Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering structural variants to interrogate genome function

Abstract

Structural variation, such as deletions, duplications, inversions and complex rearrangements, can have profound effects on gene expression, genome stability, phenotypic diversity and disease susceptibility. Structural variants can encompass up to millions of bases and have the potential to rearrange substantial segments of the genome. They contribute considerably more to genetic diversity in human populations and have larger effects on phenotypic traits than point mutations. Until recently, our understanding of the effects of structural variants was driven mainly by studying naturally occurring variation. New genome-engineering tools capable of generating deletions, insertions, inversions and translocations, together with the discovery of new recombinases and advances in creating synthetic DNA constructs, now enable the design and generation of an extended range of structural variation. Here, we discuss these tools and examples of their application and highlight existing challenges that will need to be overcome to fully harness their potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tools for generating structural variants.
Fig. 2: Generating structural variants from nicked DNA with prime editing.
Fig. 3: Sequence rearrangements mediated by tyrosine and serine recombinases.
Fig. 4: Stochastically rearranged regions, chromosomes and genomes.

Similar content being viewed by others

References

  1. Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Stankiewicz, P. & Lupski, J. R. Structural variation in the human genome and its role in disease. Annu. Rev. Med. 61, 437–455 (2010).

    Article  PubMed  CAS  Google Scholar 

  3. Jacobs, P. A., Baikie, A. G., Court Brown, W. M. & Strong, J. A. The somatic chromosomes in mongolism. Lancet 1, 710 (1959).

    Article  PubMed  CAS  Google Scholar 

  4. Weischenfeldt, J., Symmons, O., Spitz, F. & Korbel, J. O. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat. Rev. Genet. 14, 125–138 (2013).

    Article  PubMed  CAS  Google Scholar 

  5. Stefansson, H. et al. Large recurrent microdeletions associated with schizophrenia. Nature 455, 232–236 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

  7. Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Spielmann, M., Lupiáñez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 19, 453–467 (2018).

    Article  PubMed  CAS  Google Scholar 

  9. Stranger, B. E. et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848–853 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chiang, C. et al. The impact of structural variation on human gene expression. Nat. Genet. 49, 692–699 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ferraro, N. M. et al. Transcriptomic signatures across human tissues identify functional rare genetic variation. Science 369, eaaz5900 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vanderstichele, T. et al. Misexpression of inactive genes in whole blood is associated with nearby rare structural variants. Am. J. Hum. Genet. 111, 1524–1543 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Vialle, R. A., de Paiva Lopes, K., Bennett, D. A., Crary, J. F. & Raj, T. Integrating whole-genome sequencing with multi-omic data reveals the impact of structural variants on gene regulation in the human brain. Nat. Neurosci. 25, 504–514 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Li, T. et al. The functional impact of rare variation across the regulatory cascade. Cell Genom. 3, 100401 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Collins, R. L. et al. A structural variation reference for medical and population genetics. Nature 581, 444–451 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gao, T. et al. A pan-tissue survey of mosaic chromosomal alterations in 948 individuals. Nat. Genet. 55, 1901–1911 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hollox, E. J., Zuccherato, L. W. & Tucci, S. Genome structural variation in human evolution. Trends Genet. 38, 45–58 (2022).

    Article  PubMed  CAS  Google Scholar 

  18. Byrska-Bishop, M. et al. High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios. Cell 185, 3426–3440 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Belyeu, J. R. et al. De novo structural mutation rates and gamete-of-origin biases revealed through genome sequencing of 2,396 families. Am. J. Hum. Genet. 108, 597–607 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Scott, A. J., Chiang, C. & Hall, I. M. Structural variants are a major source of gene expression differences in humans and often affect multiple nearby genes. Genome Res. 31, 2249–2257 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ramírez-Solis, R., Liu, P. & Bradley, A. Chromosome engineering in mice. Nature 378, 720–724 (1995).

    Article  PubMed  Google Scholar 

  22. Buchholz, F., Refaeli, Y., Trumpp, A. & Bishop, J. M. Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxP-mediated recombination in the mouse. EMBO Rep. 1, 133–139 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Collins, E. C., Pannell, R., Simpson, E. M., Forster, A. & Rabbitts, T. H. Inter-chromosomal recombination of Mll and Af9 genes mediated by cre–loxP in mouse development. EMBO Rep. 1, 127–132 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740 (2022).

    Article  PubMed  CAS  Google Scholar 

  25. Li, Y. et al. Genome-wide Cas9-mediated screening of essential non-coding regulatory elements via libraries of paired single-guide RNAs. Nat. Biomed. Eng. 8, 890–908 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Aregger, M., Xing, K. & Gonatopoulos-Pournatzis, T. Application of CHyMErA Cas9–Cas12a combinatorial genome-editing platform for genetic interaction mapping and gene fragment deletion screening. Nat. Protoc. 16, 4722–4765 (2021).

    Article  PubMed  CAS  Google Scholar 

  27. Diao, Y. et al. A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells. Nat. Methods 14, 629–635 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Brosh, R. et al. A versatile platform for locus-scale genome rewriting and verification. Proc. Natl Acad. Sci. USA 118, e2023952118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hay, D. et al. Genetic dissection of the α-globin super-enhancer in vivo. Nat. Genet. 48, 895–903 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Blayney, J. W. et al. Super-enhancers include classical enhancers and facilitators to fully activate gene expression. Cell 186, 5826–5839 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pinglay, S. et al. Synthetic regulatory reconstitution reveals principles of mammalian cluster regulation. Science 377, eabk2820 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Pinglay, S. et al. Multiplex generation and single cell analysis of structural variants in a mammalian genome. Preprint at bioRxiv https://doi.org/10.1101/2024.01.22.576756 (2024).

  33. Koeppel, J. et al. Randomizing the human genome by engineering recombination between repeat elements. Preprint at bioRxiv https://doi.org/10.1101/2024.01.22.576745 (2024).

  34. Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature 562, 217–222 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Radford, E. J. et al. Saturation genome editing of DDX3X clarifies pathogenicity of germline and somatic variation. Nat. Commun. 14, 7702 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Patwardhan, R. P. et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat. Biotechnol. 27, 1173–1175 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).

    Article  PubMed  CAS  Google Scholar 

  38. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Epinat, J.-C. et al. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res. 31, 2952–2962 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Porteus, M. H. & Carroll, D. Gene targeting using zinc finger nucleases. Nat. Biotechnol. 23, 967–973 (2005).

    Article  PubMed  CAS  Google Scholar 

  41. Miller, J. C. et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143–148 (2011).

    Article  PubMed  CAS  Google Scholar 

  42. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Weller, J., Pallaseni, A., Koeppel, J. & Parts, L. Predicting mutations generated by Cas9, base editing, and prime editing in mammalian cells. CRISPR J. 6, 325–338 (2023).

    Article  PubMed  CAS  Google Scholar 

  46. Glover, L., Jun, J. & Horn, D. Microhomology-mediated deletion and gene conversion in African trypanosomes. Nucleic Acids Res. 39, 1372–1380 (2011).

    Article  PubMed  Google Scholar 

  47. Kosicki, M. et al. Cas9-induced large deletions and small indels are controlled in a convergent fashion. Nat. Commun. 13, 3422 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Matsuzaki, S., Sakuma, T. & Yamamoto, T. REMOVER-PITCh: microhomology-assisted long-range gene replacement with highly multiplexed CRISPR–Cas9. In Vitro Cell. Dev. Biol. Anim. 60, 697–707 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Nakade, S. et al. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat. Commun. 5, 5560 (2014).

    Article  PubMed  CAS  Google Scholar 

  50. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Xin, C. et al. Comprehensive assessment of miniature CRISPR–Cas12f nucleases for gene disruption. Nat. Commun. 13, 5623 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Mulepati, S. & Bailey, S. In vitro reconstitution of an Escherichia coli RNA-guided immune system reveals unidirectional, ATP-dependent degradation of DNA target. J. Biol. Chem. 288, 22184–22192 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Morisaka, H. et al. CRISPR–Cas3 induces broad and unidirectional genome editing in human cells. Nat. Commun. 10, 5302 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Dolan, A. E. et al. Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR–Cas. Mol. Cell 74, 936–950 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kotini, A. G. & Papapetrou, E. P. Engineering of targeted megabase-scale deletions in human induced pluripotent stem cells. Exp. Hematol. 87, 25–32 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Essletzbichler, P. et al. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Res. 24, 2059–2065 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Lee, H. J., Kim, E. & Kim, J.-S. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. 20, 81–89 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chen, X. et al. Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans. Sci. Rep. 4, 7581 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Canver, M. C. et al. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J. Biol. Chem. 289, 21312–21324 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shou, J., Li, J., Liu, Y. & Wu, Q. Precise and predictable CRISPR chromosomal rearrangements reveal principles of Cas9-mediated nucleotide insertion. Mol. Cell 71, 498–509 (2018).

    Article  PubMed  CAS  Google Scholar 

  61. Kraft, K. et al. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice. Cell Rep. 10, 833–839 (2015).

    Article  PubMed  CAS  Google Scholar 

  62. Ann Ran, F. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).

    PubMed  PubMed Central  Google Scholar 

  63. Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet. 53, 895–905 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Lazar, N. H. et al. High-resolution genome-wide mapping of chromosome-arm-scale truncations induced by CRISPR–Cas9 editing. Nat. Genet. 56, 1482–1493 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Adikusuma, F. et al. Large deletions induced by Cas9 cleavage. Nature 560, E8–E9 (2018).

    Article  PubMed  CAS  Google Scholar 

  66. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zuccaro, M. V. et al. Allele-specific chromosome removal after Cas9 cleavage in human embryos. Cell 183, 1650–1664 (2020).

    Article  PubMed  CAS  Google Scholar 

  68. Gonatopoulos-Pournatzis, T. et al. Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9–Cas12a platform. Nat. Biotechnol. 38, 638–648 (2020).

    Article  PubMed  CAS  Google Scholar 

  69. du Rand, A. et al. Highly efficient CRISPR/Cas9-mediated exon skipping for recessive dystrophic epidermolysis bullosa. Bioeng. Transl. Med. 9, e10640 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Blayney, J. et al. Unexpectedly high levels of inverted re-insertions using paired sgRNAs for genomic deletions. Methods Protoc. 3, 53 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Guo, T. et al. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Genome Biol. 19, 170 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ousterout, D. G. et al. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat. Commun. 6, 6244 (2015).

    Article  PubMed  CAS  Google Scholar 

  73. Young, C. S. et al. A single CRISPR–Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 18, 533–540 (2016).

    CAS  Google Scholar 

  74. Tycko, J. et al. 317. Screening S. aureus CRISPR–Cas9 paired-guide RNAs for efficient targeted deletion in Duchenne muscular dystrophy. Mol. Ther. 24, S127–S128 (2016).

    Article  Google Scholar 

  75. Eleveld, T. F. et al. Engineering large-scale chromosomal deletions by CRISPR–Cas9. Nucleic Acids Res. 49, 12007–12016 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Geng, K. et al. Target-enriched nanopore sequencing and de novo assembly reveals co-occurrences of complex on-target genomic rearrangements induced by CRISPR–Cas9 in human cells. Genome Res. 32, 1876–1891 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Yan, J. et al. Improving prime editing with an endogenous small RNA-binding protein. Nature 628, 639–647 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Choi, J. et al. Precise genomic deletions using paired prime editing. Nat. Biotechnol. 40, 218–226 (2022).

    Article  PubMed  CAS  Google Scholar 

  79. Kweon, J. et al. Targeted genomic translocations and inversions generated using a paired prime editing strategy. Mol. Ther. 31, 249–259 (2023).

    Article  PubMed  CAS  Google Scholar 

  80. Lin, Q. et al. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat. Biotechnol. 39, 923–927 (2021).

    Article  PubMed  CAS  Google Scholar 

  81. Tao, R. et al. WT-PE: prime editing with nuclease wild-type Cas9 enables versatile large-scale genome editing. Signal Transduct. Target. Ther. 7, 108 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Jiang, T., Zhang, X.-O., Weng, Z. & Xue, W. Deletion and replacement of long genomic sequences using prime editing. Nat. Biotechnol. 40, 227–234 (2022).

    Article  PubMed  CAS  Google Scholar 

  83. Wang, J. et al. Efficient targeted insertion of large DNA fragments without DNA donors. Nat. Methods 19, 331–340 (2022).

    Article  PubMed  CAS  Google Scholar 

  84. Zhang, R. et al. Amplification editing enables efficient and precise duplication of DNA from short sequence to megabase and chromosomal scale. Cell 187, 3936–3952 (2024).

    Article  PubMed  CAS  Google Scholar 

  85. Jiao, Y. et al. Targeted, programmable, and precise tandem duplication in the mammalian genome. Genome Res. 33, 779–786 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kilby, N. J., Snaith, M. R. & Murray, J. A. Site-specific recombinases: tools for genome engineering. Trends Genet. 9, 413–421 (1993).

    Article  PubMed  CAS  Google Scholar 

  87. Sternberg, N. & Hamilton, D. Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J. Mol. Biol. 150, 467–486 (1981).

    Article  PubMed  CAS  Google Scholar 

  88. Meinke, G., Bohm, A., Hauber, J., Pisabarro, M. T. & Buchholz, F. Cre recombinase and other tyrosine recombinases. Chem. Rev. 116, 12785–12820 (2016).

    Article  PubMed  CAS  Google Scholar 

  89. Golic, K. G. & Lindquist, S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509 (1989).

    Article  PubMed  CAS  Google Scholar 

  90. Sauer, B. & McDermott, J. DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res. 32, 6086–6095 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Karimova, M. et al. Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system. Nucleic Acids Res. 41, e37 (2013).

    Article  PubMed  CAS  Google Scholar 

  92. Chiu, T.-Y. & Jiang, J.-H. R. Logic synthesis of recombinase-based genetic circuits. Sci. Rep. 7, 12873 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Brown, W. R. A., Lee, N. C. O., Xu, Z. & Smith, M. C. M. Serine recombinases as tools for genome engineering. Methods 53, 372–379 (2011).

    Article  PubMed  CAS  Google Scholar 

  94. Liberante, F. G. & Ellis, T. From kilobases to megabases: design and delivery of large DNA constructs into mammalian genomes. Curr. Opin. Syst. Biol. 25, 1–10 (2021).

    Article  CAS  Google Scholar 

  95. Xu, Z. et al. Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnol. 13, 87 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Durrant, M. G. et al. Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome. Nat. Biotechnol. 41, 488–499 (2023).

    Article  PubMed  CAS  Google Scholar 

  97. Gaidukov, L. et al. A multi-landing pad DNA integration platform for mammalian cell engineering. Nucleic Acids Res. 46, 4072–4086 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41, 500–512 (2023).

    Article  PubMed  CAS  Google Scholar 

  99. Pandey, S. et al. Efficient site-specific integration of large genes in mammalian cells via continuously evolved recombinases and prime editing. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01227-1 (2024).

    Article  PubMed  Google Scholar 

  100. Karpinski, J. et al. Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nat. Biotechnol. 34, 401–409 (2016).

    Article  PubMed  CAS  Google Scholar 

  101. Sarkar, I., Hauber, I., Hauber, J. & Buchholz, F. HIV-1 proviral DNA excision using an evolved recombinase. Science 316, 1912–1915 (2007).

    Article  PubMed  CAS  Google Scholar 

  102. Mukhametzyanova, L. et al. Activation of recombinases at specific DNA loci by zinc-finger domain insertions. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02121-y (2024).

    Article  PubMed  Google Scholar 

  103. Durrant, M. G. et al. Bridge RNAs direct programmable recombination of target and donor DNA. Nature 630, 984–993 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Hiraizumi, M. et al. Structural mechanism of bridge RNA-guided recombination. Nature 630, 994–1002 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. O’Gorman, S., Fox, D. T. & Wahl, G. M. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251, 1351–1355 (1991).

    Article  PubMed  Google Scholar 

  106. Seibler, J. & Bode, J. Double-reciprocal crossover mediated by FLP-recombinase: a concept and an assay. Biochemistry 36, 1740–1747 (1997).

    Article  PubMed  CAS  Google Scholar 

  107. Lee, E.-C. et al. Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery. Nat. Biotechnol. 32, 356–363 (2014).

    Article  PubMed  CAS  Google Scholar 

  108. Kameyama, Y., Kawabe, Y., Ito, A. & Kamihira, M. An accumulative site-specific gene integration system using Cre recombinase-mediated cassette exchange. Biotechnol. Bioeng. 105, 1106–1114 (2010).

    Article  PubMed  CAS  Google Scholar 

  109. Leprince, A., de Lorenzo, V., Völler, P., van Passel, M. W. J. & dos Santos, V. A. P. M. Random and cyclical deletion of large DNA segments in the genome of Pseudomonas putida. Environ. Microbiol. 14, 1444–1453 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Luo, G., Ivics, Z., Izsvák, Z. & Bradley, A. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 95, 10769–10773 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Horie, K. et al. Characterization of Sleeping Beauty transposition and its application to genetic screening in mice. Mol. Cell. Biol. 23, 9189–9207 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Keng, V. W. et al. Region-specific saturation germline mutagenesis in mice using the Sleeping Beauty transposon system. Nat. Methods 2, 763–769 (2005).

    Article  PubMed  CAS  Google Scholar 

  113. Ruf, S. et al. Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor. Nat. Genet. 43, 379–386 (2011).

    Article  PubMed  CAS  Google Scholar 

  114. Kokubu, C. et al. A transposon-based chromosomal engineering method to survey a large cis-regulatory landscape in mice. Nat. Genet. 41, 946–952 (2009).

    Article  PubMed  CAS  Google Scholar 

  115. Dauban, L. et al. Genome–nuclear lamina interactions are multivalent and cooperative. Preprint at bioRxiv https://doi.org/10.1101/2024.01.10.574825 (2024).

  116. Bilodeau, M., Girard, S., Hébert, J. & Sauvageau, G. A retroviral strategy that efficiently creates chromosomal deletions in mammalian cells. Nat. Methods 4, 263–268 (2007).

    Article  PubMed  CAS  Google Scholar 

  117. Su, H., Wang, X. & Bradley, A. Nested chromosomal deletions induced with retroviral vectors in mice. Nat. Genet. 24, 92–95 (2000).

    Article  PubMed  CAS  Google Scholar 

  118. Zheng, B., Sage, M., Sheppeard, E. A., Jurecic, V. & Bradley, A. Engineering mouse chromosomes with Cre–loxP: range, efficiency, and somatic applications. Mol. Cell. Biol. 20, 648–655 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Bradley, A. et al. The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm. Genome 23, 580–586 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Peterson, K. A. & Murray, S. A. Progress towards completing the mutant mouse null resource. Mamm. Genome 33, 123–134 (2022).

    Article  PubMed  CAS  Google Scholar 

  121. Huang, X. et al. Single-cell, whole-embryo phenotyping of mammalian developmental disorders. Nature 623, 772–781 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Paranjape, N. et al. A CRISPR-engineered isogenic model of the 22q11.2 A-B syndromic deletion. Sci. Rep. 13, 7689 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Torres, R. et al. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR–Cas9 system. Nat. Commun. 5, 3964 (2014).

    Article  PubMed  CAS  Google Scholar 

  124. Aparicio-Prat, E. et al. DECKO: single-oligo, dual-CRISPR deletion of genomic elements including long non-coding RNAs. BMC Genomics 16, 846 (2015).

    Google Scholar 

  125. Zhu, S. et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library. Nat. Biotechnol. 34, 1279–1286 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Chen, H. V. et al. Deletion mapping of regulatory elements for GATA3 in T cells reveals a distal enhancer involved in allergic diseases. Am. J. Hum. Genet. 110, 703–714 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Gasperini, M. et al. CRISPR/Cas9-mediated scanning for regulatory elements required for HPRT1 expression via thousands of large, programmed genomic deletions. Am. J. Hum. Genet. 101, 192–205 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Brosh, R. et al. Synthetic regulatory genomics uncovers enhancer context dependence at the Sox2 locus. Mol. Cell 83, 1140–1152 (2023).

    Article  PubMed  CAS  Google Scholar 

  129. Ordoñez, R. et al. Genomic context sensitizes regulatory elements to genetic disruption. Mol. Cell 84, 1842–1854 (2024).

    Article  PubMed  Google Scholar 

  130. Camellato, B. R., Brosh, R., Ashe, H. J., Maurano, M. T. & Boeke, J. D. Synthetic reversed sequences reveal default genomic states. Nature 628, 373–380 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Luthra, I. et al. Regulatory activity is the default DNA state in eukaryotes. Nat. Struct. Mol. Biol. 31, 559–567 (2024).

    Article  PubMed  CAS  Google Scholar 

  132. Koeppel, J. Understanding Genomes Through Engineered Structural Variation. PhD thesis, University of Cambridge (2024).

  133. Zheng, B. et al. Engineering a mouse balancer chromosome. Nat. Genet. 22, 375–378 (1999).

    Article  PubMed  CAS  Google Scholar 

  134. Oster, I. I. A new crossing-over suppressor in chromosome 2 effective in the presence of heterologous inversions. Drosoph. Inf. Serv. 30, 145 (1956).

    Google Scholar 

  135. Ghavi-Helm, Y. et al. Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nat. Genet. 51, 1272–1282 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Ghavi-Helm, Y. Functional consequences of chromosomal rearrangements on gene expression: not so deleterious after all? J. Mol. Biol. 432, 665–675 (2020).

    Article  PubMed  CAS  Google Scholar 

  137. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Korbel, J. O. & Campbell, P. J. Criteria for inference of chromothripsis in cancer genomes. Cell 152, 1226–1236 (2013).

    Article  PubMed  CAS  Google Scholar 

  139. Cortés-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ijaz, J. et al. Haplotype-specific assembly of shattered chromosomes in esophageal adenocarcinomas. Cell Genom. 4, 100484 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Dymond, J. S. et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477, 471–476 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Schraivogel, D., Steinmetz, L. M. & Parts, L. Pooled genome-scale CRISPR screens in single cells. Annu. Rev. Genet. 57, 223–244 (2023).

    Article  PubMed  CAS  Google Scholar 

  143. Riesenberg, S. et al. Efficient high-precision homology-directed repair-dependent genome editing by HDRobust. Nat. Methods 20, 1388–1399 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Pallaseni, A. et al. The interplay of DNA repair context with target sequence predictably biases Cas9-generated mutations. Nat. Commun. (in press).

  145. Yu, Y. & Bradley, A. Engineering chromosomal rearrangements in mice. Nat. Rev. Genet. 2, 780–790 (2001).

    Article  PubMed  CAS  Google Scholar 

  146. Stoilov, L. M., Mirkova, V. N., Dimitrova, A., Uzunova, V. & Gecheff, K. I. Restriction endonucleases induce chromosomal aberrations in barley. Mutagenesis 11, 119–123 (1996).

    Article  PubMed  CAS  Google Scholar 

  147. Zhang, Y. et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148, 908–921 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Liu, Y. et al. Global chromosome rearrangement induced by CRISPR–Cas9 reshapes the genome and transcriptome of human cells. Nucleic Acids Res. 50, 3456–3474 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Zou, R. S. et al. Massively parallel genomic perturbations with multi-target CRISPR interrogates Cas9 activity and DNA repair at endogenous sites. Nat. Cell Biol. 24, 1433–1444 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Mardin, B. R. et al. A cell-based model system links chromothripsis with hyperploidy. Mol. Syst. Biol. 11, 828 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Ellis and members of the Parts laboratory for comments on the text. All authors were supported by Wellcome (220540/Z/20/A).

Author information

Authors and Affiliations

Authors

Contributions

J.K., J.W., T.V. and L.P. drafted the initial version; J.K. and J.W. created the figures; J.K., J.W., T.V. and L.P. wrote the text.

Corresponding author

Correspondence to Leopold Parts.

Ethics declarations

Competing interests

L.P. receives remuneration and stock options from ExpressionEdits. The remaining authors do not declare competing interests.

Peer review

Peer review information

Nature Genetics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koeppel, J., Weller, J., Vanderstichele, T. et al. Engineering structural variants to interrogate genome function. Nat Genet 56, 2623–2635 (2024). https://doi.org/10.1038/s41588-024-01981-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41588-024-01981-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research