Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Y. Wang et al. reply

The Original Article was published on 13 August 2025

The Original Article was published on 13 August 2025

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Data availability

All data are from published sources as referenced in the text.

References

  1. Wang, Y. et al. High-resolution maps show that rubber causes substantial deforestation. Nature 623, 340–346 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xiao, C. et al. Latest 30-m map of mature rubber plantations in Mainland Southeast Asia and Yunnan province of China: spatial patterns and geographical characteristics. Porg. Phys. Geogr. Earth Environ. https://doi.org/10.1177/0309133320983746 (2021).

    Article  ADS  Google Scholar 

  3. Hurni, K. & Fox, J. The expansion of tree-based boom crops in mainland Southeast Asia: 2001 to 2014. J. Land Use Sci. 13, 198–219 (2018).

    Article  Google Scholar 

  4. Pendrill, F., Persson, U. & Kastner, T. Deforestation risk embodied in production and consumption of agricultural and forestry commodities 2005-2017. Zenodo https://doi.org/10.5281/zenodo.4250532 (2020).

  5. Hoang, N. T., Potapov, P., Olafsson, P. & Kanemoto, K. Accuracy of rubber-related deforestation maps. Nature https://doi.org/10.1038/s41586-025-08847-w (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sheil, D., Descals, A., Meijaard, E. & Gabeau, D. Rubber planting and deforestation. Nature https://doi.org/10.1038/s41586-025-08848-9 (2025).

    Article  Google Scholar 

  7. Why Natural Rubber Must be Kept in the EU’s Anti-Deforestation Law (Mighty Earth, 2021).

  8. Impact Assessment—Minimising the Risk of Deforestation and Forest Degradation Associated With Products Placed on the EU Market. Part 1/2 (European Commission, 2021); ec.europa.eu/environment/forests/pdf/SWD_2021_326_1_EN_Deforestation%20impact_assessment_part1.pdf.

  9. Grogan, K., Pflugmacher, D., Hostert, P., Mertz, O. & Fensholt, R. Unravelling the link between global rubber price and tropical deforestation in Cambodia. Nat. Plants 5, 47–53 (2019).

    Article  PubMed  Google Scholar 

  10. Goldman, E., Weisse, M. J., Harris, N. & Schenider, M. Estimating the Role of Seven Commodities in Agriculture-Linked Deforestation: Oil Palm, Soy, Cattle, Wood Fiber, Cocoa, Coffee, and Rubber Technical Note (World Resources Institute, 2020).

  11. Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab0d41 (2019).

    Article  Google Scholar 

  12. EU Regulation 2023/1115 on Deforestation-free Products (EU, 2023); eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023R1115.

  13. Persson, M., Kastner, T. & Pendrill, F. Flawed Numbers Underpin Recommendations to Exclude Commodities From EU Deforestation Legislation (Focali Brief, 2021).

  14. Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aacd1c (2018).

    Article  Google Scholar 

  15. Jayathilake, H. M., Jamaludin, J., De Alban, J. D. T., Webb, E. L. & Carrasco, L. R. The conversion of rubber to oil palm and other landcover types in Southeast Asia. Appl. Geog. https://doi.org/10.1016/j.apgeog.2022.102838 (2023).

    Article  Google Scholar 

  16. FAOSTAT. Area Harvested. Natural Rubber in Primary Forms. Rome (FAO, accessed 1 November 2024).

  17. Bourgoin, C. et al. Global Map of Forest Cover 2020—Version 2 (European Commission, Joint Research Centre; 2024); data.europa.eu/89h/e554d6fb-6340-45d5-9309-332337e5bc26.

  18. Mazur, E. et al. Science Based Targets for Land Version 0.3: SBTN Natural Lands Map: Technical Documentation (Science Based Targets Network, 2023).

  19. Lesiv, M. et al. Global forest management data for 2015 at a 100 m resolution. Sci. Data 9, 199 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wohlfart, C., Wegmann, M. & Leimgruber, P. Mapping threatened dry deciduous dipterocarp forest in south-east asia for conservation management. Trop. Conserv. Sci. 7, 597–613 (2014).

    Article  Google Scholar 

  21. Koh, L. P. & Wilcove, D. S. Is oil palm agriculture really destroying tropical biodiversity? Conserv. Lett. 1, 60–64 (2008).

    Article  Google Scholar 

  22. Matos, F. A. R. et al. Secondary forest fragments offer important carbon and biodiversity cobenefits. Glob. Change Biol. 26, 509–522 (2020).

    Article  ADS  Google Scholar 

  23. Chazdon, R. L. et al. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23, 1406–1417 (2009).

    Article  PubMed  Google Scholar 

  24. Rerkasem, K. et al. Consequences of swidden transitions for crop and fallow biodiversity in Southeast Asia. Hum. Ecol. 37, 347–360 (2009).

    Article  Google Scholar 

  25. Hoang, N. T. & Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol. Evol. 5, 845–853 (2021).

    Article  PubMed  Google Scholar 

  26. Global Forest Review. Data and Methods (World Resources Institute, 2024); research.wri.org/gfr/data-methods.

  27. The State of the World’s Forests 2020. Forests, Biodiversity and People (FAO, UNEP, 2024); https://doi.org/10.4060/ca8642en.

  28. Fox, J., Castella, J.-C. & Ziegler, A. D. Swidden, rubber and carbon: can REDD+ work for people and the environment in Montane Mainland Southeast Asia? Glob. Environ. Change 29, 318–326 (2014).

    Article  Google Scholar 

  29. Fu, Y. et al. Smallholder rubber plantation expansion and its impact on local livelihoods, land use and agrobiodiversity, a case study from Daka, Xishuangbanna, southwestern China. Int. J. Sustain. Dev. World Ecol. 16, 22–29 (2009).

    Article  Google Scholar 

  30. Rubber barons: how Vietnamese companies and international financiers are driving a land-grabbing crisis in Cambodia and Laos. Global Witness (13 May 2013); globalwitness.org/en/campaigns/land-deals/rubber-barons/.

  31. Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl Acad. Sci. USA 107, 8650–8655 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zalles, V., Harris, N., Stolle, F. & Hansen, M. C. Forest definitions require a re-think. Commun. Earth Environ. https://doi.org/10.1038/s43247-024-01779-9 (2024).

    Article  Google Scholar 

  33. Chazdon, R. L. et al. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 45, 538–550 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. Azizan, F. A., Astuti, I. S., Young, A. & Abdul Aziz, A. Rubber leaf fall phenomenon linked to increased temperature. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2023.108531 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Natural Environment Research Council (NE/Z503368/1) and the UK Research and Innovation’s Global Challenges Research Fund (UKRI GCRF) through the Trade, Development and the Environment Hub project (project number ES/S008160/1). E.W.-T. was supported Natural Environment Research Council NERC-IIASA Collaborative Fellowship (NE/T009306/1). H.C., Y.S. and J.X. were supported by Key Research Program of Frontier Sciences, CAS, grant no. QYZDY-SSW-SMC014. The Royal Botanic Garden Edinburgh is supported by the Scottish Government’s Rural and Environment Science and Analytical Services Division. We thank C. Ryan for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.W., A.A., J.G., D.Z. and S.H. performed analyses. A.A., P.M.H., Y.W., J.G., C.D.W., D.Z. and S.H. wrote the manuscript, with contributions and feedback from K.H., H.C., E.W.-T., Y.S. and J.X.

Corresponding authors

Correspondence to Yunxia Wang or Antje Ahrends.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hollingsworth, P.M., Zhai, D. et al. Y. Wang et al. reply. Nature 644, E23–E26 (2025). https://doi.org/10.1038/s41586-025-08849-8

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-08849-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing