Extended Data Fig. 1: Schematic of photoinduced bond formation in [Au(CN)2−]3. | Nature

Extended Data Fig. 1: Schematic of photoinduced bond formation in [Au(CN)2]3.

From: Mapping the emergence of molecular vibrations mediating bond formation

Extended Data Fig. 1

Upon laser excitation (with energy represented by hv), wavepackets are created in both of the ground and excited states. The excited-state wavepacket in the \({{\rm{T}}}_{1}^{{\prime} }\) state is prepared in the FC region after the ultrafast intersystem crossing from the initially excited singlet state (S1) to a triplet excited state (\({{\rm{T}}}_{1}^{{\prime} }\)). The excited-state wavepacket created in the FC region should move towards the equilibrium structure of \({{\rm{T}}}_{1}^{{\prime} }\), which has two equivalent covalent Au–Au bonds between adjacent gold atoms (right inset, yellow spheres; blue and white spheres denote N and C atoms, respectively). The trajectory of the wavepacket from the FC region to the equilibrium structure of \({{\rm{T}}}_{1}^{{\prime} }\) eventually determines the reaction trajectories of the ultrafast bond formation and hints towards its reaction mechanism. Three candidate reaction mechanisms of bond formation (paths 1, 2 and 3), described in the text, are represented by blue arrows on the nuclear coordinates of RAB versus RBC. In short, path 2 represents a concerted bond formation mechanism and path 1 and path 3 represent asynchronous bond formation mechanism. Path 1 and path 3 are distinct, depending on which bond is formed first between the A–B pair and the B–C pair. The initial motion of the excited-state wavepacket affects the initial motion of the ground-state wavepacket in the S0 state, because impulsive Raman scattering generating the ground-state wavepacket can occur non-impulsively, owing to the finite pulse duration (~100 fs), as described in Supplementary Information. After the initial motions of the wavepackets in the ground and excited states, the wavepackets oscillate around their equilibrium structures.

Back to article page