Extended Data Fig. 2: Fabrication of fiber optic textile-based wFDCF sensor patch. | Nature Biotechnology

Extended Data Fig. 2: Fabrication of fiber optic textile-based wFDCF sensor patch.

From: Wearable materials with embedded synthetic biology sensors for biomolecule detection

Extended Data Fig. 2

a, A cut strip of hydrophilic POF fabric was laser-etched (5 mm) to ablate the POF outer cladding in the POFs sections closest to the reaction zone. b, Examples of prepared wFDCF fabric-elastomer layers and final assembly into a three-well sensor for garment integration. The POFs in these devices were covered with black heat shrink tubing (6 mm). Top elastomer cover features two 5.19 × 1.85 mm curved sample ports instead of three as in the colorimetric prototypes to reduce direct light leakage on top of the POFs that may cause background light detection. c, Schematic of a POF-fabric-elastomer strip for sensing in a single textile layer including two excitation fibers on the sides of an emission fiber. d, Schematic of a double POF-fabric-elastomer strip for sensing with dedicated excitation and emission layers. This design was the one selected for further experiments due to higher hydrophilic fiber content and capacity to immobilize fluid for lyophilization. e, Schematic of a single excitation or emission POF-fabric-elastomer layer overlaid on an applied elastomer pattern for creating the impermeable reaction wells. f, A finalized three-well sensor wFDCF device with heat shrunk POF covers and Luer connectors for interfacing with a portable spectrometer device. g, Top and bottom views of a final three-well sensor wFDCF device. The blackout fabric can be seen through the sample wicking ports and serve to prevent environmental light penetration into reaction wells.

Back to article page