Extended Data Fig. 6: Computing with p-bits versus AQC. | Nature

Extended Data Fig. 6: Computing with p-bits versus AQC.

From: Integer factorization using stochastic magnetic tunnel junctions

Extended Data Fig. 6

a, A representation of how an array of six Ising spins in a qubit array can be replicated with an array of p-bits. b, A comparison of both approaches for factoring 161 = 23 × 7. For a system of six Ising spins, there are 64 states. At higher magnetic fields (ΓX = 0.5) both systems are ‘disordered’ and the correct peak is not pronounced. At lower magnetic field (ΓX = 0.1) the correct peaks emerge with a high probability. The states (yixi) have been converted to binary variables si from the bipolar variables mi by defining si = (mi + 1)/2 and the states [y2 y1 x4 x3 x2 x1] are expressed in decimal on the x axis.

Back to article page