Fig. 1: Epigenetic mechanisms that maintain cell identities during development and throughout life.
From: Advances in epigenetics link genetics to the environment and disease

Starting from the zygotic genome, stage- and cell-type-specific transcription factors initiate regulatory cascades that induce cell differentiation. Epigenetic components (for example, Polycomb PRC1/2 and Trithorax group proteins) maintain the ‘off’ states of certain genes and the ‘on’ states of others, in a cell-type- and time-specific manner (the bottom panels show three genes, depicted schematically as chromatinized templates, in which transcription is triggered by specific transcription factors and silent or active states are maintained by PRC1/2 or Trithorax proteins, respectively). In doing so, they constitute barriers against accidental reprogramming that maintain developmental and physiological homeostasis. Altered epigenomes can lead to changes in programmed cell differentiation or, when accidental, to disease (bottom right). Germline reprogramming resets the majority (but not all) of the epigenome to achieve reproduction (top right).