 5124 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Lohr, J. G. et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat. Biotechnol. 32, 479–484 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gorges, T. M. et al. Accession of tumor heterogeneity by multiplex transcriptome profiling of single circulating tumor cells. Clin. Chem. 62, 1504–1515 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Nagaya, N. et al. Prostate-specific membrane antigen in circulating tumor cells is a new poor prognostic marker for castration-resistant prostate cancer. PLoS ONE 15, e0226219 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Groen, L. et al. Transcriptome profiling of circulating tumor cells to predict clinical outcomes in metastatic castration-resistant prostate cancer. Int. J. Mol. Sci. 24, 9002 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Heck, M. M. et al. A 2-gene panel derived from prostate cancer-enhanced transcripts in whole blood is prognostic for survival and predicts treatment benefit in metastatic castration-resistant prostate cancer. Prostate 76, 1160–1168 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Chen, C. et al. Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT-related genes in metastatic prostate cancer. Prostate 73, 813–826 (2013).

    Article  PubMed  Google Scholar 

  146. McKay, R. R. et al. Phase II multicenter study of enzalutamide in metastatic castration-resistant prostate cancer to identify mechanisms driving resistance. Clin. Cancer Res. 27, 3610–3619 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cho, H. et al. Multigene model for predicting metastatic prostate cancer using circulating tumor cells by microfluidic magnetophoresis. Cancer Sci. 112, 859–870 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Miyamoto, D. T. et al. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 349, 1351–1356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pal, S. K. et al. Identification of mechanisms of resistance to treatment with abiraterone acetate or enzalutamide in patients with castration-resistant prostate cancer (CRPC). Cancer 124, 1216–1224 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Singhal, U. et al. Multigene profiling of CTCs in mCRPC identifies a clinically relevant prognostic signature. Mol. Cancer Res. 16, 643–654 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Beltran, H. et al. The role of lineage plasticity in prostate cancer therapy resistance. Clin. Cancer Res. 25, 6916–6924 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Armstrong, A. J. et al. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the PROPHECY study. J. Clin. Oncol. 37, 1120–1129 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Zhao, S. G. et al. A clinical-grade liquid biomarker detects neuroendocrine differentiation in prostate cancer. J. Clin. Invest. 132, e161858 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Castellani, G. et al. BRAF mutations in melanoma: biological aspects, therapeutic implications, and circulating biomarkers. Cancers 15, 4026 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Morrison, G. et al. Non-invasive profiling of advanced prostate cancer via multi-parametric liquid biopsy and radiomic analysis. Int. J. Mol. Sci. 23, 2571 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hodara, E. et al. Multiparametric liquid biopsy analysis in metastatic prostate cancer. JCI Insight 4, e125529 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Malihi, P. D. et al. Single-cell circulating tumor cell analysis reveals genomic instability as a distinctive feature of aggressive prostate cancer. Clin. Cancer Res. 26, 4143–4153 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Stover, E. H. et al. Implementation of a prostate cancer-specific targeted sequencing panel for credentialing of patient-derived cell lines and genomic characterization of patient samples. Prostate 82, 584–597 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cho, K. S., Oh, H. Y., Lee, E. J. & Hong, S. J. Identification of enhancer of Zeste Homolog 2 expression in peripheral circulating tumor cells in metastatic prostate cancer patients: a preliminary study. Yonsei Med. J. 48, 1009 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gjyrezi, A. et al. Androgen receptor variant shows heterogeneous expression in prostate cancer according to differentiation stage. Commun. Biol. 4, 785 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Reyes, E. E. et al. Molecular analysis of CD133-positive circulating tumor cells from patients with metastatic castration-resistant prostate cancer. J. Transl. Sci. 1, 4 (2015).

    Google Scholar 

  163. Gorges, T. M. et al. Heterogeneous PSMA expression on circulating tumor cells — a potential basis for stratification and monitoring of PSMA-directed therapies in prostate cancer. Oncotarget 7, 34930–34941 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Chen, J. et al. Metabolic reprogramming-based characterization of circulating tumor cells in prostate cancer. J. Exp. Clin. Cancer Res. 37, 127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mout, L. et al. Generating human prostate cancer organoids from leukapheresis enriched circulating tumour cells. Eur. J. Cancer 150, 179–189 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Koinis, F. et al. Prognostic role of circulating tumor cells in patients with metastatic castration-resistant prostate cancer receiving cabazitaxel: a prospective biomarker study. Cancers 15, 4511 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Thalgott, M. et al. Circulating tumor cells versus objective response assessment predicting survival in metastatic castration-resistant prostate cancer patients treated with docetaxel chemotherapy. J. Cancer Res. Clin. Oncol. 141, 1457–1464 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gu, T., Li, J., Chen, T., Zhu, Q. & Ding, J. Circulating tumor cell quantification during abiraterone plus prednisone therapy may estimate survival in metastatic castration-resistant prostate cancer patients. Int. Urol. Nephrol. 55, 883–892 (2023).

    Article  CAS  PubMed  Google Scholar 

  170. de Jong, A. C. et al. Liquid biopsies for early response evaluation of radium-223 in metastatic prostate cancer. JCO Precis. Oncol. 7, e2300156 (2023).

    Article  PubMed  Google Scholar 

  171. Di Lorenzo, G. et al. Assessment of total, PTEN–, and AR-V7+ circulating tumor cell count by flow cytometry in patients with metastatic castration-resistant prostate cancer receiving enzalutamide. Clin. Genitourin. Cancer 19, e286–e298 (2021).

    Article  PubMed  Google Scholar 

  172. Miyamoto, D. T. et al. An RNA-based digital circulating tumor cell signature is predictive of drug response and early dissemination in prostate cancer. Cancer Discov. 8, 288–303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Carles, J. et al. Circulating tumor cells as a biomarker of survival and response to radium-223 therapy: experience in a cohort of patients with metastatic castration-resistant prostate cancer. Clin. Genitourin. Cancer 16, e1133–e1139 (2018).

    Article  PubMed  Google Scholar 

  174. Hirano, H. et al. Bone scan index (BSI) scoring by using bone scintigraphy and circulating tumor cells (CTCs): predictive factors for enzalutamide effectiveness in patients with castration-resistant prostate cancer and bone metastases. Sci. Rep. 13, 8704 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Goodman, O. B. et al. Circulating tumor cells as a predictive biomarker in patients with hormone-sensitive prostate cancer. Clin. Genitourin. Cancer 9, 31–38 (2011).

    Article  PubMed  Google Scholar 

  176. Goldkorn, A. et al. Baseline circulating tumor cell count as a prognostic marker of PSA response and disease progression in metastatic castrate-sensitive prostate cancer (SWOG S1216). Clin. Cancer Res. 27, 1967–1973 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Yang, G. et al. Clinical significance of mesenchymal circulating tumor cells in patients with oligometastatic hormone-sensitive prostate cancer who underwent cytoreductive radical prostatectomy. Front. Oncol. 11, 812549 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Ried, K., Eng, P. & Sali, A. Screening for circulating tumour cells allows early detection of cancer and monitoring of treatment effectiveness: an observational study. Asian Pac. J. Cancer Prev. 18, 2275 (2017).

    PubMed  PubMed Central  Google Scholar 

  179. Murray, N. P. et al. Prediction model for early biochemical recurrence after radical prostatectomy based on the Cancer of the Prostate Risk Assessment score and the presence of secondary circulating prostate cells. BJU Int. 118, 556–562 (2016).

    Article  PubMed  Google Scholar 

  180. Meyer, C. P. et al. Limited prognostic value of preoperative circulating tumor cells for early biochemical recurrence in patients with localized prostate cancer. Urol. Oncol. 34, 235.e11–235.e16 (2016).

    Article  PubMed  Google Scholar 

  181. Murray, N. P. et al. Head-to-head comparison of the Montreal nomogram with the detection of primary malignant circulating prostate cells to predict prostate cancer at initial biopsy in Chilean men with suspicion of prostate cancer. Urol. Oncol. 33, 203.e19–203.e25 (2015).

    Article  PubMed  Google Scholar 

  182. Lilja, H. & Scher, H. I. Detection of androgen receptor mutations in circulating tumor cells: highlights of the long road to clinical qualification. Clin. Chem. 56, 1375–1377 (2010).

    Article  CAS  PubMed  Google Scholar 

  183. Kanayama, M., Lu, C., Luo, J. & Antonarakis, E. S. AR splicing variants and resistance to AR targeting agents. Cancers 13, 2563 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Jiang, Y., Palma, J. F., Agus, D. B., Wang, Y. & Gross, M. E. Detection of androgen receptor mutations in circulating tumor cells in castration-resistant prostate cancer. Clin. Chem. 56, 1492–1495 (2010).

    Article  PubMed  Google Scholar 

  185. Ma, Y. et al. Droplet digital PCR based androgen receptor variant 7 (AR-V7) detection from prostate cancer patient blood biopsies. Int. J. Mol. Sci. 2016 17, 1264 (2016).

    Article  Google Scholar 

  186. Lu, D. et al. Development of an immunofluorescent AR-V7 circulating tumor cell assay — a blood-based test for men with metastatic prostate cancer. J. Circ. Biomark. 9, 13–19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Stuopelyte, K. et al. Analysis of AR-FL and AR-V1 in whole blood of patients with castration resistant prostate cancer as a tool for predicting response to abiraterone acetate. J. Urol. 204, 71–78 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Scher, H. I. et al. Assessment of the validity of nuclear-localized androgen receptor splice variant 7 in circulating tumor cells as a predictive biomarker for castration-resistant prostate cancer. JAMA Oncol. 4, 1179 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Antonarakis, E. S. et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol. 1, 582 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Antonarakis, E. S. et al. Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration-resistant prostate cancer treated with first- and second-line abiraterone and enzalutamide. J. Clin. Oncol. 35, 2149–2156 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Erb, H. H. H. et al. AR-V7 protein expression in circulating tumour cells is not predictive of treatment response in mCRPC. Urol. Int. 104, 253–262 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Okegawa, T. et al. AR-V7 in circulating tumor cells cluster as a predictive biomarker of abiraterone acetate and enzalutamide treatment in castration-resistant prostate cancer patients. Prostate 78, 576–582 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Hille, C. et al. Detection of androgen receptor variant 7 (ARV7) mRNA levels in EpCAM-enriched CTC fractions for monitoring response to androgen targeting therapies in prostate cancer. Cells 8, 1067 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Steinestel, J. et al. Detecting predictive androgen receptor modifications in circulating prostate cancer cells. Oncotarget 10, 4213–4223 (2019).

    Article  PubMed  Google Scholar 

  195. Hench, I. B. et al. Analysis of AR/ARV7 expression in isolated circulating tumor cells of patients with metastatic castration-resistant prostate cancer (SAKK 08/14 IMPROVE trial). Cancers 11, 1099 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sieuwerts, A. M. et al. An in-depth evaluation of the validity and logistics surrounding the testing of AR-V7 mRNA expression in circulating tumor cells. J. Mol. Diagn. 20, 316–325 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Taplin, M.-E. et al. Androgen receptor modulation optimized for response — splice variant: a phase 3, randomized trial of galeterone versus enzalutamide in androgen receptor splice variant-7-expressing metastatic castration-resistant prostate cancer. Eur. Urol. 76, 843–851 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Bernemann, C. et al. Expression of AR-V7 in circulating tumour cells does not preclude response to next generation androgen deprivation therapy in patients with castration resistant prostate cancer. Eur. Urol. 71, 1–3 (2017).

    Article  CAS  PubMed  Google Scholar 

  199. To, S. Q. et al. Expression of androgen receptor splice variant 7 or 9 in whole blood does not predict response to androgen-axis-targeting agents in metastatic castration-resistant prostate cancer. Eur. Urol. 73, 818–821 (2018).

    Article  CAS  PubMed  Google Scholar 

  200. Scher, H. I. et al. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol. 2, 1441–1449 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Wang, S. et al. The association of AR-V7 with resistance to abiraterone in metastatic castration-resistant prostate cancer. J. Mens. Health 18, 061 (2022).

    CAS  Google Scholar 

  202. Sepe, P. et al. Could circulating tumor cells and ARV7 detection improve clinical decisions in metastatic castration-resistant prostate cancer? The Istituto Nazionale dei Tumori (INT) Experience. Cancers 11, 980 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Qu, F. et al. Association of AR-V7 and prostate-specific antigen RNA levels in blood with efficacy of abiraterone acetate and enzalutamide treatment in men with prostate cancer. Clin. Cancer Res. 23, 726–734 (2017).

    Article  CAS  PubMed  Google Scholar 

  204. Carles, J. et al. Radium-223 for patients with metastatic castration-resistant prostate cancer with asymptomatic bone metastases progressing on first-line abiraterone acetate or enzalutamide: a single-arm phase II trial. Eur. J. Cancer 173, 317–326 (2022).

    Article  CAS  PubMed  Google Scholar 

  205. Scher, H. I. et al. Nuclear-specific AR-V7 protein localization is necessary to guide treatment selection in metastatic castration-resistant prostate cancer. Eur. Urol. 71, 874–882 (2017).

    Article  CAS  PubMed  Google Scholar 

  206. Graf, R. P. et al. Clinical utility of the nuclear-localized AR-V7 biomarker in circulating tumor cells in improving physician treatment choice in castration-resistant prostate cancer. Eur. Urol. 77, 170–177 (2020).

    Article  CAS  PubMed  Google Scholar 

  207. Montgomery, R. B. & Plymate, S. R. AR-V7 protein in circulating tumor cells — the decider for therapy? JAMA Oncol. 2, 1450 (2016).

    Article  CAS  PubMed  Google Scholar 

  208. Lu, C., Brown, L. C., Antonarakis, E. S., Armstrong, A. J. & Luo, J. Androgen receptor variant-driven prostate cancer II: advances in laboratory investigations. Prostate Cancer Prostatic Dis. 23, 381–397 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Sprenger, C., Uo, T. & Plymate, S. Androgen receptor splice variant V7 (AR-V7) in circulating tumor cells: a coming of age for AR splice variants? Ann. Oncol. 26, 1805–1807 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Bazyar, S. et al. Prospective characterization of circulating tumor cells in hormone sensitive oligometastatic prostate cancer patients on a metastasis-directed therapy trial. Int. J. Radiat. Oncol. Biol. Phys. 117, e367–e368 (2023).

    Article  Google Scholar 

  211. Josefsson, A., Damber, J. E. & Welén, K. AR-V7 expression in circulating tumor cells as a potential prognostic marker in metastatic hormone-sensitive prostate cancer. Acta Oncol. 58, 1660–1664 (2019).

    Article  PubMed  Google Scholar 

  212. Kwan, E. M. et al. Prognostic utility of a whole-blood androgen receptor-based gene signature in metastatic castration-resistant prostate cancer. Eur. Urol. Focus. 7, 63–70 (2021).

    Article  PubMed  Google Scholar 

  213. Miyamoto, D. T. et al. Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. Cancer Discov. 2, 995–1003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Tagawa, S. T. et al. Expression of AR-V7 and ARV 567Es in circulating tumor cells correlates with outcomes to taxane therapy in men with metastatic prostate cancer treated in TAXYNERGY. Clin. Cancer Res. 25, 1880–1888 (2019).

    Article  CAS  PubMed  Google Scholar 

  215. Maillet, D. et al. Improved androgen receptor splice variant 7 detection using a highly sensitive assay to predict resistance to abiraterone or enzalutamide in metastatic prostate cancer patients. Eur. Urol. Oncol. 4, 609–617 (2021).

    Article  PubMed  Google Scholar 

  216. Sharp, A. et al. Clinical utility of circulating tumour cell androgen receptor splice variant-7 status in metastatic castration-resistant prostate cancer. Eur. Urol. 76, 676–685 (2019).

    Article  CAS  PubMed  Google Scholar 

  217. Daniel, M. et al. AR gene rearrangement analysis in liquid biopsies reveals heterogeneity in lethal prostate cancer. Endocr. Relat. Cancer 28, 645–655 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.M.A. would like to thank the Clarendon Fund in partnership with the St Edmund Hall Kerr-Muir Scholarship, specifically Mr. James Kerr-Muir, for their generous support. T.A. is funded by Cancer Research UK (RCCPDB-Nov23/100013) and supported by the National Institute for Health and Care Research (NIHR). I.G.M., C.M.E. and A.D.L. would like to acknowledge the John Black Charitable Foundation for support. C.M.E. would like to acknowledge support from Rosetrees. A.D.L. is funded by Cancer Research UK (C57899/A25812). Y.J.L. has received funding from Prostate Cancer UK (MA-CT20-011) to investigate the potential of using circulating tumour cells to predict prostate cancer surgical outcome. A.D.L. and R.J.B. are co-CIs of the TRANSLATE prostate biopsy trial funded by HTA (NIHR131233) and are module leads of the QUANTUM Biobank part funded by the John Black Charitable Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.M.A., T.A., D.T.C., N.M.S.R., S.B., C.S., A.D.L. researched data for the article. All authors contributed substantially to discussion of the content. S.M.A., T.A., D.T.C., N.M.S.R., R.B., S.F., W.Y., J.D., S.S., F.C.H., R.J.B., Y.J.L., I.M., C.M.E,. T.M.M., A.D.L. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Sophia M. Abusamra.

Ethics declarations

Competing interests

S.M.A., C.M.E. and A.D.L. have received support from BioRad through the Celselect grant. T.M.M. is on the advisory boards for Merck, Foundation Medicine, Johnson & Johnson and Pfizer. A.D.L. has received educational support from GlaxoSmithKline, Astellas, Lilly, AstraZeneca and Ipsen. A.D.L. and F.C.H. have paid roles as BJUI Editors. Y.J.L. has received support from ANGLE PLC for his circulating tumour cell study. A.D.L. has received honoraria for reviewing for European Urology and Lancet Oncology. A.D.L. has received consulting fees from AlphaSights. A.D.L. undertakes medicolegal expert witness work related to prostate cancer management in the UK. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abusamra, S.M., Anbarasan, T., Cotton, D.T. et al. Circulating tumour cells as a window into lethality in prostate cancer. Nat Rev Urol (2026). https://doi.org/10.1038/s41585-025-01121-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41585-025-01121-8

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer