Extended Data Fig. 4: Comparison of site energies in DRS-Li3V2O5 and pseudo-binary Li3V2O5-Li5V2O5 phase diagram from DFT calculations. | Nature

Extended Data Fig. 4: Comparison of site energies in DRS-Li3V2O5 and pseudo-binary Li3V2O5-Li5V2O5 phase diagram from DFT calculations.

From: A disordered rock salt anode for fast-charging lithium-ion batteries

Extended Data Fig. 4

a, The DFT relative site energies for the 0-TM (T1) and 1-TM (T2) tetrahedral sites in Li3V2O5. An additional Li ion was inserted in all symmetrically distinct sites in the lowest-energy configuration of the 2 × 2 × 2 supercell of Li19V13O32 (which is equivalent to Li3V2O5). The sites are ordered by increasing site energy, with the energy of the most stable site set as the zero reference. The seven lowest-energy sites (green circles) for Li insertion are 0-TM sites. The 1-TM sites (orange circles) have substantially higher energies (>387 meV; Ediff, energy difference) for Li insertion. b, Pseudo-binary Li3V2O5–Li5V2O5 compound phase diagram computed using the PBE+U functional (fu, formula unit). The two endmembers are Li3V2O5 and Li5V2O5. A finer compositional resolution of x = 1/8 increments in Li3+xV2O5 was used in the Li3V2O5–Li4V2O5 region to characterize the changes in Li distribution between the tetrahedral and octahedral sites in this region. In the Li4V2O5–Li5V2O5 region, a lower compositional resolution of x = 1/4 increments in Li3+xV2O5 was used because there are no changes in octahedral Li site occupancy in this region.

Back to article page