Fig. 1: Acute depletion of SET1/COMPASS core subunits reveals rapid turnover of H3K4me3.
From: H3K4me3 regulates RNA polymerase II promoter-proximal pause-release

a, Schematic of the degron systems for the targeted degradation of DPY30 and RBBP5. b,c, Immunoblot analysis of DPY30, RBBP5 and H3K4me1–3 levels at the indicated times after treatment with 500 nM auxin (b) or 500 nM dTAG-13 (c). Washout, degron ligand was washed out for 48 h. d,e, ChIP–seq heat maps and profiles were generated from control and auxin-treated DPY30–mAID cells (d) and dTAG-13-treated RBBP5–FKBP cells (e). For DPY30, RBBP5 and H3K4me3 ChIP–seq, the signal was plotted over the TSSs (TSS ± 5 kb) of protein-coding genes. For H3K4me1 and H3K4me2 ChIP–seq, the signal was plotted over their centre peaks (peak centre ± 5 kb), which are called from steady-state mES cells. Sites were sorted by the ChIP–seq signals at 0 h. f, Immunoblot analysis of KDM5A and KDM5B in DPY30–mAID cells and two independently isolated dKO cell lines. β-Actin was used as the loading control. g, Immunoblot analysis of H3K4me3 and H3K4me1 levels in DPY30–mAID, control and Kdm5a/b-dKO cells. Histone H3 was used as the loading control. h, Immunoblot analysis of DPY30, H3K4me1–3, KDM5A and KDM5B at the indicated times after auxin treatment. Out, degron ligand was washed out for 48 h; P, parental cells. i, H3K4me3 ChIP–seq heat maps in DPY30–mAID Kdm5a/b-dKO cells. The signal was plotted over the TSSs (TSS ± 5 kb) of protein-coding genes. Rows are sorted by decreasing ChIP–seq occupancy in the auxin 0 h cells.