Extended Data Fig. 6: DGAT1 sequence alignment and conservation analysis of MBOAT enzymes. | Nature

Extended Data Fig. 6: DGAT1 sequence alignment and conservation analysis of MBOAT enzymes.

From: Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme

Extended Data Fig. 6

a, Sequence alignment of DGAT1 enzymes from Homo sapiens, Mus musculus, Bos taurus, Xenopus laevis, Danio rerio, Drosophila melanogaster, Caenorhabditis elegans, Brassica napus, Arachis hypogaea and Chaetomium thermophilum. The colour scheme of amino acids is based on their physicochemical properties. A red triangle denotes the highly conserved histidine residue; black triangles denote highly conserved polar residues in the DGAT1 active centre; black squares denote residues interacting with oleoyl-CoA. The residue numbers for human DGAT1 are indicated at the top. The sequence alignment was performed with T-Coffee45, and the final alignment figure was generated with ESPript 3.044. b, Sequence alignment of MBOAT enzymes that acylate lipids (DGAT1 and ACAT1) or proteins (PORCN and GOAT). Structural information of DGAT1 was incorporated into the alignment, where the regions containing a cluster of conserved residues among MBOAT enzymes were labelled as blue boxes. Note the alignment starts at Arg250 of DGAT1. c, Mapping the conserved blue region shown in b into the DGAT1 structure. The DGAT1 structure is shown as grey cylinders. Blue areas denote the conserved region among MBOATs. Note the acyl-CoA binding tunnel in DGAT1 containing the most conserved region among MBOATs (blue area in b) is highlighted by the dashed circle.

Back to article page