Extended Data Fig. 7: Changes in production and growth rate are still consistent with the mathematical model. | Nature

Extended Data Fig. 7: Changes in production and growth rate are still consistent with the mathematical model.

From: Temperature-dependent growth contributes to long-term cold sensing

Extended Data Fig. 7

a, Growth rate at different temperatures estimated from the weight of 50 seedlings at different times following growth in warm (20 °C) and cold (5 °C) conditions. Seedlings were transferred to the cold (blue data points) after 7 days in the warm (data shown as empty circles) or 12 days (filled diamonds). Error bars are s.e.m. of six (8 days, 12 days warm) and three (all other time points) biological replicates. Linear regression was used, with the fitted lines shown together with the slopes corresponding to the growth rates in the different conditions. The difference in growth between warm and cold conditions was approximately sevenfold. The older seedlings grew faster in the cold. Therefore, we used the average slope between the growth rates of 7-day-old and 12-day-old plants in the cold as the cold growth rate. b, Assay of the absolute amount of NTL8 by western blot with the same number of seedlings grown for 8 days in warm (20 °C) conditions and then moved to the cold (5 °C) or kept in the warm (20 °C), showing that the amount of NTL8 per plant increases in the warm and in the cold. Error bars are s.e.m. of 13 biological replicates. For gel source data, see Supplementary Fig. 1. We performed a one-way ANOVA test: P = 8.54 × 10−10, F = 39.42, R2 = 0.6865, with the Tukey HSD post-hoc test for multiple comparisons, which showed that all three pairs (NV-Cold: P = 1.44 × 10−9, NV-Warm: P = 0.0038, Cold-Warm: P = 1.55 × 10−5) are significantly different. c, Model from Fig. 3c (no degradation) reproduced for comparison (α = 1/4, tdiv (cold) = 7 days). d, Same model with a fourfold longer division time (α = 1/4, tdiv (cold) = 28 days), showing accumulation that saturates more slowly. e, Model with decreased production (α = 1/8, tdiv (cold) = 7 days). The timescale of the accumulation does not change, but the saturated levels are decreased, thus increasing the requirement for reduced dilution to explain the experimentally observed accumulation. f, Model with decreased production and a fourfold longer division time (α = 1/8, tdiv (cold) = 28 days), showing that further reduced dilution can recover some of the effect due to decreased production. g, Table of parameters of the model from Fig. 3a–c.

Source data

Back to article page