Extended Data Fig. 9: Inhibition of the associative network through cell-autonomous expression of tetanus toxin light chain in excitatory PCx neurons. | Nature

Extended Data Fig. 9: Inhibition of the associative network through cell-autonomous expression of tetanus toxin light chain in excitatory PCx neurons.

From: Structure and flexibility in cortical representations of odour space

Extended Data Fig. 9

a, Uniform infection of excitatory pyramidal neurons in PCx L2 and L3 with AAV-hSyn-FLEX-TeLC-P2A-NLS-dTom in an Emx1-Cre mouse. b, Left, coronal section through PCx indicating placement of recording electrode. Right, single-unit odour-evoked activity (grand-average of all excitatory responses deemed as significant by auROC analysis) in Emx1-Cre mice expressing TeLC or wild-type controls. Disruption of cortical recurrent excitation enhances odour-evoked excitation, consistent with disruption of feedback inhibition. Grey bar indicates odour presentation (n = 121 cell–odour pairs from two Emx1-Cre mice expressing TeLC; n = 229 cell–odour pairs from four mice). cg, Probability density distributions for the TeLC experiment for signal and ensemble correlations, lifetime and population sparseness, and coefficient of variation (constructed as in Extended Data Fig. 7, here only for the tiled odour set). For lifetime sparseness, 1 = perfectly odour selective, 0 = completely non-selective. For population sparseness, 1 = few neurons responsive, 0 = all neurons equally responsive. Distributions are built using all responsive neurons (significant response to at least one odour by auROC analysis; TeLC L2: 435 neurons across 3 subjects. TeLC L3: 590 neurons across 3 subjects. PCx L2: 427 neurons across 3 subjects. PCx L3: 334 neurons across 3 subjects). Asterisk indicates TeLC is significantly different from PCx L2 or L3: c, L2 P < 10−8; L3 P < 10−198; d, L2 P < 10−46; L3 P < 10−55; e, L2 P < 10−05; L3 P < 10−37; f, L2 P < 10−7 L3 P < 10−8; g, L2: P < 10−10; L3: P < 10−4; two-sided Wilcoxon rank sum test for all comparisons.

Back to article page