Extended Data Fig. 6: Object-vector cells are allocentric. | Nature

Extended Data Fig. 6: Object-vector cells are allocentric.

From: Object-vector coding in the medial entorhinal cortex

Extended Data Fig. 6

a, Egocentric reference frame with 0° defined as moving towards the object (white circle) and 180° as moving away from the object. b, Left, colour-coded firing rate map for a representative object-vector cell (peak rate below rate map; mouse and cell ID numbers indicated in vertical text bar). Right, path plot showing, for the same cell as in the rate map, the mouse’s path with overlaid spike locations in black. Left path plot shows spikes on trajectories away from the object; right plot shows spikes on trajectories towards the object. c, Egocentric directional tuning curve for the cell in b. Firing rate is shown as a function of direction of movement relative to the object. Directional bins were 20°. Note that egocentric directional modulation is nearly absent. d, Colour-coded egocentric directional tuning curves (as in c) for all object-vector cells. Each horizontal line corresponds to one cell and shows firing rate, colour-coded as a function of movement direction. Cells are sorted according to the movement direction that had the highest firing rate (light yellow). Note the relative absence of egocentric directional tuning. e, Distribution of egocentric directional modulation across the entire sample of object-vector cells. Egocentric directional modulation was estimated by defining for each cell an egocentric directionality index as the mean vector length of the egocentric tuning curve. Distribution of observed values for object-vector cells is shown in blue, shuffled data in grey. Red line marks the 99th percentile of egocentric directional modulation values for the shuffled data. Only ten object-vector cells had egocentric modulation that exceeded the 99th percentile.

Source data

Back to article page