Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Moving beyond monogenic disorders in clinical healthcare

Our understanding of the genetic mechanisms underlying rare diseases has rapidly advanced over the past decade, largely because of technological innovations. Yet clinical practice still has a strong monogenic focus, leaving many individuals undiagnosed. This Comment outlines how technological advances such as long-read sequencing should be adopted to increase multivariant testing in the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The spectrum of genetic complexity.
Fig. 2: Understanding haplotype architecture and function using long-read sequencing.

References

  1. Lindstrand, A. et al. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-6790162/v1 (2025).

  2. Martin, H. C. et al. Science 362, 1161–1164 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kingdom, R., Beaumont, R. N., Wood, A. R., Weedon, M. N. & Wright, C. F. Nat. Genet. 56, 861–868 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nunes, L. et al. Nature 633, 137–146 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, Y. et al. Nature 632, 832–840 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cortese, A. et al. Nat. Genet. 51, 649–658 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ridanpää, M. et al. Cell 104, 195–203 (2001).

    Article  PubMed  Google Scholar 

  8. Kämpe, A. et al. Nat. Med. 31, 1730–1732 (2025).

    Article  PubMed  Google Scholar 

  9. Eisfeldt, J., Ek, M., Nordenskjöld, M. & Lindstrand, A. Nat. Genet. 57, 1334–1343 (2025).

    Article  CAS  PubMed  Google Scholar 

  10. Michaud, V. et al. Nat. Commun. 13, 3939 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dominguez Gonzalez, C. A. et al. Neurol. Genet. 11, e200291 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huang, M. et al. J. Transl. Med. 22, 451 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Handsaker, R. E. et al. Cell 188, 623–639 (2025).

    Article  CAS  PubMed  Google Scholar 

  14. Mars, N. et al. Nat. Commun. 11, 6383 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Avsec, Ž. et al. Preprint at bioRxiv https://doi.org/10.1101/2025.06.25.661532 (2025).

  16. Mao, X. et al. npj Digit. Med. 8, 68 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Antaki, D. et al. Nat. Genet. 54, 1284–1292 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, Q. Q. et al. Nature 636, 404–411 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reiter, J. F. & Leroux, M. R. Nat. Rev. Mol. Cell Biol. 18, 533–547 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rai, A. et al. Am. J. Hum. Genet. 112, 1664–1680 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kars, M. E. et al. Am. J. Hum. Genet. 112, 583–598 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lindenhofer, D. et al. Nat. Methods 22, 2032–2041 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Savige, J. et al. Clin. J. Am. Soc. Nephrol. 17, 1697–1706 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Durkie, M., Chong, J., Valluru, M. K., Harris, P. C. & Ong, A. C. M. Genet. Med. 23, 689–697 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Shmatko, A. et al. Nature 647, 248–256 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.K. was funded by the Swedish Society for Medical Research (PD20-0190) and Erik Philip-Sörensens stiftelse. A.L. was funded by grants from the Swedish Research Council (2019-02078), Region Stockholm (FoUI-1000468 and FoUI-978581), the Rare Diseases Research Foundation (Sällsyntafonden), the Swedish Brain Foundation (FO2024-0128-HK-44) and the Swedish Cancer Society (24 3504 Pj). We are also thankful to M. Ek for help with figure design.

Author information

Authors and Affiliations

Authors

Contributions

A.L., J.E. and A.K. conceived of the article, A.K and J.E. designed the figures, A.K. and O.B.P wrote the manuscript and all authors were involved in revisions.

Corresponding authors

Correspondence to Anders Kämpe or Anna Lindstrand.

Ethics declarations

Competing interests

AL has received speakers’ honoraria from Pacific Biosciences and Illumina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kämpe, A., Blomqvist Picard, O., Eisfeldt, J. et al. Moving beyond monogenic disorders in clinical healthcare. Nat Biotechnol 44, 21–25 (2026). https://doi.org/10.1038/s41587-025-02931-2

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41587-025-02931-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing