Fig. 5: In vivo effect of CM-NTU treatment on osteoarthritis in mice.
From: A plant-derived natural photosynthetic system for improving cell anabolism

The in vivo effect of CM-NTU treatment on osteoarthritis was investigated in 12-week-old male mice. a, Schematic illustration of establishment of the mouse model of osteoarthritis and the experimental design to evaluate the protective effects of CM-NTUs. DHE, dihydroethidium. b, Safranin-O staining of joint sections at 8 and 12 weeks. c, Medial tibial plateau joint score based on the OARSI scoring system (n = 12, mean ± 95% confidence interval (CI)). d, Immunohistochemical staining (Col II and aggrecan) of joint sections at 12 weeks (top two rows), sagittal views of micro-CT images of the knee joints (third row) and three-dimensional images of the knee joints at 12 weeks (bottom row). e,f, Twelve weeks after the operation, quantitative analysis of total tissue volume (TV) (e) and trabecular pattern factor (Tb.Pf) (f) in subchondral bone (n = 12, mean ± s.d.) in mice. g,h, ATP (g) and NADPH (h) levels in CM-NTU-treated joints at 12 weeks (n = 10, mean ± s.d.). i, ROS fluorescence and immunofluorescence of iNOS in CM-NTU-treated joints at 12 weeks. j, H&E staining of synovial membranes in CM-NTU-treated joints at 12 weeks. k,l, Electronic von Frey (k) and hotplate (l) pain assays in mice at 8 and 12 weeks after the ACLT operation (n = 12, mean ± s.d.). m, Schematic of gait analysis. RF, right front; RH, right hind; LF, left front; LH, left hind. n, Gait assessment scores for maximum contact maximum intensity (right hind limb) in mice 8 and 12 weeks after operation (n = 12, mean ± s.d.). n represents the number of mice per group. P values are shown in graphs and were determined using nonparametric Kruskal–Wallis test (c) or one-way ANOVA (e–h,k,l,n). Scale bar, 50 μm (d,i,j) or 100 μm (b).