Extended Data Fig. 8: NEB barriers categorized by their mechanism at the start (x ≈0) and end (x ≈ 2) of the discharge in Li3+xV2O5.
From: A disordered rock salt anode for fast-charging lithium-ion batteries

Panels a–c refer to Li interstitial migration barriers in Li19V13O32 (equivalent to Li3V2O5) and panels d and e refer to Li vacancy migration in Li32V13O32 (equivalent to Li5V2O5). a, Concerted Li migration barriers in Li3V2O5 based on four representative configurations. Five paths from four orderings contribute to super-low NEB barriers ranging from 166 meV to 290 meV. The hopping type is opposing T1-O-T1, which refers to cooperative hops between two T1 (0-TM) tetrahedral sites through an octahedral site. The relative positions between the initial and final tetrahedral sites are opposing versus the central octahedral site. b, Concerted Li migration barriers in Li3V2O5 based on four representative configurations. Seven paths from four orderings contribute to relatively low NEB barriers ranging from 204 meV to 435 meV. The hopping type is corner-sharing T1-O-T1, which refers to cooperative hops between two T1 (0-TM) tetrahedral sites through an octahedral site. The relative positions between the initial and final tetrahedral sites are corner-shared with each other. c, Direct Li migration barriers in Li3V2O5 based on four representative configurations. Four paths from four orderings contribute to high NEB barriers ranging from 634 meV to 1,049 meV. The hopping type is edge-sharing T1-T1, which refers to the direct hops between two nearest edge-sharing T1 (0-TM) tetrahedral sites. d, Vacancy migration barriers in the lowest-energy configuration of Li5V2O5. Direct tetrahedron-to-tetrahedron (t-t) hops with super-low NEB barriers ranging from 181 meV to 310 meV. e, Hops by the t-o-t mechanism refer to the migration from one tetrahedron to the other through an empty face-shared octahedron. The barriers from 703 meV to 1,109 meV are much higher than for the direct t-t mechanism, which makes this mechanism unfavourable.