Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeted delivery of genome editors in vivo

Abstract

Genome editing has revolutionized the treatment of genetic diseases, yet the difficulty of tissue-specific delivery currently limits applications of editing technology. In this Review, we discuss preclinical and clinical advances in delivering genome editors with both established and emerging delivery mechanisms. Targeted delivery promises to considerably expand the therapeutic applicability of genome editing, moving closer to the ideal of a precise ‘magic bullet’ that safely and effectively treats diverse genetic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Controlling delivery by route of administration.
Fig. 2: Controlling physical location of enzymes through molecular targeting.
Fig. 3: Controlling where genome editors are expressed.
Fig. 4: Controlling where genome editors have a phenotypic effect.
Fig. 5: Controlling in vivo delivery of therapeutic genome editors at multiple stages.

Similar content being viewed by others

References

  1. Levesque, S. & Bauer, D. E. CRISPR-based therapeutic genome editing for inherited blood disorders. Nat. Rev. Drug Discov. https://doi.org/10.1038/s41573-025-01236-y (2025).

    Article  PubMed  Google Scholar 

  2. Raguram, A., Banskota, S. & Liu, D. R. Therapeutic in vivo delivery of gene editing agents. Cell 185, 2806–2827 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tsuchida, C. A., Wasko, K. M., Hamilton, J. R. & Doudna, J. A. Targeted nonviral delivery of genome editors in vivo. Proc. Natl Acad. Sci. USA 121, e2307796121 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Stigzelius, V., Cavallo, A. L., Chandode, R. K. & Nitsch, R. Peeling back the layers of immunogenicity in Cas9-based genomic medicine. Mol. Ther. 33, 4714–4730 (2025).

    CAS  PubMed  Google Scholar 

  5. Porteus, M. Genome editing: a new approach to human therapeutics. Annu. Rev. Pharmacol. Toxicol. 56, 163–190 (2014).

    Google Scholar 

  6. Kumar, M., Kulkarni, P., Liu, S., Chemuturi, N. & Shah, D. K. Nanoparticle biodistribution coefficients: a quantitative approach for understanding the tissue distribution of nanoparticles. Adv. Drug Deliv. Rev. 194, 114708 (2023).

    CAS  PubMed  Google Scholar 

  7. Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    CAS  PubMed  Google Scholar 

  8. Musunuru, K. et al. Patient-specific in vivo gene editing to treat a rare genetic disease. N. Engl. J. Med. 392, 2235–2243 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Horie, T. & Ono, K. VERVE-101: a promising CRISPR-based gene editing therapy that reduces LDL-C and PCSK9 levels in HeFH patients. Eur. Heart J. Cardiovasc. Pharmacother. 10, 89–90 (2023).

    Google Scholar 

  10. Cohn, D. M. et al. CRISPR-based therapy for hereditary angioedema. N. Engl. J. Med. 392, 458–467 (2025).

    CAS  PubMed  Google Scholar 

  11. Lee, R. et al. An investigational in vivo base editing medicine targeting ANGPTL3, VERVE-201, achieves precise and durable liver editing in nonclinical studies. Atherosclerosis 395, 118496 (2024).

    Google Scholar 

  12. Beam Therapeutics. A phase 1/2 dose-exploration and dose-expansion study to evaluate the safety and efficacy of BEAM-302 in adult patients with α-1 antitrypsin deficiency (AATD)-associated lung disease and/or liver disease. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06389877 (2024).

  13. Morrow, P. K. et al. Abstract 17013: CTX320: an investigational in vivo CRISPR-based therapy efficiently and durably reduces lipoprotein (a) levels in non-human primates after a single dose. Circulation 148, A17013 (2023).

    Google Scholar 

  14. HuidaGene Therapeutics. An investigator-initiated clinical study evaluating the CRISPR–hfCas12Max gene editing therapy in the treatment of Duchenne muscular dystrophy (DMD). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06594094 (2024).

  15. Beam Therapeutics. A phase 1/2, dose-exploration study to evaluate the safety and efficacy of BEAM-301 in patients with glycogen storage disease type Ia (GSDIa) homozygous or compound heterozygous for the G6PC1 c.247C>T (p.R83C) variant. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06735755 (2024).

  16. Arbor Biotechnologies. A phase 1/2 dose escalation study to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics and preliminary efficacy of ABO-101 in participants with primary hyperoxaluria type 1 (PH1). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06839235 (2025).

  17. Tune Therapeutics. Phase 1b multicenter, open-label study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of Tune-401 in participants with chronic hepatitis B infection. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06671093 (2024).

  18. Burdo, T. H. et al. Preclinical safety and biodistribution of CRISPR targeting SIV in non-human primates. Gene Ther. 31, 224–233 (2023).

    PubMed  PubMed Central  Google Scholar 

  19. Excision BioTherapeutics. A phase 1/2a, sequential cohort, single ascending dose study of the safety, tolerability, biodistribution, and pharmacodynamics of EBT 101 in aviremic HIV-1 infected adults on stable antiretroviral therapy. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05144386 (2021).

  20. Epicrispr Biotechnologies. A phase 1/2 open-label dose-escalation study to evaluate the safety, tolerability, and biological activity of EPI-321, an AAVrh74-delivered epigenetic editing therapy in adult FSHD patients. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06907875 (2025).

  21. Streilein, J. W. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat. Rev. Immunol. 3, 879–889 (2003).

    CAS  PubMed  Google Scholar 

  22. Nakao, S., Hafezi-Moghadam, A. & Ishibashi, T. Lymphatics and lymphangiogenesis in the eye. J. Ophthalmol. 2012, 783163 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. Toral, M. A. et al. Investigation of Cas9 antibodies in the human eye. Nat. Commun. 13, 1053 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pierce, E. A. et al. Gene editing for CEP290-associated retinal degeneration. N. Engl. J. Med. 390, 1972–1984 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao, Q., Wei, L. & Chen, Y. From bench to bedside: developing CRISPR/Cas-based therapy for ocular diseases. Pharmacol. Res. 213, 107638 (2025).

    PubMed  Google Scholar 

  26. Muller, A. et al. High-efficiency base editing in the retina in primates and human tissues. Nat. Med. 31, 490–501 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Luk, A. et al. World’s first CRISPR/RNA-targeting therapy (HG202) for patients with neovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 65, 4357 (2024).

    Google Scholar 

  28. Wei, A. et al. In vivo CRISPR gene editing in patients with herpetic stromal keratitis. Mol. Ther. 31, 3163–3175 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jain, A. et al. CRISPR–Cas9–based treatment of myocilin-associated glaucoma. Proc. Natl Acad. Sci. USA 114, 11199–11204 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gencay, Y. E. et al. Engineered phage with antibacterial CRISPR–Cas selectively reduce E.coli burden in mice. Nat. Biotechnol. 42, 265–274 (2024).

    CAS  PubMed  Google Scholar 

  31. SNIPR Biome. A phase 1, randomized, double-blind, first-in-human, dose escalation study investigating the safety, recovery, and pharmacodynamics of multiple oral administrations of SNIPR001 in healthy subjects. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05277350 (2022).

  32. SNIPR Biome. SNIPR Biome Reports Positive Clinical Interim Results for Groundbreaking, First-in-Human, CRISPR-Based Microbial Gene Therapy https://static1.squarespace.com/static/5bacc67990f9041ab0d5b0c1/t/6476ee0c6181141d414b9ec3/1685515789399/230529+SNIPR+Phase+1+Data+Release.pdf (2023).

  33. Xue, Y. et al. RNA base editing therapy cures hearing loss induced by OTOF gene mutation. Mol. Ther. 31, 3520–3530 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. HuidaGene Therapeutics. An open-label, multiple-cohort, dose-finding, investigator-initiated trial to evaluate the safety, tolerability, and efficacy of HG205 RNA base-editing therapy in subjects with OTOF-p.Q829X mutation-associated hearing loss. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06025032 (2023).

  35. Yang, D. et al. An RNA editing strategy rescues gene duplication in a mouse model of MECP2 duplication syndrome and nonhuman primates. Nat. Neurosci. 28, 72–83 (2025).

    CAS  PubMed  Google Scholar 

  36. HuidaGene Therapeutics. An open-label, multiple-dose clinical study to evaluating the safety, tolerability and preliminary efficacy of a single intracerebroventricular injection of HG204 for the treatment of MECP2 duplication syndrome. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06615206 (2024).

  37. Lenneman, B. R., Fernbach, J., Loessner, M. J., Lu, T. K. & Kilcher, S. Enhancing phage therapy through synthetic biology and genome engineering. Curr. Opin. Biotechnol. 68, 151–159 (2021).

    CAS  PubMed  Google Scholar 

  38. Kim, P. et al. Safety, pharmacokinetics, and pharmacodynamics of LBP-EC01, a CRISPR–Cas3-enhanced bacteriophage cocktail, in uncomplicated urinary tract infections due to Escherichia coli (ELIMINATE): the randomised, open-label, first part of a two-part phase 2 trial. Lancet Infect. Dis. 24, 1319–1332 (2024).

    CAS  PubMed  Google Scholar 

  39. Amoasii, L. et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci. Transl. Med. 9, eaan8081 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. Ho, T.-C. et al. Scaffold-mediated CRISPR–Cas9 delivery system for acute myeloid leukemia therapy. Sci. Adv. 7, eabg3217 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Liang, S.-Q. et al. AAV5 delivery of CRISPR–Cas9 supports effective genome editing in mouse lung airway. Mol. Ther. 30, 238–243 (2022).

    CAS  PubMed  Google Scholar 

  42. Rosenblum, D. et al. CRISPR–Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci. Adv. 6, eabc9450 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Stahl, E. C. et al. Genome editing in the mouse brain with minimally immunogenic Cas9 RNPs. Mol. Ther. 31, 2422–2438 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kasiewicz, L. N. et al. GalNAc-lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy. Nat. Commun. 14, 2776 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, R. et al. An investigational in vivo base editing medicine targeting ANGPTL3, VERVE-201, achieves potent and LDLR-independent liver editing in mouse models. Eur. Heart J. 44, ehad655.2521 (2023).

    Google Scholar 

  46. Verve Therapeutics. A phase 1b single ascending dose study to evaluate the safety of VERVE-201 in patients with refractory hyperlipidemia. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06451770 (2024).

  47. Pupo, A. et al. AAV vectors: the Rubik’s cube of human gene therapy. Mol. Ther. 30, 3515–3541 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gao, G.-P. et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl Acad. Sci. USA 99, 11854–11859 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Strebinger, D. et al. Cell type-specific delivery by modular envelope design. Nat. Commun. 14, 5141 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hamilton, J. R. et al. In vivo human T cell engineering with enveloped delivery vehicles. Nat. Biotechnol. 42, 1684–1692 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hamilton, J. R. et al. Targeted delivery of CRISPR–Cas9 and transgenes enables complex immune cell engineering. Cell Rep. 35, 109207 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ngo, W. et al. Mechanism-guided engineering of a minimal biological particle for genome editing. Proc. Natl Acad. Sci. USA 122, e2413519121 (2025).

    CAS  PubMed  Google Scholar 

  53. Karp, H. et al. Packaged delivery of CRISPR–Cas9 ribonucleoproteins accelerates genome editing. Nucleic Acids Res. 53, gkaf105 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Breda, L. et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science 381, 436–443 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Palanki, R. et al. In utero delivery of targeted ionizable lipid nanoparticles facilitates in vivo gene editing of hematopoietic stem cells. Proc. Natl Acad. Sci. USA 121, e2400783121 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Geczy, R. et al. Lipid nanoparticle-mediated gene editing of human primary T cells and off-target analysis of the CRISPR–Cas9 indels. Blood 142, 6833 (2023).

    Google Scholar 

  57. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue specific mRNA delivery and CRISPR/Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, K. et al. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR–Cas9 ribonucleoprotein. Nat. Biotechnol. 43, 1445–1457 (2025).

    PubMed  Google Scholar 

  60. Kimura, S. & Harashima, H. On the mechanism of tissue-selective gene delivery by lipid nanoparticles. J. Control. Release 362, 797–811 (2023).

    CAS  PubMed  Google Scholar 

  61. Tabebordbar, M. et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 184, 4919–4938 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Huang, Q. et al. An AAV capsid reprogrammed to bind human transferrin receptor mediates brain-wide gene delivery. Science 384, 1220–1227 (2024).

    CAS  PubMed  Google Scholar 

  63. Neumann, E. N. et al. Brainwide silencing of prion protein by AAV-mediated delivery of an engineered compact epigenetic editor. Science 384, ado7082 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kumar, S. R. et al. Multiplexed Cre-dependent selection yields systemic AAVs for targeting distinct brain cell types. Nat. Methods 17, 541–550 (2020).

    PubMed Central  Google Scholar 

  65. Kim, H. et al. Lipid nanoparticle-mediated mRNA delivery to CD34+ cells in rhesus monkeys. Nat. Biotechnol. 43, 1813–1820 (2024).

    PubMed  PubMed Central  Google Scholar 

  66. Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ngo, W. et al. Why nanoparticles prefer liver macrophage cell uptake in vivo. Adv. Drug Deliv. Rev. 185, 114238 (2022).

    CAS  PubMed  Google Scholar 

  68. Glaumann, H., Fredzell, J., Jubner, A. & Ericsson, J. L. E. Uptake and degradation of glycogen by Kupffer cells. Exp. Mol. Pathol. 31, 70–80 (1979).

    CAS  PubMed  Google Scholar 

  69. Seo, J. W. et al. Multimodal imaging of capsid and cargo reveals differential brain targeting and liver detargeting of systemically-administered AAVs. Biomaterials 288, 121701 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. l’Hortet, A. C. et al. In MDA Clinical & Scientific Conference 206 https://www.mdaconference.org/abstract-library/epi-321-a-potential-cure-for-fshd/ (Muscular Dystrophy Association, 2023).

  71. Amoasii, L. et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362, 86–91 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Vaessen, S. F. C. et al. AAV gene therapy as a means to increase apolipoprotein (Apo) A-I and high-density lipoprotein-cholesterol levels: correction of murine ApoA-I deficiency. J. Gene Med. 11, 697–707 (2009).

    CAS  PubMed  Google Scholar 

  73. Prasad, K.-M. R., Xu, Y., Yang, Z., Acton, S. T. & French, B. A. Robust cardiomyocyte-specific gene expression following systemic injection of AAV: in vivo gene delivery follows a Poisson distribution. Gene Ther. 18, 43–52 (2011).

    CAS  PubMed  Google Scholar 

  74. Radhiyanti, P. T., Konno, A., Matsuzaki, Y. & Hirai, H. Comparative study of neuron-specific promoters in mouse brain transduced by intravenously administered AAV-PHP.eB. Neurosci. Lett. 756, 135956 (2021).

    CAS  PubMed  Google Scholar 

  75. Yang, L. et al. MicroRNA-122-mediated liver detargeting enhances the tissue specificity of cardiac genome editing. Circulation 149, 1778–1781 (2024).

    CAS  PubMed  Google Scholar 

  76. Hoffmann, M. D. et al. Cell-specific CRISPR–Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Res. 47, e75 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hirosawa, M., Fujita, Y. & Saito, H. Cell-type-specific CRISPR activation with microRNA-responsive AcrllA4 switch. ACS Synth. Biol. 8, 1575–1582 (2019).

    CAS  PubMed  Google Scholar 

  78. Lee, J. et al. Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins. RNA 25, 1421–1431 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, X.-W. et al. A microRNA-inducible CRISPR–Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat. Cell Biol. 21, 522–530 (2019).

    PubMed  Google Scholar 

  80. Garcia-Guerra, A. et al. Tissue-specific modulation of CRISPR activity by miRNA-sensing guide RNAs. Nucleic Acids Res. 53, gkaf016 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Galizi, R. & Jaramillo, A. Engineering CRISPR guide RNA riboswitches for in vivo applications. Curr. Opin. Biotechnol. 55, 103–113 (2019).

    CAS  PubMed  Google Scholar 

  82. Kaseniit, K. E. et al. Modular, programmable RNA sensing using ADAR editing in living cells. Nat. Biotechnol. 41, 482–487 (2023).

    CAS  PubMed  Google Scholar 

  83. Jiang, K. et al. Programmable eukaryotic protein synthesis with RNA sensors by harnessing ADAR. Nat. Biotechnol. 41, 698–707 (2023).

    CAS  PubMed  Google Scholar 

  84. Qian, Y. et al. Programmable RNA sensing for cell monitoring and manipulation. Nature 610, 713–721 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Powell, S. K., Rivera-Soto, R. & Gray, S. J. Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy. Discov. Med. 19, 49–57 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Mancuso, P. et al. CRISPR based editing of SIV proviral DNA in ART treated non-human primates. Nat. Commun. 11, 6065 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cohrt, K. O. Excision’s EBT-101 demonstrates safety in clinical trial but does not cure HIV. CRISPR Medicine News https://crisprmedicinenews.com/news/excisions-ebt-101-demonstrates-safety-in-clinical-trial-but-does-not-cure-hiv/ (2024).

  88. Tan, I.-L. et al. Targeting the non-coding genome and temozolomide signature enables CRISPR-mediated glioma oncolysis. Cell Rep. 42, 113339 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. An, Y. et al. Design of hypoxia responsive CRISPR–Cas9 for target gene regulation. Sci. Rep. 13, 16763 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen, X., Chen, Y., Xin, H., Wan, T. & Ping, Y. Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing. Proc. Natl Acad. Sci. USA 117, 2395–2405 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Yin, H. et al. Ultrasound-controlled CRISPR/Cas9 system augments sonodynamic therapy of hepatocellular carcinoma. ACS Cent. Sci. 7, 2049–2062 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, Y. et al. Very fast CRISPR on demand. Science 368, 1265–1269 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Pacesa, M. et al. Structural basis for Cas9 off-target activity. Cell 185, 4067–4081 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Greig, J. A. et al. Integrated vector genomes may contribute to long-term expression in primate liver after AAV administration. Nat. Biotechnol. 42, 1232–1242 (2024).

    CAS  PubMed  Google Scholar 

  95. iECURE. A phase 1/2/3 first-in-human, open-label, dose-escalation study to evaluate the safety and efficacy of a single intravenous (IV) administration of ECUR-506 in males less than 9 months of age with genetically confirmed neonatal onset ornithine transcarbamylase (OTC) deficiency. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06255782 (2023).

  96. Regeneron Pharmaceuticals. A two-part open-label study of REGV131-LNP1265, a CRISPR/Cas9 based coagulation factor IX gene insertion therapy in participants with hemophilia B. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06379789 (2024).

  97. Jeune, V. L., Joergensen, J. A., Hajjar, R. J. & Weber, T. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum. Gene Ther. Methods 24, 59–67 (2013).

    PubMed Central  Google Scholar 

  98. Duan, D. Lethal immunotoxicity in high-dose systemic AAV therapy. Mol. Ther. 31, 3123–3126 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee, Y., Jeong, M., Park, J., Jung, H. & Lee, H. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics. Exp. Mol. Med. 55, 2085–2096 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Vargas, J. E. et al. Retroviral vectors and transposons for stable gene therapy: advances, current challenges and perspectives. J. Transl. Med. 14, 288 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. Wignakumar, T. & Fairchild, P. J. Evasion of pre-existing immunity to Cas9: a prerequisite for successful genome editing in vivo? Curr. Transplant. Rep. 6, 127–133 (2019).

    Google Scholar 

  102. Kishimoto, T. K. & Samulski, R. J. Addressing high dose AAV toxicity — ‘one and done’ or ‘slower and lower’? Expert Opin. Biol. Ther. 22, 1067–1071 (2022).

    PubMed  Google Scholar 

  103. Cullis, P. R. & Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Cullis, P. R. & Felgner, P. L. The 60-year evolution of lipid nanoparticles for nucleic acid delivery. Nat. Rev. Drug Discov. 23, 709–722 (2024).

    CAS  PubMed  Google Scholar 

  105. Carbonaro-Sarracino, D. A. et al. Dosing and re-administration of intravenous lentiviral vector for liver-directed gene transfer in young rhesus monkeys and ADA-deficient mice. Mol. Ther. Methods Clin. Dev. 24, S302–S303 (2016).

    Google Scholar 

  106. Chen, K. et al. Engineering self-deliverable ribonucleoproteins for genome editing in the brain. Nat. Commun. 15, 1727 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Staahl, B. T. et al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol. 35, 431–434 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Chew, W. L. Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdiscip. Rev. Syst. Biol. Med. https://doi.org/10.1002/wsbm.1408 (2018).

  109. Andari, J. E. & Grimm, D. Production, processing, and characterization of synthetic AAV gene therapy vectors. Biotechnol. J. 16, e2000025 (2021).

    PubMed  Google Scholar 

  110. Jiang, Z. & Dalby, P. A. Challenges in scaling up AAV-based gene therapy manufacturing. Trends Biotechnol. 41, 1268–1281 (2023).

    CAS  PubMed  Google Scholar 

  111. De, A. & Ko, Y. T. Why mRNA-ionizable LNPs formulations are so short-lived: causes and way-out. Expert Opin. Drug Deliv. 20, 175–187 (2023).

    CAS  PubMed  Google Scholar 

  112. Kim, B. et al. Optimization of storage conditions for lipid nanoparticle-formulated self-replicating RNA vaccines. J. Control. Release 353, 241–253 (2023).

    CAS  PubMed  Google Scholar 

  113. Mangeot, P. E. et al. Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9–sgRNA ribonucleoproteins. Nat. Commun. 10, 45 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Merten, O.-W., Hebben, M. & Bovolenta, C. Production of lentiviral vectors. Mol. Ther. Methods Clin. Dev. 3, 16017 (2016).

    PubMed  PubMed Central  Google Scholar 

  115. Binder, G. K. & Chen, C.-C. The very stable lentiviral vector. Mol. Ther. Methods Clin. Dev. 32, 101223 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Berry, G. E. & Asokan, A. Cellular transduction mechanisms of adeno-associated viral vectors. Curr. Opin. Virol. 21, 54–60 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Patel, M. N. et al. Safer non-viral DNA delivery using lipid nanoparticles loaded with endogenous anti-inflammatory lipids. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02556-5 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Banskota, S. et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 185, 250–265 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. An, M. et al. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat. Biotechnol. 42, 1526–1537 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lyu, P., Javidi-Parsijani, P., Atala, A. & Lu, B. Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient ‘hit-and-run’ genome editing. Nucleic Acids Res. 47, e99 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. Indikova, I. & Indik, S. Highly efficient ‘hit-and-run’ genome editing with unconcentrated lentivectors carrying Vpr.Prot.Cas9 protein produced from RRE-containing transcripts. Nucleic Acids Res. 48, 8178–8187 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Gao, G., Vandenberghe, L. H. & Wilson, J. M. New recombinant serotypes of AAV vectors. Curr. Gene Ther. 5, 285–297 (2005).

    CAS  PubMed  Google Scholar 

  123. Pham, Q. et al. A facile chemical strategy to synthesize precise AAV-protein conjugates for targeted gene delivery. Mol. Ther. Oncol. 33, 201040 (2025).

    CAS  Google Scholar 

  124. Domenger, C. & Grimm, D. Next-generation AAV vectors—do not judge a virus (only) by its cover. Hum. Mol. Genet. 28, R3–R14 (2019).

    CAS  PubMed  Google Scholar 

  125. Billingsley, M. M. et al. In vivo mRNA CAR T cell engineering via targeted ionizable lipid nanoparticles with extrahepatic tropism. Small 20, e2304378 (2024).

    PubMed  Google Scholar 

  126. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Veiga, N. et al. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nat. Commun. 9, 4493 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. Dobson, C. S. et al. Antigen identification and high-throughput interaction mapping by reprogramming viral entry. Nat. Methods 19, 449–460 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Girard-Gagnepain, A. et al. Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood 124, 1221–1231 (2014).

    CAS  PubMed  Google Scholar 

  130. Seydel, C. Spotlight Therapeutics: making CRISPR deliver in vivo. Nat. Biotechnol. https://doi.org/10.1038/d41587-021-00011-9 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the Doudna laboratory for their thoughtful input on the manuscript, especially K. Chen, J. Zeng and Z.W. Xue. The manuscript was funded by the following sources: Gladstone Institutes (J.A.D.), the HHMI (J.A.D.), National Heart, Lung, and Blood Institute grant 1R21HL173710-01 (J.A.D.) and Lawrence Livermore National Labs PROTECT grant, DE-AC52-07NA27344 (J.A.D.). J.A.D. also receives support from NIH/NIAID (U54AI170792, U19AI135990, UH3AI150552 and U01AI142817), NIH/NINDS (U19NS132303), NSF (2334028), DOE (DE-AC02-05CH11231, 2553571 and B656358), Apple Tree Partners (24180), UCB-Hampton University Summer Program, Mr. Li Ka Shing, Koret-Berkeley-TAU, Emerson Collective and the Innovative Genomics Institute (IGI). J.L.Y.W. was also funded by the Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship. We also acknowledge financial support from the James B. Pendleton Charitable Trust.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: W.N., K.M.W. and J.A.D. Funding acquisition: J.A.D. Project administration: W.N. and J.A.D. Writing and editing: W.N., K.M.W., J.L.Y.W. and J.A.D.

Corresponding author

Correspondence to Jennifer A. Doudna.

Ethics declarations

Competing interests

The Regents of the University of California have patents issued and/or pending for CRISPR technologies (on which J.A.D. is an inventor) and delivery technologies (on which J.A.D. and W.N. are co-inventors). J.A.D. is a cofounder of Azalea Therapeutics, Caribou Biosciences, Editas Medicine, Evercrisp, Scribe Therapeutics and Mammoth Biosciences. J.A.D. is a scientific advisory board member at Isomorphic Labs, BEVC Management, Evercrisp, Caribou Biosciences, Scribe Therapeutics, Mammoth Biosciences, The Column Group and Inari. She is also an advisor for Aditum Bio. J.A.D. is chief science advisor to Sixth Street, is a director at Johnson & Johnson, Altos and Tempus, and has a research project sponsored by Apple Tree Partners. All other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Dan Peer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, W., Wu, J.L.Y., Wasko, K.M. et al. Targeted delivery of genome editors in vivo. Nat Biotechnol 44, 49–59 (2026). https://doi.org/10.1038/s41587-025-02945-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41587-025-02945-w

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research