Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unlocking gene regulatory networks for crop resilience and sustainable agriculture

Abstract

Understanding the complex mechanisms of gene regulatory networks (GRNs) has emerged as a transformative approach in agricultural research. By deciphering the regulatory mechanisms underlying key traits, GRN studies offer opportunities to enhance crop resilience to environmental challenges, improve yield and ensure sustainable food production. In this Review, we highlight the importance of GRN research in agriculture and explore how cutting-edge biotechnology, interdisciplinary approaches and computational modeling techniques are addressing the challenges in the field. We discuss how integrating diverse datasets at different resolutions empowers us to unravel the complex genetic networks governing crop responses to climate change, pests and diseases. By harnessing the power of GRNs, we have the potential to transform crop improvement strategies, develop stress-tolerant varieties and ensure global food security. We provide insights into the current opportunities and challenges of GRN research in agriculture, bridging the gap between scientific advancements and the pressing need for sustainable agricultural practices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Leveraging GRN analysis for agricultural challenges.
Fig. 2: Integrating multiomics data for GRN inference.
Fig. 3: From biological challenges to GRN inference and genetic engineering applications.

Similar content being viewed by others

References

  1. Long, T. A., Brady, S. M. & Benfey, P. N. Systems approaches to identifying gene regulatory networks in plants. Annu. Rev. Cell Dev. Biol. 24, 81–103 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Karlebach, G. & Shamir, R. Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9, 770–780 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Chai, L. E. et al. A review on the computational approaches for gene regulatory network construction. Comput. Biol. Med. 48, 55–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Delgado, F. M. & Gómez-Vela, F. Computational methods for gene regulatory networks reconstruction and analysis: a review. Artif. Intell. Med. 95, 133–145 (2019).

    Article  PubMed  Google Scholar 

  5. Vijesh, N., Chakrabarti, S. K. & Sreekumar, J. Modeling of gene regulatory networks: a review. JBiSE 6, 223–231 (2013).

    Article  Google Scholar 

  6. Alvarez, J. M., Brooks, M. D., Swift, J. & Coruzzi, G. M. Time-based systems biology approaches to capture and model dynamic gene regulatory networks. Annu. Rev. Plant Biol. 72, 105–131 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bechtold, U. et al. Time-series transcriptomics reveals that AGAMOUS-LIKE22 affects primary metabolism and developmental processes in drought-stressed Arabidopsis. Plant Cell 28, 345–366 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao, H. et al. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc. Natl Acad. Sci. USA 111, 16337–16342 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rong, W. et al. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol. J. 12, 468–479 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Clough, E. & Barrett, T. The Gene Expression Omnibus database. Methods Mol. Biol. 1418, 93–110 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Banf, M. & Rhee, S. Y. Computational inference of gene regulatory networks: approaches, limitations and opportunities. Biochim. Biophys. Acta Gene Regul. Mech. 1860, 41–52 (2017).

    Article  CAS  Google Scholar 

  12. Gupta, O. P. et al. From gene to biomolecular networks: a review of evidences for understanding complex biological function in plants. Curr. Opin. Biotechnol. 74, 66–74 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Araújo, I. S. et al. Stochastic gene expression in Arabidopsis thaliana. Nat. Commun. 8, 2132 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mercatelli, D., Scalambra, L., Triboli, L., Ray, F. & Giorgi, F. M. Gene regulatory network inference resources: a practical overview. Biochim. Biophys. Acta Gene Regul. Mech. 1863, 194430 (2020).

    Article  CAS  Google Scholar 

  15. Kulkarni, S. R. & Vandepoele, K. Inference of plant gene regulatory networks using data-driven methods: a practical overview. Biochim. Biophys. Acta Gene Regul. Mech. 1863, 194447 (2020).

    Article  CAS  Google Scholar 

  16. Hecker, M., Lambeck, S., Toepfer, S., van Someren, E. & Guthke, R. Gene regulatory network inference: data integration in dynamic models—a review. BioSystems 96, 86–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Qian, Y. & Huang, S. C. Improving plant gene regulatory network inference by integrative analysis of multi-omics and high resolution datasets. Curr. Opin. Syst. Biol. 22, 8–15 (2020).

    Article  Google Scholar 

  18. Akers, K. & Murali, T. M. Gene regulatory network inference in single cell biology. Curr. Opin. Syst. Biol. 26, 87–97 (2021).

    Article  CAS  Google Scholar 

  19. Yuan, Q. & Duren, Z. Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data. Nat. Biotechnol. 43, 247–257 (2025).

    Article  PubMed  Google Scholar 

  20. Marku, M. & Pancaldi, V. From time-series transcriptomics to gene regulatory networks: a review on inference methods. PLoS Comput. Biol. 19, e1011254 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao, M., He, W., Tang, J., Zou, Q. & Guo, F. A comprehensive overview and critical evaluation of gene regulatory network inference technologies. Brief. Bioinform. 22, bbab009 (2021).

    Article  PubMed  Google Scholar 

  22. Pušnik, Ž., Mraz, M., Zimic, N. & Moškon, M. Review and assessment of Boolean approaches for inference of gene regulatory networks. Heliyon 8, e10222 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Perrin, B.-E. et al. Gene networks inference using dynamic Bayesian networks. Bioinformatics 19, ii138–ii148 (2003).

    Article  PubMed  Google Scholar 

  24. Mombaerts, L. et al. Dynamical differential expression (DyDE) reveals the period control mechanisms of the Arabidopsis circadian oscillator. PLoS Comput. Biol. 15, e1006674 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lu, J. et al. Causal network inference from gene transcriptional time-series response to glucocorticoids. PLoS Comput. Biol. 17, e1008223 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seeger, M. Gaussian processes for machine learning. Int. J. Neural Syst. 14, 69–106 (2004).

    Article  PubMed  Google Scholar 

  27. Huynh-Thu, V. A. & Geurts, P. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data. Sci. Rep. 8, 3384 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rubiolo, M., Milone, D. H. & Stegmayer, G. Extreme learning machines for reverse engineering of gene regulatory networks from expression time series. Bioinformatics 34, 1253–1260 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Talukder, A., Barham, C., Li, X. & Hu, H. Interpretation of deep learning in genomics and epigenomics. Brief. Bioinform. 22, bbaa17 (2021).

    Article  Google Scholar 

  30. Hoang, N. V., Park, C., Kamran, M. & Lee, J.-Y. Gene regulatory network guided investigations and engineering of storage root development in root crops. Front. Plant Sci. 11, 762 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ikeuchi, M. et al. A gene regulatory network for cellular reprogramming in plant regeneration. Plant Cell Physiol. 59, 765–777 (2018).

    Article  PubMed  Google Scholar 

  32. Pajoro, A. et al. The (r)evolution of gene regulatory networks controlling Arabidopsis plant reproduction: a two-decade history. J. Exp. Bot. 65, 4731–4745 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Tripathi, R. K. & Wilkins, O. Single cell gene regulatory networks in plants: opportunities for enhancing climate change stress resilience. Plant Cell Environ. 44, 2006–2017 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jones, D. M. & Vandepoele, K. Identification and evolution of gene regulatory networks: insights from comparative studies in plants. Curr. Opin. Plant Biol. 54, 42–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Nolan, T. M. et al. Brassinosteroid gene regulatory networks at cellular resolution in the Arabidopsis root. Science 379, eadf4721 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Redekar, N., Pilot, G., Raboy, V., Li, S. & Saghai Maroof, M. A. Inference of transcription regulatory network in low phytic acid soybean seeds. Front. Plant Sci. 8, 2029 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pink, H. et al. Identification of Lactuca sativa transcription factors impacting resistance to Botrytis cinerea through predictive network inference. Preprint at bioRxiv https://doi.org/10.1101/2023.07.19.549542 (2023).

  38. Krouk, G., Lingeman, J., Colon, A. M., Coruzzi, G. & Shasha, D. Gene regulatory networks in plants: learning causality from time and perturbation. Genome Biol. 14, 123 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Muhammad, D., Schmittling, S., Williams, C. & Long, T. A. More than meets the eye: emergent properties of transcription factors networks in Arabidopsis. Biochim. Biophys. Acta Gene Regul. Mech. 1860, 64–74 (2017).

    Article  CAS  Google Scholar 

  40. Varala, K. et al. Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. Proc. Natl Acad. Sci. USA 115, 6494–6499 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou, P. et al. Meta gene regulatory networks in maize highlight functionally relevant regulatory interactions. Plant Cell 32, 1377–1396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Müller, L. M. et al. Differential effects of day/night cues and the circadian clock on the barley transcriptome. Plant Physiol. 183, 765–779 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wilkins, O. et al. Egrins (environmental gene regulatory influence networks) in rice that function in the response to water deficit, high temperature, and agricultural environments. Plant Cell 28, 2365–2384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reynoso, M. A. et al. Gene regulatory networks shape developmental plasticity of root cell types under water extremes in rice. Dev. Cell 57, 1177–1192 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Aalto, A., Viitasaari, L., Ilmonen, P., Mombaerts, L. & Gonçalves, J. Gene regulatory network inference from sparsely sampled noisy data. Nat. Commun. 11, 3493 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ko, D. K. & Brandizzi, F. Network-based approaches for understanding gene regulation and function in plants. Plant J. 104, 302–317 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Subbaroyan, A., Sil, P., Martin, O. C. & Samal, A. Leveraging developmental landscapes for model selection in Boolean gene regulatory networks. Brief. Bioinform. 24, bbad160 (2023).

    Article  PubMed  Google Scholar 

  48. Balcerowicz, M. et al. An early-morning gene network controlled by phytochromes and cryptochromes regulates photomorphogenesis pathways in Arabidopsis. Mol. Plant 14, 983–996 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Henriet, C. et al. Proteomics of developing pea seeds reveals a complex antioxidant network underlying the response to sulfur deficiency and water stress. J. Exp. Bot. 72, 2611–2626 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Depuydt, T., De Rybel, B. & Vandepoele, K. Charting plant gene functions in the multi-omics and single-cell era. Trends Plant Sci. 28, 283–296 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Cavill, R., Jennen, D., Kleinjans, J. & Briedé, J. J. Transcriptomic and metabolomic data integration. Brief. Bioinform. 17, 891–901 (2016).

    Article  PubMed  Google Scholar 

  52. Agamah, F. E. et al. Computational approaches for network-based integrative multi-omics analysis. Front. Mol. Biosci. 9, 967205 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Clark, N. M. et al. Integrated omics networks reveal the temporal signaling events of brassinosteroid response in Arabidopsis. Nat. Commun. 12, 5858 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Montes, C. et al. Integration of multi-omics data reveals interplay between brassinosteroid and target of rapamycin complex signaling in Arabidopsis. New Phytol. 236, 893–910 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu, W. et al. A translatome–transcriptome multi-omics gene regulatory network reveals the complicated functional landscape of maize. Genome Biol. 24, 60 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang, S. et al. PPGR: a comprehensive perennial plant genomes and regulation database. Nucleic Acids Res. 52, D1588–D1596 (2023).

    Article  PubMed Central  Google Scholar 

  57. Kang, H. et al. TCOD: an integrated resource for tropical crops. Nucleic Acids Res. 52, D1651–D1660 (2024).

    Article  PubMed  Google Scholar 

  58. Lan, Y. et al. AtMAD: Arabidopsis thaliana multi-omics association database. Nucleic Acids Res. 49, D1445–D1451 (2020).

    Article  PubMed Central  Google Scholar 

  59. Yang, Z. et al. BnIR: a multi-omics database with various tools for Brassica napus research and breeding. Mol. Plant 16, 775–789 (2023).

    Article  CAS  PubMed  Google Scholar 

  60. Li, C. et al. Single-cell multi-omics in the medicinal plant Catharanthus roseus. Nat. Chem. Biol. 19, 1031–1041 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Alemu, A. et al. Genomic selection in plant breeding: key factors shaping two decades of progress. Mol. Plant 17, 552–578 (2024).

    Article  CAS  PubMed  Google Scholar 

  62. Schrag, T. A. et al. Beyond genomic prediction: combining different types of omics data can improve prediction of hybrid performance in maize. Genetics 208, 1373–1385 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu, P.-Y. et al. Improvement of prediction ability by integrating multi-omic datasets in barley. BMC Genomics 23, 200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hu, X., Xie, W., Wu, C. & Xu, S. A directed learning strategy integrating multiple omic data improves genomic prediction. Plant Biotechnol. J. 17, 2011–2020 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Knoch, D. et al. Multi-omics-based prediction of hybrid performance in canola. Theor. Appl. Genet. 134, 1147–1165 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hu, H. et al. Multi-omics prediction of oat agronomic and seed nutritional traits across environments and in distantly related populations. Theor. Appl. Genet. 134, 4043–4054 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, K. et al. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants. Mol. Plant 16, 279–293 (2023).

    Article  PubMed  Google Scholar 

  68. Bhat, J. A. et al. Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front. Genet. 7, 221 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hasan, N., Choudhary, S., Naaz, N., Sharma, N. & Laskar, R. A. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J. Genet. Eng. Biotechnol. 19, 128 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Qin, P. et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 184, 3542–3558 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Lozano, R. et al. Comparative evolutionary genetics of deleterious load in sorghum and maize. Nat. Plants 7, 17–24 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Sun, Y. et al. Divergence in the ABA gene regulatory network underlies differential growth control. Nat. Plants 8, 549–560 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Lü, P. et al. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat. Plants 4, 784–791 (2018).

    Article  PubMed  Google Scholar 

  74. Hickman, R. et al. Architecture and dynamics of the jasmonic acid gene regulatory network. Plant Cell 29, 2086–2105 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jamali, S. H., Cockram, J. & Hickey, L. T. Is plant variety registration keeping pace with speed breeding techniques? Euphytica 216, 131 (2020).

    Article  Google Scholar 

  76. Wada, N., Ueta, R., Osakabe, Y. & Osakabe, K. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biol. 20, 234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, B., Sun, C., Li, J. & Gao, C. Targeted genome-modification tools and their advanced applications in crop breeding. Nat. Rev. Genet. 25, 603–622 (2024).

    Article  CAS  PubMed  Google Scholar 

  78. Mishra, R., Joshi, R. K. & Zhao, K. Base editing in crops: current advances, limitations and future implications. Plant Biotechnol. J. 18, 20–31 (2020).

    Article  PubMed  Google Scholar 

  79. Molla, K. A., Sretenovic, S., Bansal, K. C. & Qi, Y. Precise plant genome editing using base editors and prime editors. Nat. Plants 7, 1166–1187 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Li, J. et al. Plant base editing and prime editing: the current status and future perspectives. J. Integr. Plant Biol. 65, 444–467 (2023).

    Article  PubMed  Google Scholar 

  81. Pan, C., Sretenovic, S. & Qi, Y. CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants. Curr. Opin. Plant Biol. 60, 101980 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Jogam, P. et al. A review on CRISPR/Cas-based epigenetic regulation in plants. Int. J. Biol. Macromol. 219, 1261–1271 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, Y. et al. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nat. Commun. 12, 1944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kavuri, N. R., Ramasamy, M., Qi, Y. & Mandadi, K. Applications of CRISPR/Cas13-based RNA editing in plants. Cells 11, 2665 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wada, N., Osakabe, K. & Osakabe, Y. Expanding the plant genome editing toolbox with recently developed CRISPR–Cas systems. Plant Physiol. 188, 1825–1837 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cassan, O. et al. A gene regulatory network in Arabidopsis roots reveals features and regulators of the plant response to elevated CO2. New Phytol. 239, 992–1004 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Yuan, Y. et al. Decoding the gene regulatory network of endosperm differentiation in maize. Nat. Commun. 15, 34 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, Y. et al. Rice co-expression network analysis identifies gene modules associated with agronomic traits. Plant Physiol. 190, 1526–1542 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, C. et al. A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice. Plant Biotechnol. J. 18, 313–315 (2020).

    Article  PubMed  Google Scholar 

  90. Peng, A. et al. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 15, 1509–1519 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kumar, J. et al. Efficient protein tagging and cis-regulatory element engineering via precise and directional oligonucleotide-based targeted insertion in plants. Plant Cell 35, 2722–2735 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dong, O. X. & Ronald, P. C. Targeted DNA insertion in plants. Proc. Natl Acad. Sci. USA 118, e2004834117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dong, O. X. et al. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR–Cas9. Nat. Commun. 11, 1178 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Claeys, H. et al. Coordinated gene upregulation in maize through CRISPR/Cas-mediated enhancer insertion. Plant Biotechnol. J. 22, 16–18 (2024).

    Article  CAS  PubMed  Google Scholar 

  95. Sun, C. et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nat. Biotechnol. 42, 316–327 (2024).

    Article  CAS  PubMed  Google Scholar 

  96. Vazquez-Vilar, M., Selma, S. & Orzaez, D. The design of synthetic gene circuits in plants: new components, old challenges. J. Exp. Bot. 74, 3791–3805 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Brophy, J. A. N. et al. Synthetic genetic circuits as a means of reprogramming plant roots. Science 377, 747–751 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Khan, M. A. et al. CRISPRi-based circuits to control gene expression in plants. Nat. Biotechnol. 43, 416–430 (2025).

    Article  CAS  PubMed  Google Scholar 

  99. Staub, J. E., Serquen, F. C. & Gupta, M. Genetic markers, map construction, and their application in plant breeding. HortScience 31, 729–741 (1996).

    Article  CAS  Google Scholar 

  100. Pérez-de-Castro, A. M. et al. Application of genomic tools in plant breeding. Curr. Genomics 13, 179–195 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chung, Y. S., Choi, S. C., Jun, T.-H. & Kim, C. Genotyping-by-sequencing: a promising tool for plant genetics research and breeding. Hortic. Environ. Biotechnol. 58, 425–431 (2017).

    Article  CAS  Google Scholar 

  102. Zhang, H. et al. QTG-seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples. Mol. Plant 12, 426–437 (2019).

    Article  PubMed  Google Scholar 

  103. Jamil, I. N. et al. Systematic multi-omics integration (MOI) approach in plant systems biology. Front. Plant Sci. 11, 944 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Mounet, F. et al. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiol. 149, 1505–1528 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Larriba, E., Nicolás-Albujer, M., Sánchez-García, A. B. & Pérez-Pérez, J. M. Identification of transcriptional networks involved in de novo organ formation in tomato hypocotyl explants. Int. J. Mol. Sci. 23, 16112 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sacco, A., Raiola, A., Calafiore, R., Barone, A. & Rigano, M. M. New insights in the control of antioxidants accumulation in tomato by transcriptomic analyses of genotypes exhibiting contrasting levels of fruit metabolites. BMC Genomics 20, 43 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hale, B. et al. Gene regulatory network inference in soybean upon infection by Phytophthora sojae. PLoS ONE 18, e0287590 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pradeepkumara, N. et al. Fruit transcriptional profiling of the contrasting genotypes for shelf life reveals the key candidate genes and molecular pathways regulating post-harvest biology in cucumber. Genomics 114, 110273 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Jaiswal, S. et al. Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and development of web-genomic resources. Sci. Rep. 8, 3382 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Yi, F., Huo, M., Li, J. & Yu, J. Time-series transcriptomics reveals a drought-responsive temporal network and crosstalk between drought stress and the circadian clock in foxtail millet. Plant J. 110, 1213–1228 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Kaur, B. et al. Omics for the improvement of abiotic, biotic, and agronomic traits in major cereal crops: applications, challenges, and prospects. Plants 10, 1989 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  112. De Clercq, I. et al. Integrative inference of transcriptional networks in Arabidopsis yields novel ROS signalling regulators. Nat. Plants 7, 500–513 (2021).

    Article  PubMed  Google Scholar 

  113. Chen, Y. et al. A wheat integrative regulatory network from large-scale complementary functional datasets enables trait-associated gene discovery for crop improvement. Mol. Plant 16, 393–414 (2023).

    Article  CAS  PubMed  Google Scholar 

  114. Wei, X. et al. Genomic investigation of 18,421 lines reveals the genetic architecture of rice. Science 385, eadm8762 (2024).

    Article  CAS  PubMed  Google Scholar 

  115. Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Shrivastava, P. & Kumar, R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22, 123–131 (2015).

    CAS  Google Scholar 

  117. Ruz, G. A., Timmermann, T. & Goles, E. Reconstruction of a GRN model of salt stress response in Arabidopsis using genetic algorithms. 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) 1–8 (2015).

  118. Hu, J. et al. Time-series transcriptome comparison reveals the gene regulation network under salt stress in soybean (Glycine max) roots. BMC Plant Biol. 22, 157 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, R. et al. Comparative analysis of salt responsive gene regulatory networks in rice and Arabidopsis. Comput. Biol. Chem. 85, 107188 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Wang, B. et al. The transcriptional regulatory network of hormones and genes under salt stress in tomato plants (Solanum lycopersicum L.). Front. Plant Sci. 14, 1115593 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hu, W., Ren, Q., Chen, Y., Xu, G. & Qian, Y. Genome-wide identification and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses. BMC Plant Biol. 21, 427 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Song, L. et al. A transcription factor hierarchy defines an environmental stress response network. Science 354, aag1550 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ecker, J. & Song, L. Environmental stress response transcriptional regulatory network. US patent 20,180,112,228 (2018).

  124. Tian, H. et al. A novel family of transcription factors conserved in angiosperms is required for ABA signalling. Plant Cell Environ. 40, 2958–2971 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Chen, S. et al. Knockout of the entire family of AITR genes in Arabidopsis leads to enhanced drought and salinity tolerance without fitness costs. BMC Plant Biol. 21, 137 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Li, G. et al. CRISPR/Cas9 gene editing of NTAITRs, a family of transcription repressor genes, leads to enhanced drought tolerance in tobacco. Int. J. Mol. Sci. 23, 15268 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, T. et al. Mutation of GmAITR genes by CRISPR/Cas9 genome editing results in enhanced salinity stress tolerance in soybean. Front. Plant Sci. 12, 779598 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wang, T. et al. Evolution of AITR family genes in cotton and their functions in abiotic stress tolerance. Plant Biol. 23, 58–68 (2021).

    Article  PubMed  Google Scholar 

  129. Gao, Y. et al. Diversity and redundancy of the ripening regulatory networks revealed by the fruitENCODE and the new CRISPR/Cas9 CNR and NOR mutants. Hortic. Res. 6, 39 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Cai, J. et al. FvMYB79 positively regulates strawberry fruit softening via transcriptional activation of FvPME38. Int. J. Mol. Sci. 23, 101 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lakhwani, D. et al. Genome wide identification of MADS box gene family in Musa balbisiana and their divergence during evolution. Gene 836, 146666 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Nobori, T. et al. A rare PRIMER cell state in plant immunity. Nature 638, 197–205 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lee, T. A. et al. A single-nucleus atlas of seed-to-seed development in Arabidopsis. Preprint at bioRxiv https://doi.org/10.1101/2023.03.23.533992 (2023).

  134. Swift, J. et al. Exaptation of ancestral cell-identity networks enables C4 photosynthesis. Nature 636, 143–150 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ferrari, C., Manosalva Pérez, N. & Vandepoele, K. MINI-EX: integrative inference of single-cell gene regulatory networks in plants. Mol. Plant 15, 1807–1824 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Philips, T. Genetically modified organisms (GMOs): transgenic crops and recombinant DNA technology. Nat. Educ. 1, 213 (2008).

    Google Scholar 

  137. Bawa, A. S. & Anilakumar, K. R. Genetically modified foods: safety, risks and public concerns—a review. J. Food Sci. Technol. 50, 1035–1046 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Friedrichs, S. et al. Meeting report of the OECD conference on ‘Genome Editing: Applications in Agriculture—Implications for Health, Environment and Regulation’. Transgenic Res. 28, 419–463 (2019).

    Article  CAS  Google Scholar 

  139. Tian, Z., Wang, J.-W., Li, J. & Han, B. Designing future crops: challenges and strategies for sustainable agriculture. Plant J. 105, 1165–1178 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Turnbull, C., Lillemo, M. & Hvoslef-Eide, T. A. K. Global regulation of genetically modified crops amid the gene edited crop boom — a review. Front. Plant Sci. 12, 630396 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  141. European Parliament. 2023/0226(COD) — 24/04/2024 — Plants Obtained by Certain New Genomic Techniques and Their Food and Feed www.europarl.europa.eu/news/en/press-room/20240202IPR17320/new-genomic-techniques-meps-back-rules-to-support-green-transition-of-farmers (2024).

  142. Mehta, D. EU proposal on CRISPR-edited crops is welcome — but not enough. Nature 619, 437 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Vanderschuren, H., Chatukuta, P., Weigel, D. & Mehta, D. A new chance for genome editing in Europe. Nat. Biotechnol. 41, 1378–1380 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We extend our gratitude to H. Pai for valuable discussions and insights regarding figure design. Research support for R.L., B.S.B. and P.D. was generously provided by the European Union’s Horizon Europe program through the European Research Council Starting Grant (ERC-2021-StG) R-ELEVATION (grant no. 101039824). Additionally, X.H. acknowledges funding support from the Luxembourg National Research Fund (FNR) through the DTU Grant (grant no. 11012546). Due to word count limitations, we apologize to the authors of those relevant works that could not be cited in this Review. The omission of any research or publications is unintentional and does not diminish their importance or contribution to the field. We acknowledge and appreciate the extensive body of work that has been carried out by researchers in this field.

Author information

Authors and Affiliations

Authors

Contributions

P.D. established the framework of the Review. All authors contributed to writing and editing the manuscript.

Corresponding author

Correspondence to Pingtao Ding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Xuehui Huang, Zhixi Tian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leong, R., He, X., Beijen, B.S. et al. Unlocking gene regulatory networks for crop resilience and sustainable agriculture. Nat Biotechnol 43, 1254–1265 (2025). https://doi.org/10.1038/s41587-025-02727-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41587-025-02727-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research