Extended Data Fig. 1: Deterministic entanglement-delivery sequences. | Nature

Extended Data Fig. 1: Deterministic entanglement-delivery sequences.

From: Deterministic delivery of remote entanglement on a quantum network

Extended Data Fig. 1

Pulse sequences for each step of the deterministic entanglement delivery protocol are shown. These sequences are also used in the single-photon entanglement-generation experiment. (1) Optical phase stabilization. Bright light is input to measure and stabilize the interferometer (see Methods). The duration is different for the single-photon entanglement experiment. (2) NV-centre state check. By shining in two lasers that are together resonant with transitions from all of the ground states, the NV centre will fluoresce regardless of its ground-state occupation. By counting photons emitted by the NV centre we can verify that both NV centres are in the desired charge state NV and that they are on resonance with the applied lasers. The NV centre is deemed to be on resonance if the number of photons detected during the charge/resonance check surpasses a certain threshold. If no photons are detected, then the NV centre is assumed to be in the NV0 state and a resonant laser is applied to reset it to NV. (3) Heralded single-photon entanglement generation. Entanglement generation proceeds by optically re-pumping the spins to \(\left|\uparrow \right\rangle \) (including passive charge-state stabilization; see Methods) before a microwave (MW) pulse is used to create the desired bright-state population α at each node. A resonant excitation pulse then generates spin–photon entanglement. A subsequent microwave π pulse is used to ensure that the NV-centre state is refocused before the next stage should success be heralded. (4) Dynamical decoupling. Microwave pulses are used to implement dynamical decoupling (see Methods). (5) Single-shot readout. The NV-centre nodes can be read out in arbitrary bases in a single shot. If required, a microwave pulse is applied to rotate the qubit state before a resonant laser is applied. Fluorescence photons from the NV centre are detected if it is in the state \(\left|\uparrow \right\rangle \).

Back to article page