Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering innate immune cells for cancer immunotherapy

Abstract

Innate immune cells, including natural killer cells, macrophages and γδ T cells, are gaining prominence as promising candidates for cancer immunotherapy. Unlike conventional T cells, these cells possess attributes such as inherent antitumor activity, rapid immune responses, favorable safety profiles and the ability to target diverse malignancies without requiring prior antigen sensitization. In this Review, we examine the engineering strategies used to enhance their anticancer potential. We discuss challenges associated with each cell type and summarize insights from preclinical and clinical work. We propose strategies to address existing barriers, providing a perspective on the advancement of innate immune engineering as a powerful modality in anticancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of engineering strategies for NK cells in cancer immunotherapies.
Fig. 2: Schematic overview of engineering strategies for myeloid cells in cancer immunotherapies.
Fig. 3: Schematic overview of generation strategies for CAR macrophages in cancer therapy.
Fig. 4: Schematic overview of engineering strategies for γδ T cells in cancer immunotherapies.
Fig. 5: Common engineering strategies shared among the three major innate immune cell types and between any two cell types based on intrinsic immune function.

Similar content being viewed by others

References

  1. Singh, A. K. & McGuirk, J. P. CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol. 21, e168–e178 (2020).

    Article  PubMed  Google Scholar 

  2. Pan, K. et al. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J. Exp. Clin. Cancer Res. 41, 119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brudno, J. N. & Kochenderfer, J. N. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 127, 3321–3330 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Watanabe, N. & Mamonkin, M. Off-the-shelf chimeric antigen receptor T cells: how do we get there? Cancer J. 27, 176–181 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nat. Immunol. 9, 503–510 (2008).

    Article  PubMed  Google Scholar 

  6. Hadiloo, K., Tahmasebi, S. & Esmaeilzadeh, A. CAR-NKT cell therapy: a new promising paradigm of cancer immunotherapy. Cancer Cell Int. 23, 86 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Peng, L., Sferruzza, G., Yang, L., Zhou, L. & Chen, S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol. Immunol. 10, 1089–1108 (2024).

    Article  Google Scholar 

  8. Stögerer, T. & Stäger, S. Innate immune sensing by cells of the adaptive immune system. Front. Immunol. 11, 1081 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Courtney, A. N., Tian, G. & Metelitsa, L. S. Natural killer T cells and other innate-like T lymphocytes as emerging platforms for allogeneic cancer cell therapy. Blood 141, 869–876 (2023).

    Article  PubMed  Google Scholar 

  10. Jacquelot, N. et al. Innate lymphoid cells and cancer. Nat. Immunol. 23, 371–379 (2022).

    Article  PubMed  Google Scholar 

  11. Huntington, N. D., Vosshenrich, C. A. J. & Di Santo, J. P. Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat. Rev. Immunol. 7, 703–714 (2007).

    Article  PubMed  Google Scholar 

  12. Rebuffet, L. et al. High-dimensional single-cell analysis of human natural killer cell heterogeneity. Nat. Immunol. 25, 1474–1488 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fauriat, C., Long, E. O., Ljunggren, H. G. & Bryceson, Y. T. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood 115, 2167–2176 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wagner, J. A. et al. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. J. Clin. Invest. 127, 4042–4058 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bryceson, Y. T. et al. Molecular mechanisms of natural killer cell activation. J. Innate Immun. 3, 216–226 (2011).

    Article  PubMed  Google Scholar 

  16. Tassi, I., Klesney-Tait, J. & Colonna, M. Dissecting natural killer cell activation pathways through analysis of genetic mutations in human and mouse. Immunol. Rev. 214, 92–105 (2006).

    Article  PubMed  Google Scholar 

  17. Coënon, L. & Villalba, M. From CD16a biology to antibody-dependent cell-mediated cytotoxicity improvement. Front. Immunol. 13, 913215 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sen Santara, S. et al. The NK cell receptor NKp46 recognizes ecto-calreticulin on ER-stressed cells. Nature 616, 348–356 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Campbell, K. S. & Purdy, A. K. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology 132, 315–325 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li, Y. et al. Unlocking the therapeutic potential of the NKG2A–HLA-E immune checkpoint pathway in T cells and NK cells for cancer immunotherapy. J. Immunother. Cancer 12, e009934 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  21. O’Leary, J. G., Goodarzi, M., Drayton, D. L. & von Andrian, U. H. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 7, 507–516 (2006).

    Article  PubMed  Google Scholar 

  22. Schlums, H. et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 42, 443–456 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cooper, M. A. et al. Cytokine-induced memory-like natural killer cells. Proc. Natl Acad. Sci. USA 106, 1915–1919 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Romee, R. et al. Cytokine activation induces human memory-like NK cells. Blood 120, 4751–4760 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Romee, R. et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci. Transl. Med. 8, 357ra123 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shapiro, R. M. et al. Expansion, persistence, and efficacy of donor memory-like NK cells infused for posttransplant relapse. J. Clin. Invest. 132, e154334 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Berrien-Elliott, M. M. et al. Multidimensional analyses of donor memory-like NK cells reveal new associations with response after adoptive immunotherapy for leukemia. Cancer Discov. 10, 1854–1871 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Moscarelli, J., Zahavi, D., Maynard, R. & Weiner, L. M. The next generation of cellular immunotherapy: chimeric antigen receptor-natural killer cells. Transplant Cell Ther. 28, 650–656 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tarannum, M., Romee, R. & Shapiro, R. M. Innovative strategies to improve the clinical application of NK cell-based immunotherapy. Front. Immunol. 13, 859177 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li, T. et al. CAR-NK cells for cancer immunotherapy: recent advances and future directions. Front. Immunol. 15, 1361194 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kong, J. C. et al. Chimeric antigen receptor-natural killer cell therapy: current advancements and strategies to overcome challenges. Front. Immunol. 15, 1384039 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Colamartino, A. B. L. et al. Efficient and robust NK-cell transduction with baboon envelope pseudotyped lentivector. Front. Immunol. 10, 2873 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dong, H. et al. Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute myeloid leukemia. Proc. Natl Acad. Sci. USA 119, e2122379119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tarannum, M. et al. CAR memory-like NK cells targeting the membrane proximal domain of mesothelin demonstrate promising activity in ovarian cancer. Sci. Adv. 10, eadn0881 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Maia, A., Tarannum, M. & Romee, R. Genetic manipulation approaches to enhance the clinical application of NK cell-based immunotherapy. Stem Cells Transl. Med. 13, 230–242 (2024).

    Article  PubMed  Google Scholar 

  36. Zhang, B. et al. Chimeric antigen receptor-based natural killer cell immunotherapy in cancer: from bench to bedside. Cell Death Dis. 15, 50 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Acharya, S. et al. CD28 costimulation augments CAR signaling in NK cells via the LCK/CD3ζ/ZAP70 signaling axis. Cancer Discov. 14, 1879–1900 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li, Y., Hermanson, D. L., Moriarity, B. S. & Kaufman, D. S. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 23, 181–192 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang, W. et al. Breakthrough of solid tumor treatment: CAR-NK immunotherapy. Cell Death Discov. 10, 40 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu, E. et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32, 520–531 (2018).

    Article  PubMed  Google Scholar 

  41. Chu, Y. et al. Anti-CD20 chimeric antigen receptor (CAR) modified expanded natural killer (NK) cells significantly mediate rituximab sensitive and resistant Burkitt lymphoma (BL) regression and improve survival in human BL xenografted NSG mice. Biol. Blood Marrow Transplant. 20, S257 (2014).

    Article  Google Scholar 

  42. Caruso, S. et al. Safe and effective off-the-shelf immunotherapy based on CAR.CD123-NK cells for the treatment of acute myeloid leukaemia. J. Hematol. Oncol. 15, 163 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Troy, E. et al. CD38-CAR human NK cells in combination with ATRA enhance cytotoxicity against CD38-expressing hematologic malignancies. Blood Neoplasia 1, 100032 (2024).

    Article  Google Scholar 

  44. Jacobs, M. T. et al. Memory-like differentiation, tumor-targeting mAbs, and chimeric antigen receptors enhance natural killer cell responses to head and neck cancer. Clin. Cancer Res. 29, 4196–4208 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Poorebrahim, M. et al. TCR-like CARs and TCR-CARs targeting neoepitopes: an emerging potential. Cancer Gene Ther. 28, 581–589 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cichocki, F. et al. Dual antigen-targeted off-the-shelf NK cells show durable response and prevent antigen escape in lymphoma and leukemia. Blood 140, 2451–2462 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rosenberg, S. A. & Dudley, M. E. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol. 21, 233–240 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wittibschlager, V. et al. CAR T-cell persistence correlates with improved outcome in patients with B-cell lymphoma. Int. J. Mol. Sci. 24, 5688 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Miller, J. S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051–3057 (2005).

    Article  PubMed  Google Scholar 

  50. Mantesso, S., Geerts, D., Spanholtz, J. & Kučerová, L. Genetic engineering of natural killer cells for enhanced antitumor function. Front. Immunol. 11, 607131 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Carson, W. E. et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J. Exp. Med. 180, 1395–1403 (1994).

    Article  PubMed  Google Scholar 

  52. Ma, S., Caligiuri, M. A. & Yu, J. Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol. 43, 833–847 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Van den Eynde, A. et al. IL-15-secreting CAR natural killer cells directed toward the pan-cancer target CD70 eliminate both cancer cells and cancer-associated fibroblasts. J. Hematol. Oncol. 17, 8 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Marin, D. et al. Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: a phase 1/2 trial. Nat. Med. 30, 772–784 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shanley, M. et al. Interleukin-21 engineering enhances NK cell activity against glioblastoma via CEBPD. Cancer Cell 42, 1450–1466 (2024).

    Article  PubMed  Google Scholar 

  56. Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 11, 3801 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cao, Y. et al. Immune checkpoint molecules in natural killer cells as potential targets for cancer immunotherapy. Signal Transduct. Target. Ther. 5, 250 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Borst, L., van der Burg, S. H. & van Hall, T. The NKG2A–HLA-E axis as a novel checkpoint in the tumor microenvironment. Clin. Cancer Res. 26, 5549–5556 (2020).

    Article  PubMed  Google Scholar 

  59. Bexte, T. et al. CRISPR/Cas9 editing of NKG2A improves the efficacy of primary CD33-directed chimeric antigen receptor natural killer cells. Nat. Commun. 15, 8439 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bexte, T. et al. CRISPR–Cas9 based gene editing of the immune checkpoint NKG2A enhances NK cell mediated cytotoxicity against multiple myeloma. Oncoimmunology 11, 2081415 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Qin, Y. et al. Developing enhanced immunotherapy using NKG2A knockout human pluripotent stem cell-derived NK cells. Cell Rep. 43, 114867 (2024).

    Article  PubMed  Google Scholar 

  62. Gong, Y. et al. NKG2A genetic deletion promotes human primary NK cell anti-tumor responses better than an anti-NKG2A monoclonal antibody. Mol. Ther. 32, 2711–2727 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kaulfuss, M. et al. The NK cell checkpoint NKG2A maintains expansion capacity of human NK cells. Sci. Rep. 13, 10555 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Slattery, K. et al. TGFβ drives NK cell metabolic dysfunction in human metastatic breast cancer. J. Immunother. Cancer 9, e002044 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wong, J. K. M. et al. TGF-β signalling limits effector function capacity of NK cell anti-tumour immunity in human bladder cancer. EBioMedicine 104, 105176 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shaim, H. et al. Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells. J. Clin. Invest. 131, e142116 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Thangaraj, J. L., Coffey, M., Lopez, E. & Kaufman, D. S. Disruption of TGF-β signaling pathway is required to mediate effective killing of hepatocellular carcinoma by human iPSC-derived NK cells. Cell Stem Cell 31, 1327–1343 (2024).

    Article  PubMed  Google Scholar 

  68. Delconte, R. B. et al. CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat. Immunol. 17, 816–824 (2016).

    Article  PubMed  Google Scholar 

  69. Bernard, P.-L. et al. Targeting CISH enhances natural cytotoxicity receptor signaling and reduces NK cell exhaustion to improve solid tumor immunity. J. Immunother. Cancer 10, e004244 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhu, H. et al. Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity. Cell Stem Cell 27, 224–237 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chen, L. et al. CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1 blockade. Cancer Discov. 8, 1156–1175 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Naik, J. et al. CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Haematologica 104, e100–e103 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gurney, M. et al. CD38 knockout natural killer cells expressing an affinity optimized CD38 chimeric antigen receptor successfully target acute myeloid leukemia with reduced effector cell fratricide. Haematologica 107, 437–445 (2022).

    Article  PubMed  Google Scholar 

  74. Naeimi Kararoudi, M. et al. CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity. Blood 136, 2416–2427 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cichocki, F. et al. NK cells lacking CD38 are resistant to oxidative stress-induced death. Blood 134, 3215 (2019).

    Article  Google Scholar 

  76. Peng, L. et al. In vivo AAV-SB-CRISPR screens of tumor-infiltrating primary NK cells identify genetic checkpoints of CAR-NK therapy. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02282-4 (2024).

    Article  PubMed  Google Scholar 

  77. Jo, D.-H. et al. Simultaneous engineering of natural killer cells for CAR transgenesis and CRISPR–Cas9 knockout using retroviral particles. Mol. Ther. Methods Clin. Dev. 29, 173–184 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lupo, K. B. et al. synNotch-programmed iPSC-derived NK cells usurp TIGIT and CD73 activities for glioblastoma therapy. Nat. Commun. 15, 1909 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chen, Q. et al. Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nat. Immunol. 7, 1299–1308 (2006).

    Article  PubMed  Google Scholar 

  80. Giraldo, N. A. et al. The clinical role of the TME in solid cancer. Br. J. Cancer 120, 45–53 (2019).

    Article  PubMed  Google Scholar 

  81. Yao, X. & Matosevic, S. Chemokine networks modulating natural killer cell trafficking to solid tumors. Cytokine Growth Factor Rev. 59, 36–45 (2021).

    Article  PubMed  Google Scholar 

  82. Ng, Y. Y., Du, Z., Zhang, X., Chng, W. J. & Wang, S. CXCR4 and anti-BCMA CAR co-modified natural killer cells suppress multiple myeloma progression in a xenograft mouse model. Cancer Gene Ther. 29, 475–483 (2022).

    Article  PubMed  Google Scholar 

  83. Sanz-Ortega, L., Andersson, A. & Carlsten, M. Harnessing upregulated E-selectin while enhancing SDF-1α sensing redirects infused NK cells to the AML-perturbed bone marrow. Leukemia 38, 579–589 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Samson, N. & Ablasser, A. The cGAS–STING pathway and cancer. Nat. Cancer 3, 1452–1463 (2022).

    Article  PubMed  Google Scholar 

  85. Knelson, E. H. et al. Activation of tumor-cell STING primes NK-cell therapy. Cancer Immunol. Res. 10, 947–961 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yang, S. et al. Non-pathogenic E. coli displaying decoy-resistant IL18 mutein boosts anti-tumor and CAR NK cell responses. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02418-6 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002).

    Article  PubMed  Google Scholar 

  88. Leung, W. Infusions of allogeneic natural killer cells as cancer therapy. Clin. Cancer Res. 20, 3390–3400 (2014).

    Article  PubMed  Google Scholar 

  89. Cooley, S. et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv. 3, 1970–1980 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tarannum, M. & Romee, R. Cytokine-induced memory-like natural killer cells for cancer immunotherapy. Stem Cell Res. Ther. 12, 592 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Keppel, M. P., Yang, L. & Cooper, M. A. Murine NK cell intrinsic cytokine-induced memory-like responses are maintained following homeostatic proliferation. J. Immunol. 190, 4754–4762 (2013).

    Article  PubMed  Google Scholar 

  92. Shapiro, R. M. et al. First-in-human evaluation of memory-like NK cells with an IL-15 super-agonist and CTLA-4 blockade in advanced head and neck cancer. J. Hematol. Oncol. 18, 17 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Denman, C. J. et al. Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS ONE 7, e30264 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dhakal, B. et al. Interim phase I clinical data of FT576 as monotherapy and in combination with daratumumab in subjects with relapsed/refractory multiple myeloma. Blood 140, 4586–4587 (2022).

    Article  Google Scholar 

  96. Cichocki, F. et al. Quadruple gene-engineered natural killer cells enable multi-antigen targeting for durable antitumor activity against multiple myeloma. Nat. Commun. 13, 7341 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cichocki, F., van der Stegen, S. J. C. & Miller, J. S. Engineered and banked iPSCs for advanced NK- and T-cell immunotherapies. Blood 141, 846–855 (2023).

    Article  PubMed  Google Scholar 

  98. Ghobadi, A. et al. Induced pluripotent stem-cell-derived CD19-directed chimeric antigen receptor natural killer cells in B-cell lymphoma: a phase 1, first-in-human trial. Lancet 405, 127–136 (2025).

    Article  PubMed  Google Scholar 

  99. Li, Y. et al. KIR-based inhibitory CARs overcome CAR-NK cell trogocytosis-mediated fratricide and tumor escape. Nat. Med. 28, 2133–2144 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hinte, L. C. et al. Adipose tissue retains an epigenetic memory of obesity after weight loss. Nature 636, 457–465 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. & Dudley, M. E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer 8, 299–308 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zhang, W. & Huang, X. In vivo gene editing and in situ generation of chimeric antigen receptor cells for next-generation cancer immunotherapy. J. Hematol. Oncol. 17, 110 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Soroudi, S., Jaafari, M. R. & Arabi, L. Lipid nanoparticle (LNP) mediated mRNA delivery in cardiovascular diseases: advances in genome editing and CAR T cell therapy. J. Control. Release 372, 113–140 (2024).

    Article  PubMed  Google Scholar 

  104. Beltran-Garcia, J. et al. Development of novel lipid nanoparticles and virus-like particles for in vivo engineering of immune cells for targeted cancer therapy. Blood 142, 3632 (2023).

    Article  Google Scholar 

  105. Barry, S. T., Gabrilovich, D. I., Sansom, O. J., Campbell, A. D. & Morton, J. P. Therapeutic targeting of tumour myeloid cells. Nat. Rev. Cancer 23, 216–237 (2023).

    Article  PubMed  Google Scholar 

  106. Vitale, I., Manic, G., Coussens, L. M., Kroemer, G. & Galluzzi, L. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30, 36–50 (2019).

    Article  PubMed  Google Scholar 

  107. Christofides, A. et al. The complex role of tumor-infiltrating macrophages. Nat. Immunol. 23, 1148–1156 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Casanova-Acebes, M. et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature 595, 578–584 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Mantovani, A., Allavena, P., Marchesi, F. & Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 21, 799–820 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wang, J., Zhu, N., Su, X., Gao, Y. & Yang, R. Novel tumor-associated macrophage populations and subpopulations by single cell RNA sequencing. Front. Immunol. 14, 1264774 (2023).

    Article  PubMed  Google Scholar 

  112. Chen, M. Y., Zhang, F., Goedegebuure, S. P. & Gillanders, W. E. Dendritic cell subsets and implications for cancer immunotherapy. Front. Immunol. 15, 1393451 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792–809 (2021).

    Article  PubMed  Google Scholar 

  114. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: ‘N1’ versus ‘N2’ TAN. Cancer Cell 16, 183–194 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  115. van Vlerken-Ysla, L., Tyurina, Y. Y., Kagan, V. E. & Gabrilovich, D. I. Functional states of myeloid cells in cancer. Cancer Cell 41, 490–504 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Tugues, S. et al. New insights into IL-12-mediated tumor suppression. Cell Death Differ. 22, 237–246 (2015).

    Article  PubMed  Google Scholar 

  117. Kaczanowska, S. et al. Genetically engineered myeloid cells rebalance the core immune suppression program in metastasis. Cell 184, 2033–2052 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ghasemi, A. et al. Cytokine-armed dendritic cell progenitors for antigen-agnostic cancer immunotherapy. Nat. Cancer 5, 240–261 (2024).

    Article  PubMed  Google Scholar 

  119. Kang, B. et al. Large-scale generation of IL-12 secreting macrophages from human pluripotent stem cells for cancer therapy. Mol. Ther. Methods Clin. Dev. 32, 101204 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M. J. & Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15, 405–414 (2015).

    Article  PubMed  Google Scholar 

  121. De Palma, M. et al. Tumor-targeted interferon-α delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14, 299–311 (2008).

    Article  PubMed  Google Scholar 

  122. Miyashita, A. et al. Immunotherapy against metastatic melanoma with human iPS cell-derived myeloid cell lines producing type I interferons. Cancer Immunol. Res. 4, 248–258 (2016).

    Article  PubMed  Google Scholar 

  123. Sloas, C., Gill, S. & Klichinsky, M. Engineered CAR-macrophages as adoptive immunotherapies for solid tumors. Front. Immunol. 12, 783305 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zhang, L. et al. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J. Hematol. Oncol. 13, 153 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Morrissey, M. A. et al. Chimeric antigen receptors that trigger phagocytosis. eLife 7, e36688 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Biglari, A., Southgate, T. D., Fairbairn, L. J. & Gilham, D. E. Human monocytes expressing a CEA-specific chimeric CD64 receptor specifically target CEA-expressing tumour cells in vitro and in vivo. Gene Ther. 13, 602–610 (2006).

    Article  PubMed  Google Scholar 

  128. Niu, Z. et al. Chimeric antigen receptor-modified macrophages trigger systemic anti-tumour immunity. J. Pathol. 253, 247–257 (2021).

    Article  PubMed  Google Scholar 

  129. Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zhang, W. et al. Chimeric antigen receptor macrophage therapy for breast tumours mediated by targeting the tumour extracellular matrix. Br. J. Cancer 121, 837–845 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Chen, Y. et al. The application of HER2 and CD47 CAR-macrophage in ovarian cancer. J. Transl. Med. 21, 654 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Shen, J. et al. Activating innate immune responses repolarizes hPSC-derived CAR macrophages to improve anti-tumor activity. Cell Stem Cell 31, 1003–1019 (2024).

    Article  PubMed  Google Scholar 

  133. Lei, A. et al. A second-generation M1-polarized CAR macrophage with antitumor efficacy. Nat. Immunol. 25, 102–116 (2024).

    Article  PubMed  Google Scholar 

  134. Yang, Z. et al. Dual mRNA co-delivery for in situ generation of phagocytosis-enhanced CAR macrophages augments hepatocellular carcinoma immunotherapy. J. Control. Release 360, 718–733 (2023).

    Article  PubMed  Google Scholar 

  135. Chen, C. et al. Intracavity generation of glioma stem cell-specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy. Sci. Transl. Med. 14, eabn1128 (2022).

    Article  PubMed  Google Scholar 

  136. Wang, X. et al. Metabolic reprogramming via ACOD1 depletion enhances function of human induced pluripotent stem cell-derived CAR-macrophages in solid tumors. Nat. Commun. 14, 5778 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Wu, J. et al. Targeted glycan degradation potentiates cellular immunotherapy for solid tumors. Proc. Natl Acad. Sci. USA 120, e2300366120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Shah, Z. et al. Human anti-PSCA CAR macrophages possess potent antitumor activity against pancreatic cancer. Cell Stem Cell 31, 803–817 (2024).

    Article  PubMed  Google Scholar 

  139. Rodewald, H. R., Arulanandam, A. R., Koyasu, S. & Reinherz, E. L. The high affinity Fcε receptor γ subunit (Fcε RI γ) facilitates T cell receptor expression and antigen/major histocompatibility complex-driven signaling in the absence of CD3ζ and CD3η. J. Biol. Chem. 266, 15974–15978 (1991).

    Article  PubMed  Google Scholar 

  140. Yudushkin, I. A. & Vale, R. D. Imaging T-cell receptor activation reveals accumulation of tyrosine-phosphorylated CD3ζ in the endosomal compartment. Proc. Natl Acad. Sci. USA 107, 22128–22133 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Haruta, M. et al. TAP-deficient human iPS cell-derived myeloid cell lines as unlimited cell source for dendritic cell-like antigen-presenting cells. Gene Ther. 20, 504–513 (2013).

    Article  PubMed  Google Scholar 

  142. Chang, Y. et al. Engineering chimeric antigen receptor neutrophils from human pluripotent stem cells for targeted cancer immunotherapy. Cell Rep. 40, 111128 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kon, E., Ad-El, N., Hazan-Halevy, I., Stotsky-Oterin, L. & Peer, D. Targeting cancer with mRNA-lipid nanoparticles: key considerations and future prospects. Nat. Rev. Clin. Oncol. 20, 739–754 (2023).

    Article  PubMed  Google Scholar 

  144. Kirschenbaum, D. et al. Time-resolved single-cell transcriptomics defines immune trajectories in glioblastoma. Cell 187, 149–165 (2024).

    Article  PubMed  Google Scholar 

  145. Kloosterman, D. J. & Akkari, L. Macrophages at the interface of the co-evolving cancer ecosystem. Cell 186, 1627–1651 (2023).

    Article  PubMed  Google Scholar 

  146. O’Neill, L. A. J. & Artyomov, M. N. Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol. 19, 273–281 (2019).

    Article  PubMed  Google Scholar 

  147. Chen, Y. J. et al. Targeting IRG1 reverses the immunosuppressive function of tumor-associated macrophages and enhances cancer immunotherapy. Sci. Adv. 9, eadg0654 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Logtenberg, M. E. W., Scheeren, F. A. & Schumacher, T. N. The CD47–SIRPα immune checkpoint. Immunity 52, 742–752 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Wang, X., Zhang, S., Xue, D., Neculai, D. & Zhang, J. Metabolic reprogramming of macrophages in cancer therapy. Trends Endocrinol. Metab. https://doi.org/10.1016/j.tem.2024.08.009 (2024).

    Article  PubMed  Google Scholar 

  150. Zhang, H. et al. Silencing of SIRPα enhances the antitumor efficacy of CAR-M in solid tumors. Cell Mol. Immunol. 21, 1335–1349 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Heras-Murillo, I., Adan-Barrientos, I., Galan, M., Wculek, S. K. & Sancho, D. Dendritic cells as orchestrators of anticancer immunity and immunotherapy. Nat. Rev. Clin. Oncol. 21, 257–277 (2024).

    Article  PubMed  Google Scholar 

  152. Handy, C. E. & Antonarakis, E. S. Sipuleucel-T for the treatment of prostate cancer: novel insights and future directions. Future Oncol. 14, 907–917 (2018).

    Article  PubMed  Google Scholar 

  153. Andreesen, R., Hennemann, B. & Krause, S. W. Adoptive immunotherapy of cancer using monocyte-derived macrophages: rationale, current status, and perspectives. J. Leukoc. Biol. 64, 419–426 (1998).

    Article  PubMed  Google Scholar 

  154. Chernykh, E. R. et al. Safety and therapeutic potential of M2 macrophages in stroke treatment. Cell Transplant. 25, 1461–1471 (2016).

    Article  PubMed  Google Scholar 

  155. Moroni, F. et al. Safety profile of autologous macrophage therapy for liver cirrhosis. Nat. Med. 25, 1560–1565 (2019).

    Article  PubMed  Google Scholar 

  156. Reiss, K. A. et al. A phase 1, first-in-human (FIH) study of the anti-HER2 CAR macrophage CT-0508 in subjects with HER2 overexpressing solid tumors. J. Clin. Oncol. 40, 2533 (2022).

    Article  Google Scholar 

  157. Reiss, K. A. et al. CAR-macrophage therapy for HER2-overexpressing advanced solid tumors: a phase 1 trial. Nat. Med. https://doi.org/10.1038/s41591-025-03495-z (2025).

    Article  PubMed  Google Scholar 

  158. Li, X. et al. A clinical study of autologous chimeric antigen receptor macrophage targeting mesothelin shows safety in ovarian cancer therapy. J. Hematol. Oncol. 17, 116 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Pierini, S. et al. Chimeric antigen receptor macrophages (CAR-M) sensitize HER2+ solid tumors to PD1 blockade in pre-clinical models. Nat. Commun. 16, 706 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Abdou, Y. et al. A phase 1, first-in-human (FIH) study of autologous macrophages engineered to express an anti-HER2 chimeric antigen receptor (CAR) in participants (pts) with HER2-overexpressing solid tumors. J. Clin. Oncol. 41, TPS2666 (2023).

    Article  Google Scholar 

  161. Lovgren, T. et al. Complete and long-lasting clinical responses in immune checkpoint inhibitor-resistant, metastasized melanoma treated with adoptive T cell transfer combined with DC vaccination. Oncoimmunology 9, 1792058 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Guo, Z. et al. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis Oncol. 6, 34 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  163. van Willigen, W. W. et al. Response and survival of metastatic melanoma patients treated with immune checkpoint inhibition for recurrent disease on adjuvant dendritic cell vaccination. Oncoimmunology 9, 1738814 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Rob, L. et al. Safety and efficacy of dendritic cell-based immunotherapy DCVAC/OvCa added to first-line chemotherapy (carboplatin plus paclitaxel) for epithelial ovarian cancer: a phase 2, open-label, multicenter, randomized trial. J. Immunother. Cancer 10, e003190 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Rodriguez-Ruiz, M. E. et al. Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Ann. Oncol. 29, 1312–1319 (2018).

    Article  PubMed  Google Scholar 

  166. Blumenthal, D. et al. Pre-clinical development of CAR monocytes (CAR Mono) for solid tumor immunotherapy. Cancer Res. 82, 582 (2022).

    Article  Google Scholar 

  167. Abdou, Y. et al. A phase 1, first-in-human study of autologous monocytes engineered to express an anti-HER2 chimeric antigen receptor (CAR) in participants with HER2-overexpressing solid tumors. J. Clin. Oncol. 42, TPS2682 (2024).

    Article  Google Scholar 

  168. Xin, W. et al. Structures of human γδ T cell receptor–CD3 complex. Nature 630, 222–229 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Hayday, A., Dechanet-Merville, J., Rossjohn, J. & Silva-Santos, B. Cancer immunotherapy by γδ T cells. Science 386, eabq7248 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Hu, Y. et al. T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct. Target. Ther. 8, 434 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Fournié, J. J. & Bonneville, M. Stimulation of γδ T cells by phosphoantigens. Res. Immunol. 147, 338–347 (1996).

    Article  PubMed  Google Scholar 

  172. Karunakaran, M. M. et al. Butyrophilin-2A1 directly binds germline-encoded regions of the Vγ9Vδ2 TCR and is essential for phosphoantigen sensing. Immunity 52, 487–498 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Willcox, C. R. et al. Butyrophilin-like 3 directly binds a human Vγ4+ T cell receptor using a modality distinct from clonally-restricted antigen. Immunity 51, 813–825 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Willcox, C. R. et al. Phosphoantigen sensing combines TCR-dependent recognition of the BTN3A IgV domain and germline interaction with BTN2A1. Cell Rep. 42, 112321 (2023).

    Article  PubMed  Google Scholar 

  175. Rigau, M. et al. Butyrophilin 2A1 is essential for phosphoantigen reactivity by γδ T cells. Science 367, eaay5516 (2020).

    Article  PubMed  Google Scholar 

  176. Fulford, T. S. et al. Vγ9Vδ2 T cells recognize butyrophilin 2A1 and 3A1 heteromers. Nat. Immunol. 25, 1355–1366 (2024).

    Article  PubMed  Google Scholar 

  177. Yuan, L. et al. Phosphoantigens glue butyrophilin 3A1 and 2A1 to activate Vγ9Vδ2 T cells. Nature 621, 840–848 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Uldrich, A. P. et al. CD1d-lipid antigen recognition by the γδ TCR. Nat. Immunol. 14, 1137–1145 (2013).

    Article  PubMed  Google Scholar 

  179. Roy, S. et al. Molecular analysis of lipid-reactive Vδ1 γδ T cells identified by CD1c tetramers. J. Immunol. 196, 1933–1942 (2016).

    Article  PubMed  Google Scholar 

  180. Reijneveld, J. F. et al. Human γδ T cells recognize CD1b by two distinct mechanisms. Proc. Natl Acad. Sci. USA 117, 22944–22952 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Wegrecki, M. et al. Atypical sideways recognition of CD1a by autoreactive γδ T cell receptors. Nat. Commun. 13, 3872 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Benveniste, P. M. et al. Generation and molecular recognition of melanoma-associated antigen-specific human γδ T cells. Sci. Immunol. 3, eaav4036 (2018).

    Article  PubMed  Google Scholar 

  183. Marlin, R. et al. Sensing of cell stress by human γδ TCR-dependent recognition of annexin A2. Proc. Natl Acad. Sci. USA 114, 3163–3168 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Willcox, C. R. et al. Cytomegalovirus and tumor stress surveillance by binding of a human γδ T cell antigen receptor to endothelial protein C receptor. Nat. Immunol. 13, 872–879 (2012).

    Article  PubMed  Google Scholar 

  185. Hayday, A. C. γδ T cells and the lymphoid stress-surveillance response. Immunity 31, 184–196 (2009).

    Article  PubMed  Google Scholar 

  186. Ravens, S. et al. Human γδ T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat. Immunol. 18, 393–401 (2017).

    Article  PubMed  Google Scholar 

  187. Davey, M. S. et al. Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance. Nat. Commun. 8, 14760 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Davey, M. S. et al. The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9 subsets. Nat. Commun. 9, 1760 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Vantourout, P. & Hayday, A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat. Rev. Immunol. 13, 88–100 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Hayday, A. C. & Vantourout, P. The innate biologies of adaptive antigen receptors. Annu. Rev. Immunol. 38, 487–510 (2020).

    Article  PubMed  Google Scholar 

  191. Fisher, J. P. H. et al. Neuroblastoma killing properties of Vδ2 and Vδ2-negative γδT cells following expansion by artificial antigen-presenting cells. Clin. Cancer Res. 20, 5720–5732 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Fowler, D. et al. Payload-delivering engineered γδ T cells display enhanced cytotoxicity, persistence, and efficacy in preclinical models of osteosarcoma. Sci. Transl. Med. 16, eadg9814 (2024).

    Article  PubMed  Google Scholar 

  193. Angelini, D. F. et al. FcγRIII discriminates between 2 subsets of Vγ9Vδ2 effector cells with different responses and activation pathways. Blood 104, 1801–1807 (2004).

    Article  PubMed  Google Scholar 

  194. Brandes, M., Willimann, K. & Moser, B. Professional antigen-presentation function by human γδ T cells. Science 309, 264–268 (2005).

    Article  PubMed  Google Scholar 

  195. Himoudi, N. et al. Human γδ T lymphocytes are licensed for professional antigen presentation by interaction with opsonized target cells. J. Immunol. 188, 1708–1716 (2012).

    Article  PubMed  Google Scholar 

  196. Hurtado, M. O. et al. Tumor infiltrating lymphocytes expanded from pediatric neuroblastoma display heterogeneity of phenotype and function. PLoS ONE 14, e0216373 (2019).

    Article  Google Scholar 

  197. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Rancan, C. et al. Exhausted intratumoral Vδ2 γδ T cells in human kidney cancer retain effector function. Nat. Immunol. 24, 612–624 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Wu, Y. et al. A local human Vδ1 T cell population is associated with survival in nonsmall-cell lung cancer. Nat. Cancer 3, 696–709 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  201. de Vries, N. L. et al. γδ T cells are effectors of immunotherapy in cancers with HLA class I defects. Nature 613, 743–750 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Almeida, A. R. et al. Delta one T cells for immunotherapy of chronic lymphocytic leukemia: clinical-grade expansion/differentiation and preclinical proof of concept. Clin. Cancer Res. 22, 5795–5804 (2016).

    Article  PubMed  Google Scholar 

  203. Ferry, G. M. et al. A simple and robust single-step method for CAR-Vδ1 γδT cell expansion and transduction for cancer immunotherapy. Front. Immunol. 13, 863155 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  204. López-Cantillo, G., Urueña, C., Camacho, B. A. & Ramírez-Segura, C. CAR-T cell performance: how to improve their persistence? Front. Immunol. 13, 878209 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Saura-Esteller, J. et al. γδT-cell based cancer immunotherapy: past-present-future. Front. Immunol. 13, 915837 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Anderson, N. D. et al. Transcriptional signatures associated with persisting CD19 CAR-T cells in children with leukemia. Nat. Med. 29, 1700–1709 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Deniger, D. C. et al. Activating and propagating polyclonal γδ T cells with broad specificity for malignancies. Clin. Cancer Res. 20, 5708–5719 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Deniger, D. C. et al. Bispecific T-cells expressing polyclonal repertoire of endogenous γδ T-cell receptors and introduced CD19-specific chimeric antigen receptor. Mol. Ther. 21, 638–647 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Fisher, J. et al. Avoidance of on-target off-tumor activation using a co-stimulation-only chimeric antigen receptor. Mol. Ther. 25, 1234–1247 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Fisher, J. et al. Engineering γδT cells limits tonic signaling associated with chimeric antigen receptors. Sci. Signal 12, eaax1872 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Fleischer, L. C. et al. Non-signaling chimeric antigen receptors enhance antigen-directed killing by γδ T cells in contrast to αβ T cells. Mol. Ther. Oncolytics 18, 149–160 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Harrer, D. C. et al. RNA-transfection of γ/δ T cells with a chimeric antigen receptor or an α/β T-cell receptor: a safer alternative to genetically engineered α/β T cells for the immunotherapy of melanoma. BMC Cancer 17, 551 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Ang, W. X. et al. Electroporation of NKG2D RNA CAR improves Vγ9Vδ2 T cell responses against human solid tumor xenografts. Mol. Ther. Oncolytics 17, 421–430 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Capsomidis, A. et al. Chimeric antigen receptor-engineered human γδ T cells: enhanced cytotoxicity with retention of cross presentation. Mol. Ther. 26, 354–365 (2018).

    Article  PubMed  Google Scholar 

  216. Zhang, X. et al. A CD123-specific chimeric antigen receptor augments anti-acute myeloid leukemia activity of Vγ9Vδ2 T cells. Immunotherapy 14, 321–336 (2022).

    Article  PubMed  Google Scholar 

  217. Zhai, X. et al. MUC1-Tn-targeting chimeric antigen receptor-modified Vγ9Vδ2 T cells with enhanced antigen-specific anti-tumor activity. Am. J. Cancer Res. 11, 79–91 (2020).

    Google Scholar 

  218. Zhang, X. et al. Vγ9Vδ2 T cells expressing a BCMA-specific chimeric antigen receptor inhibit multiple myeloma xenograft growth. PLoS ONE 17, e0267475 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Wang, Y. et al. B7H3-targeting chimeric antigen receptor modification enhances antitumor effect of Vγ9Vδ2 T cells in glioblastoma. J. Transl. Med. 21, 672 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Makkouk, A. et al. 119 ADI-002: an IL-15 armored allogeneic ‘off-the-shelf’ Vδ1 γδ CAR T cell therapy for solid tumors targeting glypican-3 (GPC3). J. Immunother. Cancer 9, A128 (2021).

  221. Dong, R., Zhang, Y., Huang, H., Zeng, X. & Xiao, H. A novel strategy to produce CAR-γδ T cells via targeted knockout by CRISPR/Cas9 and targeted knockin by AAV. Blood 142, 6840 (2023).

    Article  Google Scholar 

  222. Themeli, M. et al. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat. Biotechnol. 31, 928–933 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Wallet, M. A. et al. Induced pluripotent stem cell-derived γδ CAR-T cells for cancer immunotherapy. Blood 138, 2771 (2021).

    Article  Google Scholar 

  224. Neelapu, S. S. et al. A phase 1 safety and efficacy study of ADI-001 anti-CD20 CAR-engineered allogeneic γδ T cells in adults with B cell malignancies, in monotherapy and combination with IL-2. Blood 138, 2834 (2021).

    Article  Google Scholar 

  225. Nishimoto, K. P. et al. Allogeneic CD20‐targeted γδ T cells exhibit innate and adaptive antitumor activities in preclinical B‐cell lymphoma models. Clin. Transl. Immunol. 11, e1373 (2022).

    Article  Google Scholar 

  226. Frieling, J. S. et al. γδ-Enriched CAR-T cell therapy for bone metastatic castrate-resistant prostate cancer. Sci. Adv. 9, eadf0108 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Themeli, M. & Sadelain, M. Combinatorial antigen targeting: ideal T-cell sensing and anti-tumor response. Trends Mol. Med. 22, 271–273 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Acker, H. H. V. et al. Interleukin-15 enhances the proliferation, stimulatory phenotype, and antitumor effector functions of human γδ T cells. J. Hematol. Oncol. 9, 101 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Makkouk, A. et al. Off-the-shelf Vδ1 γδ T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 display robust antitumor efficacy against hepatocellular carcinoma. J. Immunother. Cancer 9, e003441 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Hurton, L. V. et al. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc. Natl Acad. Sci. USA 113, E7788–E7797 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Kawai, A. et al. Safety and efficacy of NY-ESO-1 antigen-specific T-cell receptor gene-transduced T lymphocytes in patients with synovial sarcoma: a phase I/II clinical trial. Clin. Cancer Res. 29, 5069–5078 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Thomas, S. et al. Framework engineering to produce dominant T cell receptors with enhanced antigen-specific function. Nat. Commun. 10, 4451 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  234. van der Veken, L. T. et al. αβ T-cell receptor engineered γδ T cells mediate effective antileukemic reactivity. Cancer Res. 66, 3331–3337 (2006).

    Article  PubMed  Google Scholar 

  235. Hiasa, A. et al. Rapid αβ TCR-mediated responses in γδ T cells transduced with cancer-specific TCR genes. Gene Ther. 16, 620–628 (2009).

    Article  PubMed  Google Scholar 

  236. Marcu-Malina, V. et al. Redirecting αβ T cells against cancer cells by transfer of a broadly tumor-reactive γδT-cell receptor. Blood 118, 50–59 (2011).

    Article  PubMed  Google Scholar 

  237. Asbury, S., Yoo, S. M. & Bramson, J. 101 Engineering γδ T cells with the T-cell antigen coupler receptor effectively induces antigen-specific tumor cytotoxicity in vitro and in vivo. J. Immunother. Cancer 8, A63.2–A64 (2020).

  238. van Diest, E. et al. γδ TCR anti-CD3 bispecific molecules (GABs) as novel immunotherapeutic compounds. J. Immunother. Cancer 9, e003850 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Dekkers, J. F. et al. Uncovering the mode of action of engineered T cells in patient cancer organoids. Nat. Biotechnol. 41, 60–69 (2023).

    Article  PubMed  Google Scholar 

  240. van Diest, E. et al. The making of multivalent γδ TCR anti-CD3 bispecific T cell engagers. Front. Immunol. 13, 1052090 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Vydra, J. et al. A phase I trial of allogeneic γδ T lymphocytes from haploidentical donors in patients with refractory or relapsed acute myeloid leukemia. Clin. Lymphoma Myeloma Leuk. 23, e232–e239 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Dimitri, A., Herbst, F. & Fraietta, J. A. Engineering the next-generation of CAR T-cells with CRISPR–Cas9 gene editing. Mol. Cancer 21, 78 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Chiesa, R. et al. Base-edited CAR7 T cells for relapsed T-cell acute lymphoblastic leukemia. N. Engl. J. Med. 389, 899–910 (2023).

    Article  PubMed  Google Scholar 

  244. Mo, F. et al. Engineered off-the-shelf therapeutic T cells resist host immune rejection. Nat. Biotechnol. 39, 56–63 (2021).

    Article  PubMed  Google Scholar 

  245. Gonzalez, H., Hagerling, C. & Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 32, 1267–1284 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John Anderson, Rizwan Romee or Jin Zhang.

Ethics declarations

Competing interests

R.R. is cofounder of InnDura Therapeutics, is a Scientific Advisory Board member of Glycostem Therapeutics and receives funding from Parker Institute for Cancer Immunotherapy and Miltenyi Biotech. J.Z. is a scientific founder of CellOrigin Biotech. J.A. holds founder stock in Autolus, Ltd., and is the inventor on patents related to CAR T cell function.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarannum, M., Ding, X., Barisa, M. et al. Engineering innate immune cells for cancer immunotherapy. Nat Biotechnol 43, 516–533 (2025). https://doi.org/10.1038/s41587-025-02629-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41587-025-02629-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing