Extended Data Fig. 4: Assessment of the stability of the leading barrier.
From: Self-coalescing flows in microfluidics for pulse-shaped delivery of reagents

a, During longitudinal flow, the hydraulic pressure (Phydraulic) increases as the hydraulic resistance (Rhydraulic) increases with the distance travelled by the liquid. The leading barrier is able to preserve the longitudinal flow as long as the pinning forces (PLaplace) can balance the increasing hydraulic pressure and the pressure exerted by the resistance to wetting (Rwetting). In order to investigate this effect, the width (W = 75, 100, 125, 150, 175 or 200 µm) and the height (H = 30, 45 or 90 µm) of the longitudinal flow area and the filling flow rate (Qin = 0.75, 1.5 or 3.0 µl min−1) were varied. During experiments, the maximum distance along which the liquid remains pinned was measured. b, Bright-field (left) and SEM (right) images of devices in which stability-assessment experiments are performed. c, Experimental data support theoretical predictions that: first, a smaller liquid–vapour interface can bear a higher hydraulic pressure; second, the hydraulic radius of the longitudinal flow area needs to be large in order to fill deeper structures or for high filling flow rates; and third, the flow rate challenges the stability of the leading barrier. Data points are means of experiments (n = 8 or more; error bars represent standard error of the mean). Conditions in which the liquid was not pinned at the CPL (longitudinal flow length = 0 mm) or the liquid travelled to the end of the test device (longitudinal flow length = 65 mm) are excluded from the plot.