Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Lithium extraction from low-quality brines

Abstract

In the quest for environmental sustainability, the rising demand for electric vehicles and renewable energy technologies has substantially increased the need for efficient lithium extraction methods. Traditional lithium production, relying on geographically concentrated hard-rock ores and salar brines, is associated with considerable energy consumption, greenhouse gas emissions, groundwater depletion and land disturbance, thereby posing notable environmental and supply chain challenges. On the other hand, low-quality brines—such as those found in sedimentary waters, geothermal fluids, oilfield-produced waters, seawater and some salar brines and salt lakes—hold large potential owing to their extensive reserves and widespread geographical distribution. However, extracting lithium from these sources presents technical challenges owing to low lithium concentrations and high magnesium-to-lithium ratios. This Review explores the latest advances and continuing challenges in lithium extraction from these demanding yet promising sources, covering a variety of methods, including precipitation, solvent extraction, sorption, membrane-based separation and electrochemical-based separation. Furthermore, we share perspectives on the future development of lithium extraction technologies, framed within the basic principles of separation processes. The aim is to encourage the development of innovative extraction methods capable of making use of the substantial potential of low-quality brines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of the Li concentration and Mg/Li ratio of the main lithium-containing water bodies worldwide and the experimental results of different lithium extraction methods.
Fig. 2: Lithium extraction methods based on phase creation and addition strategies.
Fig. 3: Membrane-based separation techniques for lithium extraction.
Fig. 4: Lithium extraction methods based on electrochemical approaches.
Fig. 5: Fundamental principles of lithium extraction.

Similar content being viewed by others

References

  1. Wulandari, T., Fawcett, D., Majumder, S. B. & Poinern, G. E. J. Lithium‐based batteries, history, current status, challenges, and future perspectives. Battery Energy 2, 20230030 (2023).

    Google Scholar 

  2. Parlikar, A. et al. High-power electric vehicle charging: low-carbon grid integration pathways with stationary lithium-ion battery systems and renewable generation. Appl. Energy 333, 120541 (2023).

    Google Scholar 

  3. United States Geological Survey (USGS). Mineral commodity summaries 2013–2024. United States Department of the Interior (2013–2024).

  4. International Energy Agency (IEA). Global Critical Minerals Outlook 2024 (2024).

  5. Marjolin, A. Lithium M&A involving assets with resources, H2′21-H1′22. S&P Global https://www.spglobal.com/market-intelligence/en/news-insights/research/lithium-ma-involving-assets-with-resources-h221-to-h122 (2022).

  6. Pehlken, A., Albach, S. & Vogt, T. Is there a resource constraint related to lithium ion batteries in cars? Int. J. Life Cycle Assess. 22, 40–53 (2017).

    Google Scholar 

  7. Bowell, R. J., Lagos, L., de los Hoyos, C. R. & Declercq, J. Classification and characteristics of natural lithium resources. Elements 16, 259–264 (2020).

    ADS  CAS  Google Scholar 

  8. International Energy Agency (IEA). GHG emissions intensity for lithium by resource type and processing route (2021).

  9. Gutierrez, J. S. et al. Climate change and lithium mining influence flamingo abundance in the lithium triangle. Proc. Biol. Sci. 289, 20212388 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Baspineiro, C. F., Franco, J. & Flexer, V. Potential water recovery during lithium mining from high salinity brines. Sci. Total Environ. 720, 137523 (2020).

    CAS  PubMed  Google Scholar 

  11. Heubl, B. Lithium firms depleting vital water supplies in Chile, analysis suggests. Institution of Engineering and Technology https://eandt.theiet.org/2019/08/21/lithium-firms-depleting-vital-water-supplies-chile-analysis-suggests (2019).

  12. Hyhne, J. How much water is used to make the world batteries? danwatch https://danwatch.dk/en/undersoegelse/how-much-water-is-used-to-make-the-worlds-batteries/ (2019).

  13. Pure Energy Minerals. Where did that lithium come from? Pure Energy Minerals https://pureenergyminerals.com/technology-overview/.

  14. Castelvecchi, D. Electric cars and batteries: how will the world produce enough? Nature 596, 336–339 (2021).

    ADS  CAS  PubMed  Google Scholar 

  15. An, J. W. et al. Recovery of lithium from Uyuni salar brine. Hydrometallurgy 117, 64–70 (2012).

    Google Scholar 

  16. Mousavinezhad, S., Nili, S., Fahimi, A. & Vahidi, E. Environmental impact assessment of direct lithium extraction from brine resources: global warming potential, land use, water consumption, and charting sustainable scenarios. Resour. Conserv. Recycl. 205, 107583 (2024).

    CAS  Google Scholar 

  17. Lai, X. R., Xiong, P. & Zhong, H. Extraction of lithium from brines with high Mg/Li ratio by the crystallization-precipitation method. Hydrometallurgy 192, 105252 (2020).

    CAS  Google Scholar 

  18. Liu, X. H., Zhong, M. L., Chen, X. Y. & Zhao, Z. W. Separating lithium and magnesium in brine by aluminum-based materials. Hydrometallurgy 176, 73–77 (2018).

    CAS  Google Scholar 

  19. Zhou, Z. Y. et al. Recovery of lithium from salt-lake brines using solvent extraction with TBP as extractant and FeCl3 as co-extraction agent. Hydrometallurgy 191, 105244 (2020).

    CAS  Google Scholar 

  20. Li, R. J. et al. Selective extraction of lithium ions from salt lake brines using a tributyl phosphate-sodium tetraphenyl boron-phenethyl isobutyrate system. Desalination 555, 116543 (2023).

    CAS  Google Scholar 

  21. Chitrakar, R., Kanoh, H., Miyai, Y. & Ooi, K. A new type of manganese oxide (MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties. Chem. Mater. 12, 3151–3157 (2000).

    CAS  Google Scholar 

  22. Li, Y. Y., Tang, N., Zhang, L. & Li, J. Fabrication of Fe-doped lithium-aluminum-layered hydroxide chloride with enhanced reusable stability inspired by computational theory and its application in lithium extraction. Colloid. Surf. A 658, 130641 (2023).

    CAS  Google Scholar 

  23. Zhang, T. F. et al. Advanced Mg2+/Li+ separation nanofiltration membranes by introducing hydroxypropyltrimethyl ammonium chloride chitosan as a co-monomer. Appl. Surf. Sci. 616, 156434 (2023).

    CAS  Google Scholar 

  24. Meng, Q.-W. et al. Enhancing ion selectivity by tuning solvation abilities of covalent-organic-framework membranes. Proc. Natl Acad. Sci. 121, e2316716121 (2024). This insightful work adjusted the length of ether-oxygen chain groups in covalent organic framework pores to modulate the solvation/coordination capacity of membrane pores and investigated their effect on Li+ and Mg2+ transmembrane selectivity.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, C. et al. Lithium extraction from seawater through pulsed electrochemical intercalation. Joule 4, 1459–1469 (2020). An important study developed pulsed-rest and pulse-rest-reverse pulse-rest electrochemical methods with TiO2-coated FePO4 electrodes for Li extraction from seawater. The resulting selectivity for Li and Na reached 1.8 × 104.

    CAS  Google Scholar 

  26. Shang, X., Liu, Z. Z., Ji, W. X. & Li, H. B. Synthesis of lithium vanadate/reduced graphene oxide with strong coupling for enhanced capacitive extraction of lithium ions. Sep. Purif. Technol. 262, 118294 (2021).

    CAS  Google Scholar 

  27. Munk, L. A. et al. in Rare Earth and Critical Elements in Ore Deposits (eds Verplanck, P. L. & Hitzman, M. W.) 339–365 (Society of Economic Geologists, 2016).

  28. Quintero, C. et al. Development of a co-precipitation process for the preparation of magnesium hydroxide containing lithium carbonate from Li-enriched brines. Hydrometallurgy 198, 105515 (2020).

    CAS  Google Scholar 

  29. Yang, S. X., Zhang, F., Ding, H. P., He, P. & Zhou, H. S. Lithium metal extraction from seawater. Joule 2, 1648–1651 (2018). The first article to propose a membrane-based separation method based on hybrid electrolytes for obtaining lithium metal from seawater by electrolysis.

    Google Scholar 

  30. Zhang, Y. et al. A novel precipitant for separating lithium from magnesium in high Mg/Li ratio brine. Hydrometallurgy 187, 125–133 (2019).

    CAS  Google Scholar 

  31. Wang, H. Y., Zhong, Y., Du, B. Q., Zhao, Y. J. & Wang, M. Recovery of both magnesium and lithium from high Mg/Li ratio brines using a novel process. Hydrometallurgy 175, 102–108 (2018).

    Google Scholar 

  32. Grant, A. Albemarle Should Build their Magnolia DLE Project. Jade Cove Partners https://www.jadecove.com/research/magnolia (2021).

  33. Goldman Sachs Research. Global Metals & Mining: Direct Lithium Extraction – A potential game changing technology. Goldman Sachs https://www.goldmansachs.com/insights/goldman-sachs-research/direct-lithium-extraction (2023).

  34. Finster, M., Clark, C., Schroeder, J. & Martino, L. Geothermal produced fluids: characteristics, treatment technologies, and management options. Renew. Sustain. Energy Rev. 50, 952–966 (2015).

    Google Scholar 

  35. Seip, A. J. Lithium recovery from hydraulic fracturing flowback and produced water using a manganese-based sorbent. Thesis, Univ. Alberta (2020).

  36. Lee, J. & Chung, E. Lithium recovery by solvent extraction from simulated shale gas produced water – impact of organic compounds. Appl. Geochem. 116, 104571 (2020).

    CAS  Google Scholar 

  37. Amakiri, K. T., Ogolo, N. A., Angelis-Dimakis, A. & Albert, O. Physicochemical assessment and treatment of produced water: a case study in Niger delta Nigeria. Pet. Res. 8, 87–95 (2023).

    CAS  Google Scholar 

  38. Khatoon, R. et al. Reviewing advanced treatment of hydrocarbon-contaminated oilfield-produced water with recovery of lithium. Sustainability 15, 16016 (2023). This recent review summarized the pretreatment methods on oilfield water bodies before the extraction of lithium.

    CAS  Google Scholar 

  39. Yousef, R., Qiblawey, H. & El-Naas, M. H. Adsorption as a process for produced water treatment: a review. Processes 8, 1657 (2020).

    CAS  Google Scholar 

  40. Tran, K. T. et al. Recovery of magnesium from Uyuni salar brine as high purity magnesium oxalate. Hydrometallurgy 138, 93–99 (2013). This work used Al-based material to precipitate lithium. The Mg/Li mass ratio in the precipitation was only 0.02.

    Google Scholar 

  41. Liu, D. F., Zhao, Z. W., Xu, W. H., Xiong, J. C. & He, L. H. A closed-loop process for selective lithium recovery from brines via electrochemical and precipitation. Desalination 519, 115302 (2021).

    Google Scholar 

  42. Sun, Q., Chen, H. & Yu, J. G. Investigation on the lithium extraction process with the TBP–FeCl3 solvent system using experimental and DFT methods. Ind. Eng. Chem. Res. 61, 4672–4682 (2022).

    CAS  Google Scholar 

  43. Nightingale, E. Jr Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. C 63, 1381–1387 (1959).

    CAS  Google Scholar 

  44. Oral, I., Tamm, S., Herrmann, C. & Abetz, V. Lithium selectivity of crown ethers: the effect of heteroatoms and cavity size. Sep. Purif. Technol. 294, 121142 (2022). This study researched the ion selectivity for crown ethers by density functional theory, giving a fundamental understanding of crown ethers in lithium extraction.

    CAS  Google Scholar 

  45. Li, H. W. et al. Nanofiltration membrane with crown ether as exclusive Li+ transport channels achieving efficient extraction of lithium from salt lake brine. Chem. Eng. J. 438, 135658 (2022).

    CAS  Google Scholar 

  46. Onishi, K., Nakamura, T., Nishihama, S. & Yoshizuka, K. Synergistic solvent impregnated resin for adsorptive separation of lithium ion. Ind. Eng. Chem. Res. 49, 6554–6558 (2010).

    CAS  Google Scholar 

  47. Su, H. et al. Combining selective extraction and easy stripping of lithium using a ternary synergistic solvent extraction system through regulation of Fe3+ coordination. ACS Sustain. Chem. Eng. 8, 1971–1979 (2020).

    CAS  Google Scholar 

  48. Chen, J., Lin, S. & Yu, J. G. High-selective cyclic adsorption and magnetic recovery performance of magnetic lithium-aluminum layered double hydroxides (MLDHs) in extracting Li+ from ultrahigh Mg/Li ratio brines. Sep. Purif. Technol. 255, 117710 (2021).

    ADS  CAS  Google Scholar 

  49. Zhang, X. S. et al. Porous polyvinyl alcohol/polyacrylamide hydrogels loaded with HTO lithium-ion sieves for highly rapid and efficient Li+ extraction. Desalination 580, 117587 (2024).

    CAS  Google Scholar 

  50. Chitrakar, R., Makita, Y., Ooi, K. & Sonoda, A. Lithium recovery from salt lake brine by H2TiO3. Dalton Trans. 43, 8933–8939 (2014).

    CAS  PubMed  Google Scholar 

  51. Wang, J. T. et al. Embedding sulfonated lithium ion-sieves into polyelectrolyte membrane to construct efficient proton conduction pathways. J. Membr. Sci. 501, 109–122 (2016).

    CAS  Google Scholar 

  52. Cen, Y. et al. Spinel Li4Mn5O12 as 2.0 V insertion materials for Mg-based hybrid ion batteries. ChemElectroChem 7, 1115–1124 (2020).

    CAS  Google Scholar 

  53. Paranthaman, M. P. et al. Recovery of lithium from geothermal brine with lithium–aluminum layered double hydroxide chloride sorbents. Environ. Sci. Technol. 51, 13481–13486 (2017).

    ADS  CAS  PubMed  Google Scholar 

  54. Chen, J. et al. Why is aluminum-based lithium adsorbent ineffective in Li+ extraction from sulfate-type brines. AIChE J. 69, e18176 (2023). This work revealed the mechanism for decreased Li+ adsorption performance by using Li/Al-LDH in extracting lithium from sulfate-type brines.

    CAS  Google Scholar 

  55. Pan, Y. N., Yu, J. G. & Lin, S. A rational strategy for synchronous extraction of lithium and boron from salt lake brines. Chem. Eng. Sci. 276, 118757 (2023).

    CAS  Google Scholar 

  56. Zhang, L. J. et al. Doping engineering of lithium-aluminum layered double hydroxides for high-efficiency lithium extraction from salt lake brines. Nano Res. 17, 1646–1654 (2024).

    ADS  CAS  Google Scholar 

  57. Chitrakar, R., Kanoh, H., Miyai, Y. & Ooi, K. Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4. Ind. Eng. Chem. Res. 40, 2054–2058 (2001).

    CAS  Google Scholar 

  58. Feng, Q., Miyai, Y., Kanoh, H. & Ooi, K. Li+ extraction/insertion with spinel-type lithium manganese oxides: characterization of redox-type and ion-exchange-type sites. Langmuir 8, 1861–1867 (1993).

    Google Scholar 

  59. Liu, S. Q. et al. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries. Matter 4, 1511–1527 (2021).

    CAS  Google Scholar 

  60. Han, H. J., Qu, W., Zhang, Y. L., Lu, H. D. & Zhang, C. L. Enhanced performance of Li+ adsorption for H1.6Mn1.6O4 ion-sieves modified by Co doping and micro array morphology. Ceram. Int. 47, 21777–21784 (2021).

    CAS  Google Scholar 

  61. Zhang, G. T. et al. Improved structural stability and adsorption capacity of adsorbent material Li1.6Mn1.6O4 via facile surface fluorination. Colloid. Surf. A 629, 127465 (2021).

    CAS  Google Scholar 

  62. Li, J., Zhu, Y., Wang, L. & Cao, C. Lithium titanate epitaxial coating on spinel lithium manganese oxide surface for improving the performance of lithium storage capability. ACS Appl. Mater. Interfaces 6, 18742–18750 (2014).

    CAS  PubMed  Google Scholar 

  63. Wei, S. D., Wei, Y., Chen, T., Liu, C. & Tang, Y. Porous lithium ion sieves nanofibers: general synthesis strategy and highly selective recovery of lithium from brine water. Chem. Eng. J. 379, 122407 (2020).

    CAS  Google Scholar 

  64. Zhu, X. L. et al. Study on adsorption extraction process of lithium ion from West Taijinar brine by shaped titanium-based lithium ion sieves. Sep. Purif. Technol. 274, 119099 (2021).

    CAS  Google Scholar 

  65. Zhang, J. et al. Bifunctional modification enhances lithium extraction from brine using a titanium-based ion sieve membrane electrode. ACS Appl. Mater. Interfaces 15, 29586–29596 (2023).

    CAS  PubMed  Google Scholar 

  66. Zhang, P. et al. Insight into the synergistic mechanism of Co and N doped titanium-based adsorbents for liquid lithium extraction. Chem. Eng. J. 480, 147631 (2024). A Co and N co-doping strategy for increasing the adsorption sites and improving the kinetics of LTO-type lithium ion sieves.

    CAS  Google Scholar 

  67. Chung, K. S. et al. Preparation of ion-sieve type (H)[M0.5Mn1.5]O4 (M=Mg, Zn) and their lithium adsorption properties in seawater. Solid State Phenom. 124, 739–742 (2007).

    Google Scholar 

  68. Panico, D. Development and validation of an electrochemical-thermal model for HIGH ENERGY CELLS and experimental validation. Master’s thesis, Politecnico di Torino (2021).

  69. Hu, F. P., Lin, S., Li, P. & Yu, J. G. Quantitative effects of desorption intensity on structural stability and readsorption performance of lithium/aluminum layered double hydroxides in cyclic Li+ extraction from brines with ultrahigh Mg/Li ratio. Ind. Eng. Chem. Res. 59, 13539–13548 (2020).

    CAS  Google Scholar 

  70. Zhang, L. et al. Adsorbents for lithium extraction from salt lake brine with high magnesium/lithium ratio: From structure-performance relationship to industrial applications. Desalination 579, 117480 (2024).

    CAS  Google Scholar 

  71. Wang, S. L. et al. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves. Chem. Eng. J. 332, 160–168 (2018).

    ADS  CAS  Google Scholar 

  72. Chung, K., Lee, J., Kim, W., Kim, S. & Cho, K. Inorganic adsorbent containing polymeric membrane reservoir for the recovery of lithium from seawater. J. Membr. Sci. 325, 503–508 (2008).

    CAS  Google Scholar 

  73. Seip, A. et al. Lithium recovery from hydraulic fracturing flowback and produced water using a selective ion exchange sorbent. Chem. Eng. J. 426, 130713 (2021).

    CAS  Google Scholar 

  74. Jang, Y. J. & Chung, E. Lithium adsorptive properties of H2TiO3 adsorbent from shale gas produced water containing organic compounds. Chemosphere 221, 75–80 (2019).

    ADS  CAS  PubMed  Google Scholar 

  75. Lucrecia López Steinmetz, R. et al. Northern Puna Plateau-scale survey of Li brine-type deposits in the Andes of NW Argentina. J. Geochem. Explor. 190, 26–38 (2018).

    Google Scholar 

  76. Seader, J. D., Henley, E. J. & Roper, D. K. Separation Process Principles (Wiley, 2006).

  77. Cadotte, J., Forester, R., Kim, M., Petersen, R. & Stocker, T. Nanofiltration membranes broaden the use of membrane separation technology. Desalination 70, 77–88 (1988). This important literature points to the mechanism of membrane separation by nanofiltration, which has been used in many applications.

    CAS  Google Scholar 

  78. Wang, X. L., Tsuru, T., Nakao, S. I. & Kimura, S. The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes. J. Membr. Sci. 135, 19–32 (1997).

    CAS  Google Scholar 

  79. Donnan, F. G. Theorie der membrangleichgewichte und membranpotentiale bei vorhandensein von nicht dialysierenden elektrolyten. Ein beitrag zur physikalisch-chemischen physiologie. Z. Elektrochem. Angew. Phys. Chem. 17, 572–581 (1911).

    CAS  Google Scholar 

  80. Peng, Q. et al. Extreme Li-Mg selectivity via precise ion size differentiation of polyamide membrane. Nat. Commun. 15, 2505 (2024). This innovative work regulated the uniform pores for nanofiltration membranes between the hydration diameter of Mg2+ and the Stokes diameter of Li+, resulting an ultrahigh rejection of >99% to Mg2+ and relatively low rejection to Li+.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liang, H. Q., Guo, Y., Peng, X. S. & Chen, B. L. Light-gated cation-selective transport in metal–organic framework membranes. J. Mater. 8, 11399–11405 (2020).

    CAS  Google Scholar 

  82. Guo, Y., Ying, Y., Mao, Y., Peng, X. & Chen, B. Polystyrene sulfonate threaded through a metal–organic framework membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed. 55, 15120–15124 (2016).

    CAS  Google Scholar 

  83. Pang, X. et al. Enhanced monovalent selectivity of cation exchange membranes via adjustable charge density on functional layers. J. Membr. Sci. 595, 117544 (2020).

    CAS  Google Scholar 

  84. Harandi, H. B. & Asadi, A. Transport mechanisms in membranes used for desalination applications. https://doi.org/10.5772/intechopen.1002959 (2023).

  85. Nie, X. Y., Sun, S. Y., Sun, Z., Song, X. F. & Yu, J. G. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination 403, 128–135 (2017).

    CAS  Google Scholar 

  86. Zhang, B. K., Lu, Y. Y., Li, S. N. & Pan, F. Progress of lithium-ion transport mechanism in solid-state electrolytes. J. Electrochem. 27, 269–277 (2021).

    CAS  Google Scholar 

  87. Li, Z. et al. Continuous electrical pumping membrane process for seawater lithium mining. Energy Environ. Sci. 14, 3152–3159 (2021). This important work designed an electrically driven membrane-based separation process by using a solid-state Li+ conductive membrane and enriched lithium concentrations from 0.21 mg l−1 in the Red Sea to 9,013.43 mg l−1.

    CAS  Google Scholar 

  88. Li, Z. X. et al. Green lithium: photoelectrochemical extraction. PhotoniX 4, 23 (2023).

    Google Scholar 

  89. Huang, H. et al. Photoelectrochemical lithium extraction. Nano Energy 115, 108683 (2023).

    CAS  Google Scholar 

  90. Morita, K., Matsumoto, T. & Hoshino, T. Efficient lithium extraction via electrodialysis using acid-processed lithium-adsorbing lithium lanthanum titanate. Desalination 543, 116117 (2022).

    CAS  Google Scholar 

  91. Liu, G., Zhao, Z. W. & He, L. H. Highly selective lithium recovery from high Mg/Li ratio brines. Desalination 474, 114185 (2020).

    CAS  Google Scholar 

  92. Zhang, M. H. et al. Research on Li+/Na+ selectivity of NASICON-type solid-state ion conductors by first-principles calculations. Energy Fuels 37, 10663–10672 (2023).

    CAS  Google Scholar 

  93. Hong, S. & Elimelech, M. Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J. Membr. Sci. 132, 159–181 (1997).

    CAS  Google Scholar 

  94. Li, Y., Wang, M., Xiang, X., Zhao, Y. J. & Peng, Z. J. Separation performance and fouling analyses of nanofiltration membrane for lithium extraction from salt lake brine. J. Water Process Eng. 54, 104009 (2023).

    Google Scholar 

  95. Shao, S. et al. Biofouling in ultrafiltration process for drinking water treatment and its control by chlorinated-water and pure water backwashing. Sci. Total Environ. 644, 306–314 (2018).

    ADS  CAS  PubMed  Google Scholar 

  96. Parsa, N., Moheb, A., Mehrabani-Zeinabad, A. & Masigol, M. A. Recovery of lithium ions from sodium-contaminated lithium bromide solution by using electrodialysis process. Chem. Eng. Res. Des. 98, 81–88 (2015).

    CAS  Google Scholar 

  97. Kim, S., Joo, H., Moon, T., Kim, S. H. & Yoon, J. Rapid and selective lithium recovery from desalination brine using an electrochemical system. Environ. Sci. Process. Impacts. 21, 667–676 (2019).

    CAS  PubMed  Google Scholar 

  98. Luo, J. Y., Cui, W. J., He, P. & Xia, Y. Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010). A pioneering work that extensively analysed the stability of electrode materials in aqueous solution, which guided the selection of materials for an electrochemical-based separation lithium extraction method.

    PubMed  Google Scholar 

  99. Gu, J. et al. Multifunctional AlPO4 reconstructed LiMn2O4 surface for electrochemical lithium extraction from brine. J. Energy Chem. 89, 410–421 (2024).

    CAS  Google Scholar 

  100. Tan, G., Wan, S., Chen, J. J., Yu, H. Q. & Yu, Y. Reduced lattice constant in Al-doped LiMn2O4 nanoparticles for boosted electrochemical lithium extraction. Adv. Mater. 36, e2310657 (2024).

    PubMed  Google Scholar 

  101. He, L. et al. New insights into the application of lithium-ion battery materials: selective extraction of lithium from brines via a rocking-chair lithium-ion battery system. Glob. Chall. 2, 1700079 (2018).

    PubMed  PubMed Central  Google Scholar 

  102. Moreau, P., Guyomard, D., Gaubicher, J. & Boucher, F. Structure and stability of sodium intercalated phases in olivine FePO4. Chem. Mater. 22, 4126–4128 (2010).

    CAS  Google Scholar 

  103. Yan, G. B., Wang, M. Z., Hill, G. T., Zou, S. Q. & Liu, C. Defining the challenges of Li extraction with olivine host: the roles of competitor and spectator ions. Proc. Natl Acad. Sci. 119, e2200751119 (2022). An important work that analysed the suitability of olivine host materials for extraction from more dilute unconventional water sources and identified related challenges.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yan, G. B. et al. The role of solid solutions in iron phosphate-based electrodes for selective electrochemical lithium extraction. Nat. Commun. 13, 4579 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yan, G. B. et al. Identifying critical features of iron phosphate particle for lithium preference. Nat. Commun. 15, 4859 (2024).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhou, J. G., Xiang, S. H., Wang, X. Y., Shin, D. M. & Zhou, H. J. Highly selective lithium extraction from salt lake via carbon-coated lithium vanadium phosphate capacitive electrode. Chem. Eng. J. 482, 148985 (2024).

    CAS  Google Scholar 

  107. Jin, W., Hu, M. Q., Sun, Z., Huang, C. H. & Zhao, H. Simultaneous and precise recovery of lithium and boron from salt lake brine by capacitive deionization with oxygen vacancy-rich CoP/Co3O4-graphene aerogel. Chem. Eng. J. 420, 127661 (2021).

    CAS  Google Scholar 

  108. Kanoh, H., Ooi, K., Miyai, Y. & Katoh, S. Electrochemical recovery of lithium ions in the aqueous phase. Sep. Sci. Technol. 28, 643–651 (1993). The earliest reported work extracted Li+ from geothermal water based on a Pt–λ-MnO2 system by using an electrochemical-based separation method.

    CAS  Google Scholar 

  109. Pasta, M., Battistel, A. & La Mantia, F. Batteries for lithium recovery from brines. Energy Environ. Sci. 5, 9487–9491 (2012).

    CAS  Google Scholar 

  110. Kim, S., Kim, J., Kim, S., Lee, J. & Yoon, J. Electrochemical lithium recovery and organic pollutant removal from industrial wastewater of a battery recycling plant. Environ. Sci. Water Res. Technol. 4, 175–182 (2018).

    CAS  Google Scholar 

  111. Missoni, L. L., Marchini, F., del Pozo, M. & Calvo, E. J. A LiMn2O4-polypyrrole system for the extraction of LiCl from natural brine. J. Electrochem. Soc. 163, A1898–A1902 (2016).

    CAS  Google Scholar 

  112. Bryjak, M., Siekierka, A., Kujawski, J., Smolińska-Kempisty, K. & Kujawski, W. Capacitive deionization for selective extraction of lithium from aqueous solutions. J. Membr. Separ. Technol. 4, 110–115 (2015).

    CAS  Google Scholar 

  113. Kim, S., Lee, J., Kim, S., Kim, S. & Yoon, J. Electrochemical lithium recovery with a LiMn2O4-zinc battery system using zinc as a negative electrode. Energy Technol. 6, 340–344 (2018).

    CAS  Google Scholar 

  114. Kim, J. S. et al. An electrochemical cell for selective lithium capture from seawater. Environ. Sci. Technol. 49, 9415–9422 (2015).

    ADS  CAS  PubMed  Google Scholar 

  115. Zhao, M. Y. et al. Study on lithium extraction from brines based on LiMn2O4/Li1-xMn2O4 by electrochemical method. Electrochim. Acta 252, 350–361 (2017).

    CAS  Google Scholar 

  116. Xu, W. H., He, L. H. & Zhao, Z. W. Lithium extraction from high Mg/Li brine via electrochemical intercalation/de-intercalation system using LiMn2O4 materials. Desalination 503, 114935 (2021).

    CAS  Google Scholar 

  117. International Battery Metals. A better way: IBAT’s DLE technology vs traditional extraction. https://www.ibatterymetals.com/direct-lithium-extraction/vs-traditional-extraction (2022).

  118. Lewkowicz, J. Can lithium be produced with a lower environmental impact? Dialogue Earth https://dialogochino.net/en/extractive-industries/58865-can-lithium-be-produced-with-lower-environmental-impact-latin-america/ (2022).

  119. Battery Industry. Lithium: Minmetals Salt Lake announces direct lithium extraction breakthrough. Battery Industry https://batteryindustry.tech/lithium-minmetals-salt-lake-announces-direct-lithium-extraction-breakthrough/ (2021).

  120. Chen, X. et al. Spatially separated crystallization for selective lithium extraction from saline water. Nat. Water 1, 808–817 (2023). This work showed an innovative approach allowing quickly evaporated water and selectively extracted lithium from brines by using an array of fibre crystallizers.

    Google Scholar 

  121. Iyer, R. K. & Kelly, J. C. Lithium production in North America: a review. Argonne National Laboratory (ANL) (2023).

  122. Garrett, D. E. Handbook of Lithium and Natural Calcium Chloride: Part 1 – Lithium (Academic Press, 2004).

  123. Gao, F., Zheng, M. P., Nie, Z., Liu, J. H. & Song, S. P. Brine lithium resource in the salt lake and advances in its exploitation. Acta Geosci. Sin. 32, 483–492 (2011).

    CAS  Google Scholar 

  124. Gao, C. L., Yu, J. Q., Min, X. Y. & Cheng, A. Y. Hydroclimatic and geothermal controls of lithium brine deposits on the Qinghai-Tibetan Plateau. IOP Conf. Ser. Mater. Sci. Eng. 780, 042062 (2020).

    CAS  Google Scholar 

  125. Su, T., Guo, M., Liu, Z. & Li, Q. Comprehensive review of global lithium resources. J. Salt Lake Res. 27, 104–111 (2019).

    Google Scholar 

  126. Liu, C. L. et al. Characteristics, distribution regularity and formation model of brine-type Li deposits in salt lakes in the world. Acta Geol. Sin. 95, 2009–2029 (2021).

    Google Scholar 

  127. Xiang, W., Liang, S. K., Zhou, Z. Y., Qin, W. & Fei, W. Y. Extraction of lithium from salt lake brine containing borate anion and high concentration of magnesium. Hydrometallurgy 166, 9–15 (2016).

    CAS  Google Scholar 

  128. Lin, S. N., Zhang, T. A., Pan, X. J. & Zhang, J. J. Eco-friendly extraction of magnesium and lithium from salt lake brine for lithium-ion battery. J. Clean. Prod. 327, 129481 (2021).

    CAS  Google Scholar 

  129. Xu, S. S. et al. Extraction of lithium from Chinese salt-lake brines by membranes: design and practice. J. Membr. Sci. 635, 119441 (2021).

    CAS  Google Scholar 

  130. Li, Y. L. et al. Origin of lithium-rich salt lakes on the western Kunlun Mountains of the Tibetan Plateau: evidence from hydrogeochemistry and lithium isotopes. Ore Geol. Rev. 155, 105356 (2023).

    Google Scholar 

  131. Dugamin, E. J. M. et al. Groundwater in sedimentary basins as potential lithium resource: a global prospective study. Sci. Rep. 11, 21091 (2021).

    ADS  PubMed  PubMed Central  Google Scholar 

  132. Zheng, M. P. & Liu, X. F. Hydrochemistry of salt lakes of the Qinghai-Tibet Plateau, China. Aquat. Geochem. 15, 293–320 (2009).

    CAS  Google Scholar 

  133. Zhang, S. X. et al. Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine. Nat. Commun. 15, 238 (2024). Recently, this study combined a hydrophilic porous membrane driven by capillary force for water transport and an ultrathin ion separation membrane to allow Li+ to pass through and block other multivalent ions, which could direct extraction of lithium from salt-lake brines.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hamzaoui, A. H., M’Nif, A., Hammi, H. & Rokbani, R. Contribution to the lithium recovery from brine. Desalination 158, 221–224 (2003).

    CAS  Google Scholar 

  135. Kaplan, D. Process for the extraction of lithium from Dead Sea solutions. Isr. J. Chem. 1, 115–120 (1965).

    Google Scholar 

  136. Kang, W. W., Zhao, H., Cui, Y., Liu, X. G. & Yang, Y. Z. Construction of novel stable surface ion-imprinted graphene aerogels for efficient and selective extraction of lithium ion. Sep. Purif. Technol. 333, 125946 (2024).

    CAS  Google Scholar 

  137. Yang, F. et al. A facile synthesis of hexagonal spinel λ-MnO2 ion-sieves for highly selective Li+ adsorption. Processes 6, 59 (2018).

    Google Scholar 

  138. Li, H. N. et al. Design of photothermal “ion pumps” for achieving energy-efficient, augmented, and durable lithium extraction from seawater. ACS Nano 18, 2434–2445 (2024). This pivotal study designed photothermal ‘ion pumps’, combining a hydrophilic Li+-trapping nanofibrous core and a hydrophobic photothermal shell, leading to substantial enhancement in Li+ trapping rate for extracting lithium.

    CAS  PubMed  Google Scholar 

  139. Liu, L. H. et al. Enhanced lithium-ion adsorption by recyclable lithium manganese oxide-sepiolite composite microsphere from aqueous media: fabrication, structure, and adsorption characteristics. J. Mol. Liq. 380, 121780 (2023).

    CAS  Google Scholar 

  140. Chen, J., Lin, S. & Yu, J. Quantitative effects of Fe3O4 nanoparticle content on Li+ adsorption and magnetic recovery performances of magnetic lithium-aluminum layered double hydroxides in ultrahigh Mg/Li ratio brines. J. Hazard. Mater. 388, 122101 (2020). This work proposed the introduction of magnetic particles, Fe3O4, in the synthesis of adsorbent materials to recover the adsorbent materials by the action of a magnetic field.

    CAS  PubMed  Google Scholar 

  141. Su, H. et al. Recovery of lithium from salt lake brine using a mixed ternary solvent extraction system consisting of TBP, FeCl3 and P507. Hydrometallurgy 197, 105487 (2020).

    CAS  Google Scholar 

  142. Lu, D. et al. Constructing a selective blocked-nanolayer on nanofiltration membrane via surface-charge inversion for promoting Li+ permselectivity over Mg2+. J. Membr. Sci. 635, 119504 (2021).

    CAS  Google Scholar 

  143. Yang, Z. et al. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation. J. Membr. Sci. 620, 118862 (2021).

    CAS  Google Scholar 

  144. Zhang, H. Z., Xu, Z. L., Ding, H. & Tang, Y. J. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+. Desalination 420, 158–166 (2017).

    CAS  Google Scholar 

  145. Ji, Z. Y. et al. Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis. Sep. Purif. Technol. 172, 168–177 (2017).

    CAS  Google Scholar 

  146. Xu, W. H. et al. Highly selective and efficient lithium extraction from brines by constructing a novel multiple-crack-porous LiFePO4/FePO4 electrode. Desalination 546, 116188 (2023).

    CAS  Google Scholar 

  147. Zhang, Z. et al. Cross-linked PVDF-b-PAA composite binder enhanced LiMn2O4/C film based electrode for selective extraction of lithium from brine with a high Mg/Li ratio. Sep. Purif. Technol. 316, 123777 (2023).

    CAS  Google Scholar 

  148. Hu, B. et al. Lithium ion sieve modified three-dimensional graphene electrode for selective extraction of lithium by capacitive deionization. J. Colloid Interface Sci. 612, 392–400 (2022).

    ADS  CAS  PubMed  Google Scholar 

  149. Zhao, X. Y. et al. Lithium extraction from brine in an ionic selective desalination battery. Desalination 481, 114360 (2020).

    CAS  Google Scholar 

  150. Zhao, X. Y., Yang, H. C., Wang, Y. F., Yang, L. B. & Zhu, L. Lithium extraction from brine by an asymmetric hybrid capacitor composed of heterostructured lithium-rich cathode and nano-bismuth anode. Sep. Purif. Technol. 274, 119078 (2021).

    CAS  Google Scholar 

  151. Zhao, A. L., Liu, J. C., Ai, X. P., Yang, H. X. & Cao, Y. L. Highly selective and pollution-free electrochemical extraction of lithium by a polyaniline/LixMn2O4 cell. ChemSusChem 12, 1361–1367 (2019).

    CAS  PubMed  Google Scholar 

  152. Hoshino, T. Development of technology for recovering lithium from seawater by electrodialysis using ionic liquid membrane. Fusion Eng. Des. 88, 2956–2959 (2013).

    CAS  Google Scholar 

  153. Shen, K. X. et al. Flexible LATP composite membrane for lithium extraction from seawater via an electrochemical route. J. Membr. Sci. 671, 121358 (2023). This work used polymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the flexible framework and Li1.3Al0.3Ti1.7(PO4)3 (LATP) as the Li+ conductor to prepare a flexible composite membrane to extract lithium from seawater.

    CAS  Google Scholar 

  154. Abe, M. & Chitrakar, R. Synthetic inorganic ion-exchange materials. XLV. Recovery of lithium from seawater and hydrothermal water by titanium (IV) antimonate cation exchanger. Hydrometallurgy 19, 117–128 (1987).

    CAS  Google Scholar 

  155. Qiu, Z. W. et al. Li4Mn5O12 doped cellulose acetate membrane with low Mn loss and high stability for enhancing lithium extraction from seawater. Desalination 506, 115003 (2021).

    CAS  Google Scholar 

  156. Bao, L. R. et al. Preparation of Mg-doped Li1.6Mn1.6O4 with enhanced Li+ adsorption performance and anti-dissolution properties of Mn. Hydrometallurgy 209, 105772 (2022).

    CAS  Google Scholar 

  157. Qian, F. R. et al. Enhancing the Li+ adsorption and anti-dissolution properties of Li1.6Mn1.6O4 with Fe, Co doped. Hydrometallurgy 193, 105291 (2020).

    CAS  Google Scholar 

  158. Qian, F. R. et al. K-gradient doping to stabilize the spinel structure of Li1.6Mn1.6O4 for Li+ recovery. Dalton Trans. 49, 10939–10948 (2020).

    CAS  PubMed  Google Scholar 

  159. Gao, Y. W. et al. Al and Cr ions co-doped spinel manganese lithium ion-sieve with enhanced Li+ adsorption performance and structural stability. Microporous Mesoporous Mater. 351, 112492 (2023).

    CAS  Google Scholar 

  160. Zhang, C. Y. et al. Lithium extraction from geothermal brine by granulated HTO titanium-based adsorbent with block-co-polymer poly (ethylene-co-vinyl alcohol) (EVAL) as binder. Chem. Eng. J. 467, 143526 (2023).

    ADS  CAS  Google Scholar 

  161. Zhong, J., Lin, S. & Yu, J. G. Effects of excessive lithium deintercalation on Li+ adsorption performance and structural stability of lithium/aluminum layered double hydroxides. J. Colloid Interface Sci. 572, 107–113 (2020).

    ADS  CAS  PubMed  Google Scholar 

  162. Li, Y., Zhao, Y. J., Wang, H. Y. & Wang, M. The application of nanofiltration membrane for recovering lithium from salt lake brine. Desalination 468, 114081 (2019).

    CAS  Google Scholar 

  163. Wu, H. H. et al. Positively-charged PEI/TMC nanofiltration membrane prepared by adding a diamino-silane coupling agent for Li+/Mg2+ separation. J. Membr. Sci. 672, 121468 (2023).

    CAS  Google Scholar 

  164. Li, Q. et al. High performance Li+/Mg2+ separation membrane by grafted short chain amino-rich monomers. J. Membr. Sci. 677, 121634 (2023).

    ADS  CAS  Google Scholar 

  165. Zhang, S. Y. et al. Guanidyl-incorporated nanofiltration membranes toward superior Li+/Mg2+ selectivity under weakly alkaline environment. J. Membr. Sci. 663, 121063 (2022).

    CAS  Google Scholar 

  166. Peng, H. W., Liu, X. F., Su, Y. F., Li, J. P. & Zhao, Q. Advanced lithium extraction membranes derived from tagged-modification of polyamide networks. Angew. Chem. Int. Ed. 62, e202312795 (2023).

    CAS  Google Scholar 

  167. Hou, L. X. et al. Understanding the ion transport behavior across nanofluidic membranes in response to the charge variations. Adv. Funct. Mater. 31, 2009970 (2021).

    CAS  Google Scholar 

  168. Li, Q. et al. Ultrahigh-efficient separation of Mg2+/Li+ using an in-situ reconstructed positively charged nanofiltration membrane under an electric field. J. Membr. Sci. 641, 119880 (2022).

    CAS  Google Scholar 

  169. Luo, G. L. et al. Electrochemical lithium ions pump for lithium recovery from brine by using a surface stability Al2O3-ZrO2 coated LiMn2O4 electrode. J. Energy Chem. 69, 244–252 (2022).

    CAS  Google Scholar 

  170. Luo, G. L. et al. Electrochemical recovery lithium from brine via taming surface wettability of regeneration spent batteries cathode materials. Appl. Energy 337, 120890 (2023).

    CAS  Google Scholar 

  171. Du, X. et al. A novel electroactive λ-MnO2/PPy/PSS core–shell nanorod coated electrode for selective recovery of lithium ions at low concentration. J. Mater. Chem. A 4, 13989–13996 (2016).

    CAS  Google Scholar 

  172. Zhao, X. Y. et al. Efficient lithium extraction from brine using a three-dimensional nanostructured hybrid inorganic-gel framework electrode. ACS Sustain. Chem. Eng. 8, 4827–4837 (2020).

    CAS  Google Scholar 

  173. Zhao, X. Y., Gong, Y. X., Gao, K., Wang, Y. F. & Yang, H. Y. Tailored LMO@COF composite electrodes for direct electrochemical lithium extraction from high-temperature brines. Chem. Eng. J. 474, 145975 (2023).

    CAS  Google Scholar 

  174. Guo, Z. Y. et al. Effect of impurity ions in the electrosorption lithium extraction process: generation and restriction of “selective concentration polarization”. ACS Sustain. Chem. Eng. 8, 11834–11844 (2020).

    CAS  Google Scholar 

  175. Liu, X. H., Chen, X. Y., Zhao, Z. W. & Liang, X. X. Effect of Na+ on Li extraction from brine using LiFePO4/FePO4 electrodes. Hydrometallurgy 146, 24–28 (2014).

    CAS  Google Scholar 

  176. Trocoli, R., Battistel, A. & Mantia, F. L. Selectivity of a lithium-recovery process based on LiFePO4. Chem. Eur. J. 20, 9888–9891 (2014).

    CAS  PubMed  Google Scholar 

  177. Lawagon, C. P. et al. Li1−xNi0.33Co1/3Mn1/3O2/Ag for electrochemical lithium recovery from brine. Chem. Eng. J. 348, 1000–1011 (2018).

    CAS  Google Scholar 

  178. Shang, X. H. et al. LiNi0.5Mn1.5O4-based hybrid capacitive deionization for highly selective adsorption of lithium from brine. Sep. Purif. Technol. 258, 118009 (2021).

    CAS  Google Scholar 

  179. Kim, N., Su, X. & Kim, C. Electrochemical lithium recovery system through the simultaneous lithium enrichment via sustainable redox reaction. Chem. Eng. J. 420, 127715 (2021).

    CAS  Google Scholar 

  180. Han, J. H. et al. Lithium and potassium resources of oilfield brine and development prospects in China. J. Salt Lake Res. 32, 90–100 (2024).

    CAS  Google Scholar 

  181. Grosjean, C., Miranda, P. H., Perrin, M. & Poggi, P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew. Sustain. Energy Rev. 16, 1735–1744 (2012).

    Google Scholar 

  182. Marza, M. et al. Geological controls on lithium production from basinal brines across North America. J. Geochem. Explor. 257, 107383 (2024).

    CAS  Google Scholar 

  183. Engle, M. A. et al. Geochemistry of formation waters from the Wolfcamp and “Cline” shales: insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin, USA. Chem. Geol. 425, 76–92 (2016).

    ADS  CAS  Google Scholar 

  184. Collins, A. G. Geochemistry of liquids, gases, and rocks from the Smackover Formation. United States Department of the Interior (1974).

  185. Edmunds, W. M., Kay, R. L. F. & McCartney, R. A. Origin of saline groundwaters in the Carnmenellis granite (Cornwall, England): natural processes and reaction during Hot Dry Rock reservoir circulation. Chem. Geol. 49, 287–301 (1985).

    ADS  CAS  Google Scholar 

  186. Hitchon, B., Underschultz, J. R. & Bachu, S. Industrial Mineral Potential of Alberta Formation Waters (Alberta Research Council, 1993).

  187. Sanjuan, B. et al. Major geochemical characteristics of geothermal brines from the Upper Rhine Graben granitic basement with constraints on temperature and circulation. Chem. Geol. 428, 27–47 (2016).

    ADS  CAS  Google Scholar 

  188. Stober, I. Hydrochemical properties of deep carbonate aquifers in the SW German Molasse basin. Geotherm. Energy 2, 13 (2014).

    Google Scholar 

  189. Sanjuan, B. et al. Main geochemical characteristics of the deep geothermal brine at Vendenheim (Alsace, France) with constraints on temperature and fluid circulation. World Geothermal Congress (2021).

  190. Setiawan, F. A., Rahayuningsih, E., Petrus, H. T. B. M., Nurpratama, M. I. & Perdana, I. Kinetics of silica precipitation in geothermal brine with seeds addition: minimizing silica scaling in a cold re-injection system. Geotherm. Energy 7, 22 (2019).

    Google Scholar 

  191. Somrani, A., Hamzaoui, A. H. & Pontie, M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO). Desalination 317, 184–192 (2013).

    CAS  Google Scholar 

  192. Regenspurg, S. et al. Geochemical properties of saline geothermal fluids from the in-situ geothermal laboratory Groß Schönebeck (Germany). Geochemistry 70, 3–12 (2010).

    CAS  Google Scholar 

  193. Zhang, R. et al. Extraction of boron from salt lake brine using 2-ethylhexanol. Hydrometallurgy 160, 129–136 (2016).

    CAS  Google Scholar 

  194. Yu, X. C., Wang, C. L., Huang, H., Wang, J. Y. & Yan, K. Lithium and brine geochemistry in the Qianjiang Formation of the Jianghan Basin, central China. Sci. Rep. 13, 4445 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China (2022YFB2502104), the National Natural Science Foundation of China (22239002, 22179059, 92372201), Key R&D Project financed by the Department of Science and Technology of Jiangsu Province (BE2020003) and the Science and Technology Innovation Fund for Emission Peak and Carbon Neutrality of Jiangsu Province (BK20231512, BK20220034).

Author information

Authors and Affiliations

Authors

Contributions

P.H. and S.Y. developed the framework of the manuscript. Y.W., H.P. and S.Y. collected the data. S.Y., P.H., H.P. and Y.W. wrote the manuscript. The project was supervised by P.H. and H.Z.

Corresponding authors

Correspondence to Ping He or Haoshen Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Daniel Alessi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Tables 1–8

This file provides a comprehensive dataset for the figures. These data are related to the operational conditions and efficacy of various lithium extraction methods, as well as the natural states and developmental status of the main lithium-containing water bodies worldwide. Supplementary Table 1: lithium resources. Information on lithium concentrations and Mg/Li ratios in various water bodies globally. These are categorized by reservoir types, such as salars, salt lakes and sedimentary waters, listing details such as the reservoir, country, lithium concentration in grams per litre (g l−1) and Mg/Li ratio. Supplementary Table 2: lithium extraction performance. Compares the feed and recovery solutions used/produced in lithium extraction methods, such as precipitation, solvent extraction, membrane-based separation, sorption and electrochemical-based separation, focusing on Mg/Li ratios and lithium concentrations. Supplementary Table 3: sorption capacities. Lists the sorption capacities of various sorbents used in lithium extraction, categorized by types such as LMO, LTO and Li/Al-LDH, with specific adsorption capacities noted in milligrams per gram (mg g−1). Supplementary Table 4: elemental loss rates of sorbents. Provides information on the dissolution elements and their loss rates in LTO-type and LMO-type sorbents, highlighting the loss rates of elements such as Mn and Ti over initial and subsequent cycles. Supplementary Table 5: membrane selectivity. Details on the selectivity factor of different membranes and the corresponding working conditions (Mg/Li ratio of the feed solution). Supplementary Table 6: extraction capacities of electrode materials. Lithium extraction capacities of various electrode materials, crucial for evaluating the efficiency of different extraction technologies. Supplementary Table 7: development status of various lithium-containing water bodies. Summarizes the lithium reserves of the main lithium-containing water bodies, their current developmental status for lithium extraction and the technologies used. Supplementary Table 8: summary of the main lithium-containing water bodies. Details of the Li+ concentration, Mg/Li ratio and locations of the main lithium-containing water bodies.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Wang, Y., Pan, H. et al. Lithium extraction from low-quality brines. Nature 636, 309–321 (2024). https://doi.org/10.1038/s41586-024-08117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-08117-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing