Extended Data Fig. 3: Analysis of NORAD knockdown, NORAD conservation and NORAD–protein interactions. | Nature

Extended Data Fig. 3: Analysis of NORAD knockdown, NORAD conservation and NORAD–protein interactions.

From: The NORAD lncRNA assembles a topoisomerase complex critical for genome stability

Extended Data Fig. 3

a, RT–qPCR measurements of NORAD, RBMX and PUM2 CRISPRi knockdown and NORAD rescue experiments. Quantification relative to GAPDH. Values are mean ± standard deviation (n = 3). b, Differentially expressed genes in RNA-sequencing experiments from NORAD CRISPRi knockdown cells. c, Quantification of chromosome segregation errors in PUM2 wild-type or knockdown cells. One hundred anaphases were scored for each condition. Columns represent the mean of two biological replicate experiments, individual data points are shown. d, Histogram of RBMX-binding-site length in CLIP experiments. e, Multiple sequence alignment of NORAD transcripts, assembled de novo from RNA-sequencing data from 11 mammalian species. Only transcribed sequences are shown. Blue bar indicates RBMX-binding site in human NORAD. Alignment colour scheme: A, orange; C, blue; T, green; G, red. f, CLIP data plotted across NORAD RNA for RBMX, FUBP1, FUBP3 and PUM1. RBMX SM input library is shown. Representative alignments from two biological replicates are shown. g, RBMX RIP in nuclear and cytoplasmic fractions. The percentage of nuclear RIP signal is calculated relative to the total signal observed in nuclear and cytoplasmic fractions. h, Immunofluorescence imaging of RBMX in HCT116 cells. Scale bar, 20 μm. Representative images from three biological replicates are shown. i, Left, RT–qPCR measurements of NORAD RNA levels in nuclear and cytoplasmic extracts under RBMX CRISPRi wild-type or knockdown conditions. The percentage of nuclear NORAD is calculated relative to the total signal observed in nuclear and cytoplasmic fractions. Right, RT–qPCR measurements of RBMX CRISPRi knockdown. Quantification relative to GAPDH. Values are mean ± standard deviation (n = 3).

Back to article page