Extended Data Fig. 3: Self-assembly of DNA-coated compressed clusters.
From: Colloidal diamond

a, Simulation data (diamond symbols) are obtained using the HOOMD-blue software package; experimental data (circles) are superimposed. A typical simulation run is performed with 216–8,000 particles in a box with periodic boundaries at a volume fraction of 5%. The system is slowly cooled in the vicinity of the aggregation temperature. The final system is analysed to detect and characterize the formation of a potential crystalline phase. The red diamonds represent where the particles crystallize into cubic diamond; the grey diamonds represents where the system condenses into amorphous structures. The attractive DNA interaction is modelled by a Lennard–Jones potential that has its minimum at 1.03b. Using a shorter-range attractive potential between patches moves the region where cubic diamond crystals form to larger size ratios; a longer-range potential does the opposite. The grey line shows the locus of size and compression ratios where all three spherical lobes and the patch on neighbouring particles simultaneously touch in the staggered conformation. The blue circles represent experimental samples that either crystallized in the cubic diamond structure (closed circles; error bars ±0.02 in both directions) or formed random aggregates (open circles; similar uncertainties but with the error bars suppressed). b, A snapshot of the simulated system where the compressed clusters crystallized into cubic diamond crystals (dcc/(2a) = 0.70).